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A central question in Neuroscience is that of how the nervous system generates the
spatiotemporal commands needed to realize complex gestures, such as handwriting. A
key postulate is that the central nervous system (CNS) builds up complex movements
from a set of simpler motor primitives or control modules. In this study we examined the
control modules underlying the generation of muscle activations when performing different
types of movement: discrete, point-to-point movements in eight different directions
and continuous figure-eight movements in both the normal, upright orientation and
rotated 90◦. To test for the effects of biomechanical constraints, movements were
performed in the frontal-parallel or sagittal planes, corresponding to two different nominal
flexion/abduction postures of the shoulder. In all cases we measured limb kinematics
and surface electromyographic activity (EMG) signals for seven different muscles acting
around the shoulder. We first performed principal component analysis (PCA) of the EMG
signals on a movement-by-movement basis. We found a surprisingly consistent pattern
of muscle groupings across movement types and movement planes, although we could
detect systematic differences between the PCs derived from movements performed
in each shoulder posture and between the principal components associated with the
different orientations of the figure. Unexpectedly we found no systematic differences
between the figure eights and the point-to-point movements. The first three principal
components could be associated with a general co-contraction of all seven muscles plus
two patterns of reciprocal activation. From these results, we surmise that both “discrete-
rhythmic movements” such as the figure eight, and discrete point-to-point movement may
be constructed from three different fundamental modules, one regulating the impedance
of the limb over the time span of the movement and two others operating to generate
movement, one aligned with the vertical and the other aligned with the horizontal.

Keywords: rhythmic movement, figure-eight, muscular synergy, principal component analysis, varimax factor
analysis, upper limb

INTRODUCTION
Following the quantitative definitions for discrete and rhyth-
mic gestures proposed by Hogan and Sternad (2007), hand-
writing movements, in terms of behavioral and observational
features, are special cases of discrete movements because they
have rhythmic phases but last a finite duration, with the hand
starting and ending at zero velocity. Making the distinction
between discrete and rhythmic movements is central because their
underlying neural control could be different (Hollerbach, 1981).
In fact, one can find in the literature three different propos-
als concerning the control of discrete vs. rhythmic movements.
One view is that rhythmic movements are a concatenation of

a series of discrete movements, the latter of which form the
basic building blocks for complex movements (Abend et al.,
1982; Soechting and Terzuolo, 1987a,b; Kalaska et al., 1997;
Sabes, 2000). An opposing view is that rhythmic movements
represent the fundamental class and that discrete movements are
simply abbreviated rhythmic movements (Sternad and Schaal,
1999; Sternad et al., 2000; Schaal and Sternad, 2001; Sternad
and Dean, 2003). Both of these viewpoints would suggest that
only a single, common control mechanism is used to achieve
both types of movement. A third possibility is that rhyth-
mic and discrete movements represent two distinct movement
classes that are mediated by separate neural control circuitry.
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Recent behavioral (Ikegami et al., 2010; Howard et al., 2011)
and imaging studies (Schaal et al., 2004) support this latter
hypothesis.

Numerous studies have examined the invariance of kinematic
parameters for drawing movements, looking for the principles
used by the central nervous system (CNS) for motor control
(Viviani and Terzuolo, 1982; Lacquaniti et al., 1983; Viviani
and McCollum, 1983; Soechting et al., 1986; Lacquaniti, 1989).
Based on the kinematic invariance of the end-effector obtained,
these authors have proposed that for curved movements the
CNS respects the so-called “2/3 power law” and that each
kinematic segment respects the same kinematic invariance pre-
sented by discrete movement, as specified by the “isochrony
principle”. In light of these kinematic invariances, their con-
clusions have been used to support the hypothesis that the
figure-eight and other “discrete-rhythmic” movements are com-
posed of a series of concatenated discrete movements. Indeed,
the observed presence of multiple peaks in the endpoint veloc-
ity profile might suggest that a figure-eight is composed of
a series of superimposed discrete segments (Richardson and
Flash, 2002). But kinematic segmentation doesn’t necessarily
imply a segmented control of the movement (Sternad and
Schaal, 1999). Indeed, evidence that the figure-eight is in fact an
abbreviated rhythmic movement is emerging (Bengoetxea et al.,
2010).

Within the set of all handwriting movements, the figure-
eight is of particular interest from a theoretical and experimental
point of view because it can be described as a Lissajous figure
for which the vertical and horizontal frequency components are
in an exact ratio of 2 (Buchanan et al., 1996). A figure eight
can therefore also be described as the result of two coupled
oscillators acting in perpendicular directions over a finite number
of cycles (two horizontal cycles and one vertical cycle, to be exact).
Although we previously demonstrated that for rapid execution
of a single figure-eight movement the isochrony principle and
the 2/3 power law between angular velocity and curvature are
respected, and that the tangential velocity profile is invariant
relative to the initial direction of movement (Cheron et al.,
1999), electromyographic activity (EMG) analyses have shown
that muscular activations present temporal modulation related
to the figure as a whole, in contrast to directional pattern of
tuning that would point to a segmented control. Moreover,
we have shown that the prime movers are partitioned into
two sets of synergistic muscles acting in a reciprocal mode
and this reciprocal command was highly correlated with the
spatial component of the velocity presenting the highest fre-
quency (in the case of a vertical figure-eight the horizontal
velocity component) (Bengoetxea et al., 2010). These results
pointed to one or more oscillators controlling two muscular
synergies.

In the study presented here we set out to determine if the
modules underlying the production of discrete-rhythmic move-
ments, in terms of muscle synergies, reflect an organization based
on a series of discrete movements or on a combination of abbre-
viated oscillations. We reasoned that if two orthogonal coupled
oscillators underlie the execution of the figure-eight movement,
these oscillators should define two muscular synergies, each one

dedicated to one of the two spatial components of the kinematics.
On the other hand, we know that the synergistic organization
is flexible and that a single muscle may be a member of more
than one synergy (Tresch et al., 1999; Weiss and Flanders, 2004).
We also know that EMG patterns are modulated by movement
direction in 3D space (Flanders et al., 1994, 1996; Hoffman and
Strick, 1999) and that muscle activation depend on its mechanical
action, which depend on joint position (Hogan, 1985; Buneo
et al., 1997). Finally, we know that the mapping of required
muscle forces and joint torques is most often under constrained,
allowing the CNS to exploit additional degrees-of-freedom to
tune other properties of the musculoskeletal system, such as limb
impedance (Hogan, 1985). We therefore looked at how each
of these considerations influences the grouping of muscles into
functional modules.

In the present work we asked how movement type (discrete vs.
discrete-rhythmic), in addition to directional and biomechanical
constraints, affects the organization of modules used to generate
movements of the arm. We used principal component analysis
(PCA) and varimax factor analysis to extract synchronous syn-
ergies (d’Avella and Bizzi, 2005; Klein Breteler et al., 2007) to see
the relative involvement of each recorded muscle. We compared
the synergies identified by these methods between different ori-
entations, joint configurations and directions of movement for
the figure eight and between figure eights and discrete point-to-
point movements. In a companion article (see Bengoetxea et al.,
2014) we combined this factor analysis with the identification
of the relationship between EMG and movement parameters
via a dynamic recurrent neuronal network (DRNN), in order
to link the muscular synergies extracted with the movement
generated. These two studies revealed a high-level of commu-
nality between the production of discrete and discrete-rhythmic
movements and suggest an organization of motor control con-
structed from one or more modules controlling limb dynamical
properties (e.g., impedance) and multiple modules that elicit
reciprocal activation of opposing muscles to generate forces and
movement.

MATERIAL AND METHODS
Data were collected from a total of 8 right-handed subjects, 4
males and 4 females, aged between 21 and 40 years. All were
in good health, free from known neurological disorders, and
had given informed consent to take part in the study, which
was approved by the ethics committee at Brugman Hospital in
Brussels (“Comité d’éthique hospitalier”—OM26). Data from
one subject were unfortunately unusable due to a technical prob-
lem, leaving a total subject pool of 7 (3 males, 4 females).

Subjects were asked to draw, as fast as possible, figure-eight
movements in free space with the right arm fully extended at the
elbow (for more details see Bengoetxea et al., 2010). Movements
were initiated in the center of the figure with an initial up-right
(UR), down-right (DR), up-left (UL) or down-left (DL) direction
with respect to external coordinates and subjects performed each
of these movements twice. Two trials for one subject were lost for
technical reasons, leaving a total of 7 × 4 × 2 − 2 = 56 figure-
eight movements in the frontal plane. All seven subjects also per-
formed eight point-to-point movements starting from a central
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target, one in each of eight different directions. In addition, three
subjects (subjects 1, 2 and 3) performed figure-eight movements
in both the frontal and sagittal workspaces, while the four other
subjects (subjects 4, 5, 6 and 7) performed “horizontal” figure-
eight movements (figure eights rotated in the frontal plane by
90◦, such that the long axis of the figure was horizontal, instead
of vertical). A part of the data has been reported in a previous
study (data from the four subjects performing figure eights in the
frontal and sagittal planes, see Bengoetxea et al., 2010). Data from
the discrete movements performed by these subjects, and from
the figure-eight and discrete movements from the three other
subjects, are reported for the first time here and in our companion
article in this issue.

DATA ACQUISITION
Data acquisition methods were the same for both the previously
reported data sets (Bengoetxea et al., 2010) and the new data
reported here. Movements of the index finger were recorded
and analyzed using the optoelectronic ELITE system (2 CCD-
cameras, sampling rate of 100 Hz) (BTS, Milan) (Ferrigno and
Pedotti, 1985). The cameras were placed 4 m apart from each
other and 4 m from the subject. Four markers were attached to
the arm (on the acromion, the lateral condoyle of the humerus,
the radial apophysis of the wrist and the index finger). Veloc-
ity signals were obtained by digitally differentiating position
signals using a fifth-order polynomial approximation. Recon-
struction of the arm movements by the ELITE system using
the trajectories of the 4 markers confirmed the visual observa-
tion that the upper arm, forearm, hand and index finger acted
as a rigid link (Bengoetxea et al., 2010). Thus, we analyzed
here only the index-finger marker that was used to trace the
figure-eight.

Surface EMG was recorded with the TELEMG system (BTS,
Milan) synchronized with the kinematic data. Silver-silver chlo-
ride electrode pairs (interelectrode distance of 2.5 cm) were placed
over the belly of the following 7 muscles: posterior deltoid (PD),
anterior deltoid (AD), median deltoid (MD), pectoralis major
superior and inferior (PMS and PMI), latissimus dorsi (LD) and
teres major (TM). Raw EMG signals (differential detection) were
amplified by a portable unit 1000 times and transmitted to the
main unit with a telemetry system (Telemg, BTS). A functional
resistance test that isolated specific muscles was made in order
to verify the absence of cross talk between adjacent muscles.
Thereafter, EMGs were band-pass filtered (10–500 Hz), digitized
at 1 kHz, full-wave rectified and smoothed by means of a third-
order averaging filter with a time constant of 20 ms (Hof and Van
den Berg, 1981).

COMPONENT ANALYSIS
In the first part of our study we set out to identify synchronous
synergies (d’Avella and Bizzi, 2005) using PCA. The input to
the PCA was the EMG signal for each muscle and each figure-
eight movement. The EMG signals were first normalized on a
movement-by-movement basis for the discrete-rhythmic move-
ments. For each EMG recording, the minimum value over the
entire signal for each movement was subtracted and the maxi-
mum value was used to normalize the peak EMG signal during

figure-eight movements. With this normalization, all EMG signals
for each movement ranged from 0 and 1. A similar analysis
was performed on a set of 8 point-to-point movements con-
catenated together, one in each of 8 directions, to produce the
principal components associated with the production of discrete
movements (Klein Breteler et al., 2007). We performed the PCA
using the Statistica (© Statsoft) factor analysis module. This
analysis resulted in 7 principle component vectors each composed
of 7 loading factors (W1muscle–W7muscle) corresponding to the
weights given to the EMG from each of the 7 muscles for each
factor.

We focused the subsequent analysis of the principal com-
ponent decompositions on the first 3 principal components, as
these components accounted for 83.01 ± 2.84 % of the variance
in the EMG data (mean across movements). We also computed
the varimax rotation (Kaiser, 1958) of the first three principal
components for each movement to generate a new set of three
orthogonal loading vectors for each movement.

Because we computed the principal components on a
movement-by-movement basis, we obtained multiple principal
component and varimax decompositions for each direction,
plane, figure-eight orientation and movement type. The principal
component calculation, by design, assigns loading vectors in
decreasing order according to the amount of variance explained
by each one. If one adopts the basic premise that principal
components reflect an underlying module or synergy, it is possible
for a given synergy to be represented by the first, second or
third principal component for a given movement trial, if the
amount of movement (variance) associated with a given syn-
ergy increases or decreases between trials. We therefore used k-
means clustering, with the number of clusters set to three, as an
objective means to assign each loading vector to the group PC1,
PC2 or PC3 based on similarity rather than on the amount of
variance explained. The clustering algorithm was applied the set
of first three principal component loadings collected across all
movements, all mixed together for a total of 351 vectors, without
regard for each vector’s ranking within the trial from which it was
obtained. If the synergies are stable across movement types and
subjects, one would expect that one of the three loading vectors
from each movement would be assigned to PC1, one to PC2
and one to PC3. In the rare case where the k-means clustering
assigned two loading vectors from a single movement trial to
the same cluster, the loading vector with the highest distance
from the cluster mean was shifted to the cluster that was left
unassigned for that trial. A similar process was applied to assign
the varimax loading vectors in each trial to groups VM1, VM2 and
VM3.

The time courses of the activation of each principle component
(PC1–PC3) and varimax loading (VM1–VM3) were then
computed by projecting, at each time step, the vector of 7 muscle
EMGs onto the loading vector describing each component. Note
that the calculation of the covariance used to compute the PCA
removes the mean from each of the 7 columns of the input
matrix (i.e., removes the average EMG at the input) and also
scales each input so that each channel has a variance equal to 1.
The reconstructed EMG signals were therefore scaled and offset
appropriately to account for this scaling of the inputs to the PCA.
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Statistical analyses
We considered that the loading vectors associated to PC1, PC2
and PC3 within a given condition were sufficiently similar to
allow the PCs to be compared based on the mean and variance
of the loading vectors computed across subjects. This assertion is
supported by two statistical arguments. First, we performed the
k-means cluster analysis on the ensemble of loading vectors iden-
tified by PCA for the figure-eight movements performed in the
frontal plane. Out of 54 movements (162 principal-component
loading vectors), only one PC1 loading vector was misclassified
into the cluster containing PC2s. Thus, the principal components
were highly repeatable and unambiguously grouped into three
clusters. We further verified that the loading values for each
muscle and each PC across subjects did not violate the assumption
of a normal distribution, according to the Kolmogorov-Smirnov
(K-S) test (p > 0.20 in all cases). We therefore used MANOVA
to compare the average PC1, PC2 or PC3 vectors across differ-
ent conditions. Whenever the MANOVA revealed a significant
difference (p < 0.01) of the loading vectors between conditions
we performed a one-way ANOVA muscle-by-muscle to determine
which muscle loadings were affected.

Loading vectors based on the varimax rotation (VM1, VM2
and VM3) were somewhat less distinct across trials. Using the
same k-means clustering as described for the principal compo-
nents in the frontal plane, there were more instances (8 out
of 54 movements) where the k-means clustering attributed two
loading vectors from the same movement to the same group.
Furthermore, even after correcting these cases by reclassifying the
vector with the largest distance from the cluster mean, the loading
values for individual muscles did not always follow the normal
distribution across trials (K-S: p < 0.05). Nevertheless, based on
visual inspection and the central limit theorem, we considered
that the within-subject averages could be compared across trials
as a means of detecting systematic changes between conditions.
Indeed, when we computed the average VM1, VM2 and VM3
for each subject across all 4 figure-eight movement directions
(See Section Results for further details), the individual weight
for each muscle of these average loading vectors did respect the
normal distribution (K-S: p > 0.2). We therefore also applied
MANOVA to compare VM1, VM2 and VM3 for different types
of movement, as we did for the principal components PC1, PC2
and PC3.

To compare which of the two factoring methods (principal
component or varimax) produced the least variation in loadings
across subjects, we counted the number of times that the cluster
analysis assigned two loading vectors from the same movement to
the same cluster, with the underlying assumption that the more
the loading vectors varied in terms of directions, the higher the
chance that such misclassification can occur. We also computed
the distance from the cluster mean for each loading vector and
applied a one-way ANOVA with component (PC1, PC2, PC3,
VM1, VM2, VM3) as the independent factor as a measure of the
dispersion of individual vectors within each cluster.

RESULTS
We first looked to see if the PCA, which we applied to each
movement one-by-one, was able to identify regular patterns of

muscle involvement across the different movement directions
and movement planes. Given that subjects may differ in the
way that muscles may be organized into modules or syner-
gies, we analyzed first the results from a single representa-
tive subject. This is the same subject whose data was used
to train the artificial neural network in our companion study
(see Bengoetxea et al., 2014). We then analyzed the principal
components obtained across all participants to look for system-
atic, subject-independent changes in potential muscle synergies
between conditions.

PCA ANALYSIS
Figure 1 illustrates for the one representative subject the factor
loadings for the 3 first principal components (left column) for
each initial direction movement, the latter represented by differ-
ent colors and symbols. From the factor loadings, one can observe
that PC1 included a contribution of all 7 muscles in a synergistic
pattern (all weights were positive), PC2 identified a reciprocal
pattern of activation (positive and negative weights) between MD,
PD and TM on one side and AD, PMS and PMI on the other (LD
had loadings close to 0), while PC3 identified a different reciprocal
relationship with AD and MD clearly on one side and PMI and
TM clearly on the other (PD, PMS and LD had loadings close
to 0). It is interesting to note that in PC2 and PC3 two groups
of muscles appeared according to their mechanical actions. For
PC2, the two sets of muscles have opposite actions with respect to
horizontal (left-right) movements, while for PC3, the groups of
muscles have opposite actions with respect to vertical (up-down)
movements.

Figure 1 (right column) also shows the temporal evolution of
the principal components for each of the 4 different movement
directions (UL, UR, DL, DR). One can see that PC1 showed
activation over the duration of the movement, with little or no
activity in the stationary phase of the recording (prior to 0.5 s
and after 2.0 s in the figure shown). There was little difference
between the 4 different movement directions. The time course
of the second and third PCs both showed significant modulation
over the course of the movement that depended on the direction.
PC2 presented 3 positive and 2 negative peaks for the UR and DR
directions and 3 negative and 2 positive peaks for the UL and DL
directions. PC3 also showed temporal modulation, but differed
in terms of the number of peaks compared to PC2. Specifically,
PC3 presented 1 negative and 2 positive peaks for the UL and UR
directions and 1 positive and 2 negative peaks for the DL and DR
directions.

To characterize to what extent the different muscles partici-
pated in each principal component, independent of their direc-
tion of action, we performed for this subject an ANOVA with
muscle and PC as repeated measures on the absolute values of
the loadings factors, with principal component (PC1, PC2, PC3)
and muscle (AD, MD, PD, PMS, PMI, LD, TM) as independent
factors. The cross-effect showed a significant difference between
muscles and PC (F(12,84) = 48.012, p < 0.001). Scheffe’s post-
hoc analyses showed that AD and PMI participated with similar
loadings in all three PCs (mean loading ± SD were 0.53 ± 0.1,
0.52 ± 0.11, 0.54 ± 0.1 for AD for PC1, PC2 and PC3 respectively
and 0.65 ± 0.07, 0.50 ± 0.09, 0.39 ± 0.09 for PMI). MD and LD
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FIGURE 1 | Factor loadings and temporal components for un-rotated
principal component analyses for one representative subject and for
each initial direction movement. The left column presents the mean
factor loadings for PC1, PC2 and PC3 for each of the 7 muscles recorded.
AD: anterior deltoid, MD: medial deltoid, PD: posterior deltoid, PMS:
pectoralis major superior, PMI: pectoralis major inferior, LD: latissimus dorsi
and TM: teres major. The right column present the temporal component for
each PC and each direction. Each direction is identified by colors. UR:
green, UL: purple, DR: blue and DL: red.

participated significantly more in the first PC compared to PC2
and PC3 (p < 0.03), whereas they showed little or no difference
between PC2 and PC3. LD had loadings near to 0 for PC2 and
PC3 while MD participated in both PC2 and PC3 at the same level
as AD and PMI (mean loadings ± SD were 0.75 ± 0.03, 0.46 ±

0.05, 0.35 ± 0.05 for MD for PC1, PC2 and PC3 respectively and
0.86 ± 0.02, 0.1 ± 0.07 and 0.11 ± 0.07 for LD). PD and PMS
had the same level of participation for PC1 and PC2 but were not
implicate in PC3 (mean loadings ± SD were 0.74 ± 0.05, 0.59 ±

0.05 and 0.04 ± 0.03 for PD for PC1, PC2 and PC3 respectively
and 0.53 ± 0.09, 0.75 ± 0.05 and 0.1 ± 0.07 for PMS). TM was the
only recorded muscle that had the same level of activity in PC3 as
in PC1 (0.58 ± 0.1, 0.67 ± 0.06) and participated lightly in PC2
(0.21 ± 0.12).

Figure 2 illustrates the EMG signals for each muscle cor-
responding to the time course and loadings of each of the
first 3 principal components, shown here for the movement
initiated downward and to the right (DR). The reconstructed
signals reinforce the interpretation given previously about the
role of each principal component (synergy) in the execution of
the movement. Specifically, one can observe a co-contraction of
all muscles during the movement for EMG reconstructed from
PC1, whereas synergies from PC2 and PC3 produced reciprocal
activation patterns for which not all muscles participated at the
same level. For EMG activations reconstructed from PC2 the
figure illustrates that for a movement initiated in the down and
right direction, MD and PD were the prime movers (for a right
arm their action is to move the arm to the right) and presented a
reciprocal command with respect to AD, PMS and PMI. LD and
TM are not implicated in this synergy. The synergy extracted by
PC3 shows that TM and PMI were agonists and presented the first
activity given the fact that they are muscles that move the arm
downward and presented a reciprocal activity with respect to AD,
MD and PMS. But the reciprocal activity for PC3 was less “pure”
than for PC2.

Figure 3 shows the muscle loadings for each of the first three
principal components for all subjects, separated as a function
of PC and of movement direction. The loading factors were
remarkably similar for the 7 different subjects; the average inter-
subject standard deviation for each muscle and each factor was
0.133 ± 0.047. This observation, plus the stability in the cluster
analysis of PCs (See Section Methods), justified the statistical
comparison of loading patterns across subjects.

FACTORS AFFECTING MUSCLE SYNERGIES
Based on the analysis and observations presented above we pro-
ceeded to analyze the data based on the means and variances
across subjects of the muscle loadings for each of the first
three principal components. We considered four main factors
that might affect how muscles are grouped into synchronous
synergies:

1. The temporal sequence of hand velocities (4 movement direc-
tions).

2. The frequency component of oscillations (vertical vs. horizon-
tal figure-eight).

3. Anatomical constraints of different joint configurations
(frontal vs. sagittal planes).

4. The type of movement (discrete vs. discrete-rhythmic).

The search for potential effects of factors 1 and 4 addressed
the primary questions that motivated our study, i.e., how might
time series of movement directions affect the grouping of muscles
into modules or synergies? Thus, all seven subjects were asked
to perform trials to allow these two contrasts. The other two
factors (figure orientation and workspace) addressed secondary
questions that provided interesting benchmarks with which to
compare the primary results. For practical reasons, therefore, we
asked only 4 of our subject to perform figure eights in both the
vertical and horizontal directions and only 3 of our subject to
perform movements in both the frontal and sagittal planes. The
results of each of these contrasts are described below. The loading
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FIGURE 2 | EMG reconstructed by principal component analysis
applied to one typical movement (figure-eight initiated in the
down-right direction). Each column shows the EMG signal within
each muscle associated with PC1 (left column), PC2 (middle
column) and PC3 (right column). Blue traces show the actual

smoothed EMG signal, whereas red shows the EMG signal
reconstructed by the each weighted PC waveform. AD: anterior
deltoid, MD: medial deltoid, PD: posterior deltoid, PMS: pectoralis
major superior, PMI: pectoralis major inferior, LD: latissimus dorsi
and TM: teres major.

vectors averaged across subjects are shown in Figure 4 while
Figure 5 shows the contribution of each muscle to each of the first
three principal components for each subject and each condition.
The details of the statistical tests are reported in Table 1.

Movement direction
All seven subjects performed the figure-eight movement two
times in each of the four possible directions. The loadings

within a given PC were remarkably similar across the four
different movement directions. There was no significant dif-
ference between the loading vectors computed across subjects
for each direction (p > 0.2, see Table 1) and one-way ANOVA
test conducted separately on each muscle loading for each PC
confirmed that the loadings assigned to each muscle did not
change for any of the first three PCs as a function of movement
direction.
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FIGURE 3 | Factor loadings (weighting) for PC1, PC2 and PC3 and
each initial direction of vertical figure eights for all subjects. Each
graph represents factors loadings for each muscle for a given direction

and PC. Results from each of 7 subjects are identified by colors and
symbols. PC are organized by row while the direction of movements are
displayed in columns.

Figure-eight orientation
Four subjects traced out figure eights in both the vertical and
horizontal orientations in the frontal plane. The average loading

vectors across subjects were qualitatively very similar for the
two orientations. Nevertheless, some reliable differences were
detected. The MANOVA test of loading vectors was significant for
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FIGURE 4 | Average loadings for each PC (un-rotated principal
component analyses) and for 4 movement conditions (4 movement
directions, 2 movement orientations, 2 movement planes and 2

movement types). Movement conditions are displayed in columns. Each PC
is displayed in rows. Each graph presents the average loadings for each
muscle for each PC and each condition (identified by color and symbols).

each of the three PCs (p < 0.01). One-way ANOVAs computed
post-hoc showed that PD, PMI and TM all had significantly greater
weight (more negative values) in PC3 for the horizontal vs. verti-
cal orientations. There was a concomitant decrease in the weight
of PMI in PC1 and of PD and TM in PC2. AD had somewhat less
influence in PC2 (less negative weight) in the horizontal figure
eight, but there was no change in AD”s contribution to either PC1
or PC3.

Frontal vs. sagittal plane
Three subjects performed the figure eight movements in two
different nominal orientations of the outstretched arm: with
the arm extended straight ahead (frontal plane) and with the
arm stretched out straight to the side (sagittal plane). Again,
the loadings for each PC were qualitatively similar between the
two conditions, but with some small variations. The MANOVA
showed only a marginally significant difference between the
planes for PC1 (p = 0.0206) but statistically reliable difference
between the planes for PC2 and PC3 (p < 0.01). One-way
ANOVAs applied post hoc demonstrated that PMS had a slightly
greater influence in PC1, MD had a greater influence and AD

and TM had lesser influences on PC2 and MD and PMI had less
weight in PC3, in the sagittal compared to the frontal plane of
movement.

Discrete vs. discrete-rhythmic movements
All seven subjects performed both the figure eights and the point-
to-point movements in the frontal plane. As for the comparison
between movement directions, there was no apparent difference
in the principal components computed for the discrete-rhythmic
figure eights and the discrete point-to-point movements. The
MANOVA showed no significant difference (p > 0.4) between
movement types for any of the three principal components PC1,
PC2 and PC3.

VARIMAX ROTATION
Compared to the un-rotated principal components computed for
S1 (Figure 1), the varimax rotation for the same subject (Figure 6)
grouped muscles into components (synergies) in a quite different
fashion. Rather than identifying a “co-activation” module and
two “reciprocal” modules, as seen for the first three principle
components, the three varimax components could be described
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FIGURE 5 | Contribution of each muscle to the first three principal
components. Individual data points show the average weighting for
each subject in each condition. Data from a single subject are grouped
by color and by connecting lines, while symbols indicate the different

conditions (filled circles—vertical figure eight in the frontal plane;
triangles—discrete movements in the frontal plane; squares—horizontal
figure eight in the frontal plane; diamonds—vertical figure eight in the
sagittal plane).

as one that drives more-or-less rightward rotations (MD, PD,
LD), one that drives more or less leftward rotations (AD, PMS,
PMI), and one that favors muscles with a component of action in
the downward direction for movements of the outstretched arm
(PMI, LD, TM). But this is a gross over-simplification and the
participation of the different muscles in the three varimax loading
vectors, which was much more mixed in terms of direction of
action. Indeed, even if VM1 is dominated by muscles that rotate
the outstretched arm rightward (MD, PD), other muscles (LD,
TM) participate just as much in VM1 as in VM3. Similarly, PD
contributes as much to VM3 as it does to VM1.

Figure 7 shows the comparison of average loading for VM1,
VM2 and VM3 as a function of movement direction (UR, UL, DR,
DL), figure-eight orientation (horizontal, vertical), movement
plane (frontal or sagittal) and movement type (discrete-rhythmic
or discrete). Figure 8 shows the contribution of each muscle to
each varimax component, computed separately for each subject
and each condition. The only highly reliable difference found
in the MANOVA analysis of these data (see Table 2) was in the
comparison between the vertical and horizontal figure-eight
orientations (p < 0.01 for VM1 and VM3; p = 0.056 for VM2).
Post-hoc analyses showed fewer and statistically weaker differences
(p< 0.05) in the loading for individual muscles, compared to the
equivalent tests applied to the principal components.

COMPARING PCA VS. VARIMAX
By mathematic principle, the varimax rotation of the three first
principal components explains the same amount of variance in

the data as the first three principal components do themselves.
So one cannot say that one decomposition is to be preferred
over the other on that basis. We instead asked whether the PCA
or varimax decomposition was more invariant across subjects
and conditions. Two observations suggest that the first three
principal components were somewhat more regular than the
corresponding varimax rotation. First, in the k-means clustering
process that we used to assign the PCA vectors to the PC1,
PC2 or PC3 groups and to assign the varimax vectors to the
VM1, VM2 and VM3 groups, one would expect that if the
three orthogonal vectors are aligned across subjects and con-
ditions, the k-means algorithm should assign one vector from
each individual decomposition to each group. If the orienta-
tion of the three vectors varies significantly, however, from the
mean, a given vector might fall between two clusters, caus-
ing two vectors from the same decomposition to be assigned
to the same group. This happened 3 times for the princi-
pal components and 21 times for the varimax decompositions,
out of a total of 117 movements. Second, an ANOVA applied
to the distance from the mean for each component cluster
(PC1, PC2, PC3, VM1, VM2, VM3) showed a significant main
effect (F(5,696) = 50.69, p < 0.001) and a planned comparison
showed a significant difference overall between the principal
component clusters and the varimax clusters (F(1,696) = 36.09,
p < 0.001). Scheffe’s post-hoc analysis showed the PC1 had
the least average distance; PC2 and VM2 were next, followed
by PC3, VM1 and VM3. Thus, overall the principal compo-
nent decomposition was less variable across movements, with
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Table 1 | Statistics for raw PCA.

MANOVA AD MD PD PMS PMI LD TM

Movement direction (UR-UL-DR-DL)
PC1 Wilks λ = 0.8466 F (21,218.78) = 0.6217 p = 0.9005
PC2 Wilks λ = 0.7315 F (21,218.78) = 1.1894 p = 0.2622
PC3 Wilks λ = 0.8430 F (21,218.78) = 0.6387 p = 0.8872

Figure-eight orientation (vertical vs. horizontal)
PC1 Wilks λ = 0.6519 F (7,54) = 4.1194 p = 0.0011 **
PC2 Wilks λ = 0.5619 F (7,54) = 6.0145 p < 0.0001 ** ** **
PC3 Wilks λ = 0.6138 F (7,54) = 4.8536 p = 0.0003 * * *

Movement plane (frontal vs. sagittal)
PC1 Wilks λ = 0.6769 F (7,40) = 2.7271 p = 0.0206 **
PC2 Wilks λ = 0.5863 F (7,40) = 4.0328 p = 0.0020 ** ** **
PC3 Wilks λ = 0.6083 F (7,40) = 3.6797 p = 0.0037 ** *

Type of movement (discrete-rhythmic vs. discrete)
PC1 Wilks λ = 0.9456 F (7,85) = 0.6981 p = 0.6735
PC2 Wilks λ = 0.9678 F (7,85) = 0.4037 p = 0.8976
PC3 Wilks λ = 0.9224 F (7,85) = 1.0222 p = 0.4217

Significant differences identified by post hoc analyses (right columns) are indicated by * (p < 0.05) and ** (p < 0.01).

the difference being mainly attributed to the lower inter-
trial variability of the co-activation component defined by
PC1.

DISCUSSION
In this study we looked for modularity in patterns of muscle
activation used to perform discrete-rhythmic movements, a class
of movements typical of handwriting (Hogan and Sternad, 2007),
and we compared the underlying structure with that identified
for discrete movements performed in eight different directions
in the frontal plane. We asked subjects to draw figure eights
in different directions, in different orientations and in two dif-
ferent nominal arm postures. Thus, in addition to the main
comparison between discrete and discrete-rhythmic movements,
we also considered how the underlying modules might be tuned
as a function of the directional, biomechanical and rhythmic
constraints.

PCA, and other forms of factor analysis, have in recent years
become an important tool to identify the muscular synergies
underlying human movement, from reaching (d’Avella et al.,
2003; Bizzi et al., 2008) to locomotion (Ivanenko et al., 2004;
Dominici et al., 2011) passing through complex movements
(Weiss and Flanders, 2004; Klein Breteler et al., 2007; Danna-Dos-
Santos et al., 2008). Here we used PCA and the varimax rotation as
means to identify structure in the activation of different muscles.

Both the three principal component vectors and the three
varimax vectors were remarkably stable across the different move-
ment directions, figure-eight orientations, joint configurations
(movement plane) and the types of movement (discrete or rhyth-
mic). There were small, but measurable differences in loading
between the figure-eight orientations (horizontal or vertical) and
between the movement’s planes (frontal or sagittal). It should be
noted, however, that fewer subjects performed the movements in
each of these two conditions, whereas as all 7 subjects performed
the figure eights and discrete movements in the frontal plane.
It is possible that the orientation and movement-plane compar-
isons were more sensitive to inter-individual changes between

conditions due to the lower N in each case. Furthermore, we do
not exclude the possibility that loadings change between move-
ment directions and movement types for individual subjects. But
the main result, in the context of the questions evoked in the
Introduction, is that overall the synchronous synergies, whether
identified through PCA or varimax rotation, were no more
affected by the type of movement (rhythmic or discrete) than
by changing the time series of movement directions, the organi-
zation of oscillations in cyclic movements or the biomechanical
constraints. This observation runs counter to our hypothesis by
which we expected the CNS to exploit the redundant degrees
of freedom within the system to select synergies that would be
best adapted to the performance of one or the other type of
movement. Our component analyses suggest that three main
modules can be extracted for the movements described here,
because they capture the bulk of the variation in EMG signals.
For the un-rotated principal components, the first component
showed a general co-activation of all the muscles, irrespective of
the type of movement or the initial direction. This co-activation
started and ended with the movement despite the fact that before
and after the movement the arm was held in a static position.
The co-contraction induced by PC1 would tend to stiffen the
arm and thus serve to stabilize the arm’s posture before, during
and after the movement and to tune the impedance of the limb
to meet the demands of the movements to follow. The second
and the third principal components each showed a pattern of
reciprocal activation but differed in terms of how the muscles were
grouped. Whereas the second module encompassed muscles that
are antagonistic in terms of their horizontal direction of action,
the same muscles were divided in the third module according
to their vertical direction of action. Under this decomposition,
the actual movement would then be realized by two reciprocal
synergies represented by PC2 and PC3. According to the parlance
proposed by Hogan and Sternad (2012), PC1 would constitute
a “mechanical impedance” synergy while PC2 and PC3 would
each be representative of “oscillation” synergies. Such a decom-
position would be particularly adapted to rhythmic movements
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FIGURE 6 | Factor loadings and time course for the varimax
components for one representative subject and for each initial
direction movement. Left column presents the mean factor loadings for
VM1, VM2 and VM3 for each of the 7 muscles recorded. Right column
presents the temporal component for each varimax component and each
direction.

were each reciprocal synergy could be associated with a separate
oscillator.

In contrast, each of the varimax components manifested only
non-negative weightings (on average). The varimax decompo-
sition would be consistent with “sub-movement” synergies that
would tend to push the limb in one direction or another through
the activation of a set of agonistic muscles, without the automatic
co-activation or reciprocal de-activation of the effective antago-
nists (Hogan and Sternad, 2012). The varimax decomposition is
more representative of a vector strategy in which each underlying
module drives the limb in a given direction, reflecting the fact
that muscle can pull, but not push, and thus cannot be nega-
tively active. Modulation of limb impedance can, nevertheless,
be achieved through the varimax decomposition, even if there
is no identified co-activation module per se. Co-activation, and
thus impedance modulation, could be achieved by recruiting

simultaneously VM1, VM2 and VM3, while cyclic movements
could be achieved by various activations of the same modules to
generate movement in different directions.

METHODOLOGY
One might ask to what extent the details of the analysis procedures
play a role in the modules that we observed. For instance, it is
known that PCA are potentially sensitive to the normalizations
applied to the input data. In this study we set out to compute the
principal components on a movement-by-movement basis, thus
allowing us to examine the stability of the principal component
decompositions across repeated movements in the same condi-
tions and across different conditions by using standard statistical
methods such as ANOVA.1 But the algorithms for PCA transform
the incoming data to be centered on zero with variance equal to
one, essentially normalizing the data on a trial-by-trial basis. By
doing so, we open up the possibility that factor decompositions
might change from one movement to the next due to the scaling
factors that also changed from trial to trial. Surprisingly, our
data showed that the decompositions were very stable, despite
potential variability stemming from the normalization procedure.
Our trial-by-trial normalization represents the more conserva-
tive method vis-à-vis our conclusions that synchronous muscu-
lar synergies vary little between discrete and discrete-rhythmic
movements.

A second, perhaps more fundamental question is that of
the factorization methods used to analyze the data. Different
approaches of factor analysis have been used in the past to
extract synergies, and the results obtained depend on the method
used (Tresch et al., 2006). Here we compared the results from
two different methods, varimax vs. unrotated principal com-
ponents. Can one claim that the varimax is a better descrip-
tion of the underlying neural structure than the un-rotated
principal components, or vice versa, based on our empirical
observations? Both the un-rotated principal components and the
varimax decompositions are mathematically valid solutions that
describe equally well the variance of the various EMG signals.
We therefore asked whether one or the other provided a more
consistent representation of muscle activation patterns across
subjects and across movements. In our conditions we found
that the principal component decomposition was less variable
than the varimax decomposition when computed on a trial-
by-trial basis. One might expect to see such a result if the
neural hardware indeed organizes muscles into a fixed set of
synergies according to PC1, PC2 and PC3. Thus, these obser-
vations support the hypothesis that muscles are organized in
a set of co-contraction and reciprocal synergies. These obser-
vations do not, however, constitute a definitive proof, due to
properties of the principal component computation. Principal
component vectors are in fact the eigenvectors of a covariance

1However, that the discrete movements were normalized as a set (i.e., the EMG
from each muscle was divided by its maximum value across all 8 movements)
and the principal component analysis was applied to each set individually. This
makes sense in that through the comparison of these data with the figure eights
we were testing the null hypothesis (which actually proved to be true) that
figure eight movements are constructed as a serial concatenation of modules
used to produce discrete movements.
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Table 2 | Statistics for varimax rotation.

MANOVA AD MD PD PMS PMI LD TM

Movement direction (UR-UL-DR-DL)
VM1 Wilks λ = 0.7944 F (21,218.78) = 0.8696 p = 0.6306
VM2 Wilks λ = 0.7591 F (21,218.78) = 1.0496 p = 0.4054
VM3 Wilks λ = 0.8193 F (21,218.78) = 0.7487 p = 0.8872

Figure-eight orientation (vertical vs. horizontal)
VM1 Wilks λ = 0.6273 F (7,54) = 4.5827 p = 0.0005
VM2 Wilks λ = 0.7835 F (7,54) = 2.1315 p = 0.0554 * *
VM3 Wilks λ = 0.51346 F (7,54) = 7.3098 p < 0.0001 * *

Movement plane (frontal vs. sagittal)
VM1 Wilks λ = 0.6781 F (7,40) = 2.7125 p = 0.0212
VM2 Wilks λ = 0.8170 F (7,40) = 1.2802 p = 0.2847
VM3 Wilks λ = 0.7374 F (7,40) = 2.0355 p = 0.0742

Type of movement (discrete-rhythmic vs. discrete)
VM1 Wilks λ = 0.9077 F (7,85) = 1.2351 p = 0.2928
VM2 Wilks λ = 0.9402 F (7,85) = 0.7729 p = 0.6116
VM3 Wilks λ = 0.9292 F (7,85) = 0.9256 p = 0.4911

Significant differences identified by post hoc analyses (right columns) are indicated by * (p < 0.05).

FIGURE 7 | Average loadings for each varimax component (VM) and for
4 movement conditions (4 movement directions, 2 movement
orientations, 2 movement planes and 2 movement types). Movement

conditions are displayed in columns, varimax components are displayed by
rows. Each graph presents the average loadings for each muscle for each PC
and each condition identified by color and symbols.

matrix. Those vectors are distinct and well defined when the
eigenvalues corresponding to each vector are different. Had the

first and second principal components accounted for similar
amounts of variance in the EMG, the directions of the first and
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FIGURE 8 | Contribution of each muscle to the first three
varimax components. Individual data points show the
average weighting for each subject in each condition. Data

from a single subject are grouped by color and by connecting
lines, while symbols indicate the different conditions (see
caption, Figure 5).

second PCs would be ill-defined and one would expect them to
vary considerably just due to measurement noise. By analogy,
the process of finding the varimax solution might add variability
across trials if the optimal solution is not sharply defined in
each case.

By considering the un-rotated principal components and the
varimax rotation of the same data we have therefore evoked an
interesting contrast in the way that movements can be generated
through the action of muscles. We note, however, that this clear
contrast between the two identification strategies was a fortuitous
outcome of our experimental conditions. The varimax rotation
that we used here does not explicitly seek to generate only
positive loading factors for muscles; it just happened to do so
for the movement studied here. Recent studies (Ivanenko et al.,
2004; Tresch et al., 2006; d’Avella et al., 2008; Delis et al., 2014)
have employed the technique of non-negative factorization to
explicitly find such solutions. Similarly, PCA does not explic-
itly seek to group muscles into a co-contraction module plus
reciprocal activation, but that also happened to be the outcome
of the analysis of our data. Future studies could use instead a
factorization algorithm that explicitly looks to organize compo-
nents in this manner. For instance, a hierarchical factor analysis
could be use, where the “secondary” factor would identify the
co-contraction unit while a rotation of the primary vectors to
maximize “reciprocity” could provide an appropriate solution for
future studies.

The comparison of the two factorial decompositions presented
here and the discussion above should therefore serve as a cau-
tionary tale for future studies. From the purely mathematical

analysis presented here, one cannot claim with high confidence
that we have identified the neural structure of modules or
synergies based only on the correlations between muscle acti-
vations. As we have shown here, the grouping of muscles into
purported synergies through component analysis of EMG will
depend highly on the a priori choice as to what type of fac-
tor analysis is performed and on the experimental conditions.
Additional information is needed before one can state a clear
preference for one decomposition over another. In our compan-
ion article, we endeavored to do just that, by using an artificial
dynamic recurrent neural network to search for the relationship
between EMG and movement. Nevertheless, the simple fact that
3 components can account for a large part of the variance in
EMG signals, regardless of which rotation is used, is consistent
with what one would predict if activation patterns are organized
into synergies as a means of reducing the number of degrees
of freedom in the mapping from desired movement to muscle
activations.

IMPLICATIONS FOR NEURAL MECHANISMS
One can see in these analyses that, whichever decomposition
is considered (PCA or varimax) two muscles might be ago-
nistic in one synergy and antagonistic in another. It would
be difficult to understand how the same muscle, if activated
as a whole, could participate properly in both synergies. If
we refer to the preferred action direction of motor units of
the deltoid muscle (Herrmann and Flanders, 1998), most of
the motor units exhibit a cosine tuning function showing a
unique preferred direction. Thus, whereas a single muscle may
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be shared across muscle synergies, this sharing may be realized
by incorporating the motor units of a given muscle into each
synergy according to the preferred direction of each motor
unit.

Transitions from fast discrete movements to rhythmic move-
ment (Sternad et al., 2013) as well as transitions from slowly
continuous movement to sub-movements (Teeken et al., 1996;
van der Wel et al., 2009) reveal that the underlying controls for
discrete and rhythmic movements are based on the same modules.
Our results provide further evidence that muscular synergies
underlying both types of movement are the same. Despite the
fact that at the cerebral level the control of discrete vs. rhythmic
movements has been shown to implicate different cortical areas
(Schaal et al., 2004), the fact that directional discrete movements
and rhythmic figure-eight present no differences in the three first
principal components identified at the muscular level supports
the hypothesis that discrete and rhythmic movements present
the same neural control (Sternad et al., 2000, 2002; Sternad
and Dean, 2003), at least at the level of synchronous muscular
synergies.

The organization of those modules might, however, reflect
higher levels of processing as well. In the case of our principal
component decomposition, control would be shared between a
co-contraction module and two reciprocal modules, the latter
of which were surprisingly well aligned with the vertical and
horizontal directions of movement (see also our companion
paper for further evidence of this point). It is likely not a coin-
cidence that the modules are oriented along these two canonical
directions. One might hypothesize that the horizontal/vertical
orientations of PC2 and PC3 are linked to the spatial charac-
teristics of the figure eight, which was intrinsically orientated
with the horizontal and vertical. But the PCA of our discrete
movements was carried out separately from the computations
on the figure eights, yet we found the same groupings in either
case. Since the eight movement directions were equally spaced
in all directions in the frontal plane, bias in the directions of
movement cannot explain this phenomenon. Gravity itself acting
on the arm could provide an explanation, as one might argue
that the up/down synergies could take advantage of gravity as
a driving force, reducing the amplitude of EMG modulation
needed to produce movement in the vertical direction. But our
EMG signals were normalized muscle-by-muscle, removing this
as a possible explanation as well. On the other hand, there is
ample evidence that human perception and visuomotor coor-
dination is preferentially tuned to the vertical dimension tied
to a multi-modal reference frame that includes the body axis
and gravity (Howard, 1982; Paillard, 1991; Gentaz et al., 2001;
McIntyre and Lipshits, 2008; Tagliabue and McIntyre, 2012).
The organization of muscular synergies, which may be imple-
mented at the level of the periphery, might nevertheless be
tuned based on constraints defined in supraespinal areas involved
with the processing of spatial information (Bizzi and Cheung,
2013).

CONCLUSIONS
In this study we set out to compare discrete and discrete-rhythmic
movements, in terms of synchronous muscular synergies than can

be identified through principal component and varimax factor
analysis. To this question we found a remarkably clear result:
the invariance of the synchronous synergies, be they identified
by principal components or varimax factors. This result suggests
that a common mechanism underlies both types of movements, at
least in terms of purported synergies that underlie the generation
of muscle activation patterns. It is perhaps somewhat surprising
that the CNSc does not exploit the additional degrees of freedom
for generating forces to tune the system differently for these two
classes of movements.

The secondary question of whether the principal components
or varimax decompositions better represent the modules use
to produce a certain class of upper-limb movements remains
open. The un-rotated principal components suggested an orga-
nization based on a co-contraction module plus two modules
for reciprocal activation, one horizontal and the other vertical.
The varimax decomposition indicated instead a set of three
basis vectors used to construct forces in different directions.
Based on the analyses presented here, we argue for the co-
contraction plus reciprocal organization, because of the some-
what less variability in the principal component decomposition
and on conceptual grounds. Nevertheless, the arguments pre-
sented here are admittedly not conclusive. In our companion
article we search for further evidence to support our hypothesis
by using an artificial neural network to identify the functional
significance, in terms of movement, of the modules identified
here.
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