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Primate vision research has shown that in the retinotopic map of the primary visual cortex,
eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the
eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto
the dorsoventral axis. Theoretically such a map has been approximated by a complex
log map. Neural models with correlational learning have explained the development of
other visual maps like orientation maps and ocular-dominance maps. In this paper it is
demonstrated that activity based mechanisms can drive a self-organizing map (SOM)
into such a configuration that dilations and rotations of a particular image (in this case
a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the
Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an
appropriate boundary and realistic initial conditions, that a retinotopic map which maps
eccentricity and meridional angle to the horizontal and vertical axes respectively can be
developed. This developed map bears a strong resemblance to the complex log map. We
also simulated lesion studies which indicate that the lateral excitatory connections play a
crucial role in development of the retinotopic map.
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1. INTRODUCTION
A mapping scheme from an abstract visual input space to the
cortical space, which is topology-preserving to a certain extent
is an organizational feature of the striate cortex (V1) in pri-
mates. In fact, a number of such mapping schemes, which overlap
to varying degrees, are observed in V1 (Schiller et al., 1976;
Hubel and Wiesel, 1977; Tootell et al., 1988). It is speculated that
the retinotopic, orientation, ocular dominance, motion direction
maps are overlaid in such a manner that they resemble a uni-
form distribution across these features (Swindale et al., 2000).
The hypercolumn, which is the basic functional unit of the V1
architecture, is composed of cortical columns that are orien-
tation selective, and these orientation columns span the range
of all possible orientations. Each hypercolumn has a dimension
of approximately 0.4 mm2 (Hubel and Wiesel, 1977), and these
hypercolumns span the surface area of each hemisphere (approx-
imately 1380 mm2 for the rhesus monkey) of the striate cortex.
Thus, from a global perspective, each of these hypercolumns can
be approximated to a point in the cortical space. With this approx-
imation in place, a mapping function from a point (x, y) in the
visual field to a point (u,v) in the cortical space has been proposed
(Schwartz, 1977):

x + iy = rei θ (1)

u + iv = log(x + iy + a) (2)

where x, y are Cartesian co-ordinates for a point in the visual field,
and r and θ are the corresponding Polar co-ordinates representing

eccentricity and meridional angle respectively; u and v are the
Cartesian co-ordinates of a point in the cortical space; a is a con-
stant. By varying the value of a, the retinotopic mappings in a
number of primate species have been approximated (Schwartz,
1980). This transformation is illustrated in Figure 1 for the cen-
tral 4◦ of eccentricity, with the value of a chosen to be 1. The
retinotopic map is one of the first maps approximated by a map-
ping function. It describes the relationship between a point in the
visual field and its representation in the cortical space. While the
logarithmic nature of the map along the nasotemporal (u) axis is
probably a consequence of the exponential decay in the density of
Retinal Ganglion Cells (RGCs) from the fovea radially outwards
(Wässle et al., 1990), it does not explain the map formation along
the dorsoventral (v) axis. Schwartz et al. (Schwartz, 1977) spec-
ulated that this kind of mapping would result in the rotational
and dilational variance in the input space to be transformed to a
translational variance along both axes in the output space.

The development of such a retinotopic mapping is of current
experimental interest. A fairly comprehensive retinotopic map is
believed to be present even prior to eye opening, that is prior
to inputs arriving from rod and cone photo-receptors (Espinosa
and Stryker, 2012). There are two major mechanisms, known
primarily from the mouse model, which contribute to this map
formation, namely molecular gradients and retinal waves. Post
cortical arealization, wherein neurons in the striate cortex estab-
lish their identity, axon terminals from LGNd project to the V1.
The EphA family of receptors are expressed on the axon ter-
minals of these LGNd axons. Now a molecular gradient of the
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FIGURE 1 | Complex logarithmic transformation. (A) Each vertex
represents a certain location in the visual field; (B) Each vertex represents
the corresponding transformed location in the cortical space.

ephrin-A ligand, which is attached to the surface of neurons, is
present along the nasotemporal axis of the V1. This EphA ephrin-
A interaction is one of the mechanisms for the development of the
retinotopic map along the nasotemporal axis (Cang et al., 2005).
Retinal waves, caused by the spontaneous firing of retinal gan-
glion cells (RGCs), constitute another factor that influences the
development of the retinotopic map along the nasotemporal axis
(Wong et al., 1993). On disrupting both ephrin-As and retinal
waves, the map along the nasotemporal axis is almost completely
eliminated, however the map along the dorsoventral axis of V1
is more or less maintained (Cang et al., 2008). This has led to
the speculation, that there are two distinct mechanisms for the
development of the retinotopic map along the dorsoventral and
nasotemporal axes.

There is also evidence of plasticity in the retinotopic map,
both during development as well as in adulthood. This plastic-
ity could be classified into two categories: plasticity in the afferent
connections from the retina to V1, plasticity in the lateral connec-
tions withing V1 itself. Visual experience driven map refinement
shortly after eye opening falls in the first category (Smith and
Trachtenberg, 2007). There is debate whether the plasticity seen
in rod monochromats falls in the first category or the second
(Wandell and Smirnakis, 2009). Rod monochromats, who have
a defect in cone transduction, exhibit fmri activity in the central
1 cm2 region of the V1, in response to rod driven signals (Baseler
et al., 2002). In normal subjects however this entire region in
unresponsive for the same stimuli. Thus, there is a rod projec-
tion zone seen in a cortical location which in normal subjects
corresponds to a cone-only projection zone. This kind of plastic-
ity is photo-receptor driven and hence most probably occurs post
eye-opening.

Another kind of plasticity is seen in adults with binocular
retinal lesions. The radius of the observed plasticity is reduced.
Different groups performing lesion studies on cats and monkeys
report activity up to 8 mm within the lesion projection zone
(LPZ) (Kaas et al., 1990; Schmid et al., 1996; Eysel et al., 1999).

This radius corresponds to the known radius of lateral connec-
tions within V1, which has led to speculation that adult cortical
plasticity is limited by the radius of horizontal lateral connections
in V1. This kind of plasticity probably falls in the second category.

Various computational models have been proposed to explain
the development of other visual maps in V1, like orientation maps
and ocular-dominance maps. One family of models known as
the General Elastic Nets (GENs) (Durbin and Willshaw, 1987),
is based on an optimization criterion, such that the resulting map
is optimized for the continuity of the output representation of
input features, as well as the coverage of output space correspond-
ing to each input feature. In another family of models known as
Self Organizing Maps (SOMs) (Willshaw and Von Der Malsburg,
1976), the map development is based on a local correlational
learning mechanism. Previously proposed self organizing models
do not capture this unique mapping of eccentricity and merid-
ional angle onto orthogonal axes. They merely ensure a topog-
raphy preserving map in the output cortical space (Kohonen,
1982). Some SOM models simulate the effect of a boundary con-
dition on the final nature of the map developed (Wolf et al.,
1994), though the map developed is not very accurate when
compared with the theoretically estimated complex log map. A
more biologically realistic variant of the SOM architecture has
been proposed namely the Laterally Interconnected Synergetically
Self Organizing Map (LISSOM) (Sirosh and Miikkulainen, 1994;
Miikkulainen et al., 2005) which is the framework employed for
the development of the retinotopic map, described in this paper.
A more complete description of both the SOM and LISSOM
architectures is given in the methods section.

The neurons in V1 are known to receive inputs from a num-
ber of locations, such as the lateral geniculate nucleus (LGN),
extrastriate cortex, middle temporal (MT) region, other V1 neu-
rons, etc. In order to model the development of the retinotopic
map, in this paper only three kinds of connections are consid-
ered: connections from the RGCs to the V1 (via the LGNd), lateral
excitatory connections within V1, and lateral inhibitory connec-
tions within V1. The LISSOM architecture proves ideal for this
kind of simulation, since all these three kinds of connections are
available in the LISSOM framework. The strengths (weights) of
these connections are updated in LISSOM using a normalized
Hebbian mechanism. In this paper, an activity based model for
the development of the retinotopic map is described, using the
aforementioned SOM and LISSOM architectures. It is proposed
that a training regime with rotated and dilated rectangular bars
as inputs, could drive the refinement of the retinotopic map,
modeled using a LISSOM based architecture.

Although molecular mechanisms are also involved in the for-
mation of the retinotopic map, the model described in this paper
focuses exclusively on the activity-dependent mechanisms. Only
the initial rough topography imposed on the LISSOM architec-
ture, is assumed to be present as a result of a chemical gradient
mechanism. In the LISSOM model, this rough topography by
itself does not result in the mapping of eccentricity and merid-
ional angle onto orthogonal axes (See Supplementary Material
Figure 3).

The initial SOM simulations were performed primarily to
demonstrate that the two abstract features of an object in an
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image, namely its dilation and rotation would be mapped onto
distinct axes by a self-organizing mechanism. Thus, the SOM
model is presented as a preliminary model, which paves the way
for the LISSOM model. In order to develop a more accurate
output map comparable with the theoretical estimate, utiliz-
ing a more biologically realistic architecture, the LISSOM based
simulations are performed.

2. METHODS
As mentioned earlier, the complex log map proposed by Schwartz
(1977), maps eccentricity and meridional angle to orthogonal
axes closely resembling experimental observations. Why did the
visual system map eccentricity (scale) and meridional angle (rota-
tion) onto orthogonal axes? Is it possible to explain this phe-
nomenon as a result of activity-dependent plasticity driven by
visual stimuli? The key insight underlying the proposed model
is as follows: We assume that, due to relative motion, objects
are seen by the visual system at various angles (due to relative
rotation around the line of sight) and at various scales (due to rel-
ative translation along the line of sight). Thus, it is possible that
when the same object is presented repeatedly at different scales
and angles, the visual system might map, by some process of self-
organization, the two properties along two different axes. In order
to test this notion, we present rectangular bar patterns at various
scales and angles to a self-organizing learning system and observe
how scale and rotation are mapped onto the output space. The
presentation of the rectangular bars to the model is done in a ran-
dom order, i.e., at any iteration any rectangular bar of any dilation
or rotation could be presented to the model as an input. Thus,
training of the system is performed using rotated and scaled ver-
sions of whole patterns. However, since the retinotopic map is a
point-to-point map between the visual and cortical spaces, ‘point’
inputs are presented to the trained system, and ‘point’ responses
are observed. The map thus generated is found to represent eccen-
tricity and meridional angles onto orthogonal axes. In this section
the architecture of the SOM and the LISSOM models, used in
simulating the development of the retinotopic map are described
in brief.

Any self-organizing architecture maps similar inputs to near
by (adjacent) locations in the output space. In the case of the
rectangular bars, there are two features namely their dilation
and rotation which are considered in order to establish similarity
between the inputs. Now since these two features are completely
independent of each other, a self-organizing mechanism would
map them onto roughly orthogonal axes, in order to maximally
utilize the output space.

The Willshaw-von der Malsburg SOM model (Willshaw and
Von Der Malsburg, 1976) was initially proposed to demonstrate
that correlated activity in the input (retinal) layer, could result in
a topography preserving map in the output (tectal) layer. A sim-
plified (in terms of architecture) and more generalized (in terms
of input dimensions) version of SOM was proposed by Kohonen
(1990) . The basic framework for a 2 dimensional output version
of Kohonen’s SOM is described below.

The SOM model consists of 2 layers: an input layer and an
output layer. There are connections between every neuron in the
input layer with every neuron in the output layer. The output layer

for a 2D-SOM is arranged as a regular rectangular grid of neu-
rons. There are no lateral connections in this output layer. The
connections from the input to output layer are described in terms
of the connection weights (Wij). These connection weights are
initialized randomly. Based on a distance measure the input vec-
tor which is closest to the weight vector is chosen to be the winner
node. Only a single winner node is chosen every iteration. A pop-
ular distance measure commonly used is the Euclidean Distance
(e) as given by Equation (3).

e =
√∑

d

(Wij,d − Vd)2 (3)

where i , j denote the location of a node in the 2 dimensional
output layer of the SOM; d represents the dimension of the
input vector V , which also corresponds to the dimension of the
weight vector for a particular node i, j. When an image is used
as the input, d corresponds to the number of pixels in the image.
The weight vector corresponding to this winner node as well as
those nodes in a predetermined radius around this node are then
updated using Competitive learning as given in Equation (4).

W ′
ij,d = Wij,d + ηij(Wij,d − Vd) (4)

ηij = ηmax exp

(
− (i − k)2 + (j − l)2

2σ 2

)
(5)

where W ′
ij,d represents the updated weights; η is the learning rate.

The learning rate decays as the distance from the winning node
(k, l) increases as described by Equation (5); where (i, j) denote
the location of a node in the SOM output layer. σ is a parameter
which represents the standard deviation of the Gaussian described
in Equation (5). From Equations (4, 5) it is clear that the weight
update depends on both the proximity of the weight vector to the
input vector as well as the distance of the node under considera-
tion from the winner node. This procedure is repeated for all the
input vectors. The output of the SOM is given by Equation (6).

yij = exp

(
−||Wij − V ||2

2σ 2

)
(6)

where yij represents the output for one particular node (i, j) in
the output layer of the SOM; ||∗|| represents the euclidean norm.
On choosing the appropriate size of the output layer and the
weight update parameters, a self organized structure becomes
apparent on training, whereby similar input vectors are mapped
onto adjacent locations in the SOM output layer. Using the SOM
architecture, we simulate the development of the retinotopic map.

A filled rectangle was used as the basic shape, which served
as the input to the network. Different dilations and rotations
of this basic shape were presented to the network. The dila-
tions of the rectangle were such that the aspect ratio was
maintained. The aspect ratio was set to 0.1. Thus, inputs are
images containing scaled and rotated rectangles of size n ×
n, reshaped to vectors of size n2 × 1. With this setup, we
wondered if it were possible to develop a map in which rota-
tions and dilations would be mapped onto orthogonal axes.
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Next we introduced a constraint on the outer boundary of
the output layer in order to simulate the available surface area
of V1. This is done by using a complex logarithmic trans-
form of the vertical line through the origin in the input space.
This implies from Equation (1) that the value of x will be 0.
Therefore:

u + iv = log(x + iy + a) (7)

u + iv = log(a + iy) (8)

u + iv = log(rei θ ) (9)

where

r =
√

a2 + y2 (10)

θ = tan−1 (y/a) (11)

v = θ (12)

Therefore

y = a tan (θ) (13)

r =
√

a2 + (a tan (θ))2 (14)

u = log(r) (15)

u = log(
√

a2 + (a tan (v))2) (16)

Equation (16) gives the relationship between the u and v
axis in the output cortical space. The value of a is fixed to
be 1.

However, the SOM model has the following limitations in
simulating the development of the retinotopic map:

• After training, since a single winner is selected for each input,
each rectangular bar (of a certain rotation and dilation) is
mapped onto blobs of approximately the same area, on the
SOM output layer with minimal overlap. However, different
dilations of a rectangular bar with a particular rotation, should
in reality be mapped in such a way that, the mapped area of
the more dilated bar engulfs the mapped area for each of the
smaller bars of the same rotation, as shown in Figure 2. This
effect is not captured by the SOM model. Thus, a bar in the
visual space is mapped to a point in the cortical space; however
the retinotopic map requires a “point” in the visual space to be
mapped onto a “point” in the cortical space.

• Also each time the SOM is trained from scratch, a different
retinotopic map is found to develop. This is due to the fact
that the initial weights as well as the input vector sequence are
randomized. However, from experimental studies, it is evident
that the developed retinotopic map does not vary much across
individuals.

• Thirdly, the SOM architecture is not entirely biologically real-
istic, as the selection of a winner node as well as the weight
update only in a radius around this winning node, is artificially
imposed.

In order to overcome these limitations a variant of the SOM
model known as LISSOM is utilized. Unlike the SOM, where
every input node projects to every output node, in LISSOM these
projections are limited to within a certain radius. The weight
update also is not restricted to any particular node in LISSOM.
In addition to the afferent(input to output) weights, the LISSOM
architecture also include lateral(output to output) weights. This
feedback mechanism is responsible for the refinement and rein-
forcement of the map. A schematic representation of the LISSOM
architecture is provided in Figure 3. Both the afferent and lateral
weights are randomly initialized within the initial radius defined.
The output of a particular neuron(yij) in the output layer, ini-
tially is dependent only on the afferent projections to that neuron
as given by Equation (17).

yij = g

⎛
⎝∑

a,b

Aij,abxab

⎞
⎠ (17)

where (a, b) denotes a neuron in the receptive field of the
(i, j)th neuron in the output layer, with input given as xab; Aij,ab

FIGURE 2 | Theoretical (complex log map) estimation (shown in D–F)

of the mapping of vertical bars of increasing dilation (shown in A–C).

As seen from the figure, the area occupied by the mapped version of the
largest bar should necessarily include mapped versions of bars with the
same rotation, but smaller dilation.

FIGURE 3 | Schematic representation of the LISSOM architecture.
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represents the weight from the (a, b)th neuron to the (i, j)th

neuron; g is a piecewise approximation of the sigmoid function
given as:

g(s) =
⎧⎨
⎩

0 : s ≤ αl

(s − αl)/(αu − αl) : αl < s < αu

1 : s ≥ αu

where αl and αu are set to 0.083, and αl + 0.55 respectively. After
this initialization the lateral connections start contributing to the
output (yij(t)) which depends on the output from the previous
iteration (yij(t − 1)). Thus, the output (yij(t)) is given as:

yij(t) = g

⎛
⎝p

∑
a,b

Aij,abxab(t − 1) + q
∑
k,l

Eij,klyij(t − 1)

− r
∑
k,l

Iij,klyij(t − 1)

⎞
⎠ (18)

where p, q, r are scaling factors; Eij,kl is the lateral excitatory weight
from neuron (k, l) to neuron (i, j) and similarly Iij,kl is the lateral
inhibitory weight from neuron (k, l) to neuron (i, j). The weight
update rule is a normalized Hebbian, and is the same for afferent
as well as lateral weights, as given in Equation (19).

wij,mn(t + 1) = wij,mn(t) + ηijyij(t)Pmn(t)∑
mn (wij,mn(t) + ηijyij(t)Pmn(t))

(19)

where Pmn is the pre-synaptic activity originating from the neu-
ron (m, n); η is the learning rate. These learning rates can be
different for each of the connections: ηA, ηE and ηI are the learn-
ing rates for the afferent, excitatory and inhibitory connections
respectively. With this setup in place we introduced the input
images which are rotated and dilated versions of a rectangu-
lar bar. In order to perform lesion studies, we de-activated the
inputs from certain portions of the input space (retinal layer) and
observed the map development under these conditions.

3. EXPERIMENTS AND RESULTS
A number of simulations are performed, and each of the fol-
lowing subsections discuss the results which mimic certain char-
acteristics experimentally observed in the development of the
retinotopic map. These results can be summarized as follows:

• Dilations and rotations of a rectangular bar are mapped onto
orthogonal axes in the SOM model; eccentricity and the merid-
ional angle are mapped onto orthogonal axes in the LISSOM
model.

• Introducing a boundary constraint makes the developed
retinotopic map resemble the experimentally observed maps
more closely.

• The LISSOM model overcomes the limitations of the SOM
model as explained in the methods section, such that the devel-
oped map is more biologically realistic as well as stable across
multiple runs.

• Lesion studies are performed, which demonstrate that a cer-
tain degree of plasticity is inherent in the development of the
retinotopic map.

3.1. BASIC SOM MODEL
The basic SOM model, as described in the methods section is
simulated to demonstrate that different rotations and dilations of
a rectangular bar would be mapped onto orthogonal axes. The
dimension of the input image is 81 × 81 pixels. The input images
constituted are such that there are 9 rotational configurations
(0◦–180◦ with a step size of 20◦) and 16 dilational configura-
tions of a rectangular bar. Thus, there are in total 144 different
possible configurations which serve as the inputs to the SOM.
The output layer of the SOM is a square grid with 12 × 12
neurons, as shown in Figure 5A. The weights of the SOM are ini-
tialized randomly. The SOM is then trained for 10 epochs with
the inputs presented in random order. In the SOM model con-
vergence is normally established by observing the stability of the
map after a certain number of iterations. The results shown in
the paper are for 10 epochs (each epoch trains over all input vec-
tors). The SOM model was further trained for 100 epochs and
the mapping remained stable. A subset of the outputs, post train-
ing, for certain dilational and rotational configurations are shown
in Figures 4A–H. Figures 4I–L shows the response of the SOM
for certain rotational configurations with all possible dilations for
that rotational configuration superimposed. Figures 4M–P shows
the complementary response of the SOM for certain dilational
configurations with all possible rotations for that dilational con-
figuration superimposed. It is evident from this figure, that the
2 axes onto which rotation and dilation are mapped are roughly
orthogonal. One important fact, which must be noted is that these
outputs are for one entire training run, and will be subject to
change if the SOM was once again reinitialized and retrained.
This re-initialization and retraining would result in another set
of orthogonal axes onto which dilations and rotations would
be mapped onto, not necessarily the ones shown in the output
images.

However, as mentioned earlier, the mapped version of the
most dilated bar does not subsume the bars of smaller dilation,
but instead, dilated versions of a bar of a particular rotation
are mapped onto nearby locations in the output space (see
Figures 4M–P. In order to simulate the shape of the available V1
flattened surface area, the SOM output layer was bounded by an
appropriate boundary condition as described in the next section.

3.2. SOM MODEL WITH BOUNDARY CONDITION
In order to simulate a more spatially realistic version of the devel-
opment of the retinotopic map, a suitable boundary condition is
imposed in the SOM output layer. This is done so as to account for
the shape of the available surface area in V1. A rectangular SOM
with input size of 13 × 25 and output dimensions of 24 × 48 is
chosen, which is then constrained. This curve is used to bound the
available region of the SOM output layer, as shown in Figure 5B.
The inputs to the SOM and the training paradigm remain the
same as in the previous section. Figures 6A–D shows the response
of the constrained SOM for certain rotational configurations with
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FIGURE 4 | SOM output corresponding to different inputs. The first
shows the outputs corresponding to the 9th level of dilation for (A) 0◦,
(B) 40◦, (C) 80◦, and (D) 120◦ as the rotational configurations
respectively; Row 2 shows the outputs corresponding to 40◦ as the
rotational configuration for the (E) 9th, (F) 10th, (G) 11th, and (H) 12th

levels of dilations respectively; Row 3 shows the outputs corresponding
to all possible dilations superimposed for (I) 0◦, (J) 40◦, (K) 80◦, and (L)

120◦ rotations respectively; Row 4 shows the outputs corresponding to
all possible rotations superimposed for the (M) 1st, (N) 5th, (O) 9th, and
(P) 13th levels of dilation respectively.

FIGURE 5 | The available output area for the SOM shown in red. (A)

without any boundary condition (12 × 12); (B) with a logarithmic boundary
condition (24 × 48).

all possible dilations for that rotational configuration superim-
posed. Figures 6E–H shows the complementary response of the
constrained SOM for certain dilational configurations with all
possible rotations for that dilational configuration superimposed.
Again this result is for one particular simulation of the SOM
and may vary on re-initialization and retraining as shown in

Figures 6I–P. Thus, this incorporation of the boundary does not
cause the SOM output to be invariant across training runs.

3.3. LISSOM MODEL WITH BOUNDARY CONDITION
In order to overcome some of the drawbacks in the model of the
development of the retinotopic map using the SOM, a LISSOM
based map development is proposed. In the SOM model each
input pattern (rectangular bar) is mapped onto a single point in
the output space. Thus, a retinotopic mapping cannot be defined
and hence the results of the SOM and LISSOM model cannot
be compared. In the LISSOM model we consider 2 layers: the
input retinal layer with dimensions of 25 × 25 neurons, and
the output V1 layer with dimensions of 48 × 48 neurons. The
48 × 48 output layer is constrained using a complex logarith-
mic transform of the vertical line through the origin in the input
space, as in the previous section. The value of a is fixed to be
1. The Topographica Simulator (Bednar, 2009) is used to per-
form these simulations. The parameters of the model are given in
Table 1.

The central 4◦ of visual space, which maps onto 27% of the
primary visual cortical space (Adams and Horton, 2003) is simu-
lated using the LISSOM architecture. The cortical distance from
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FIGURE 6 | Constrained SOM outputs superimposed corresponding to

certain dilations and rotations. The first row shows the outputs
corresponding to all possible dilations superimposed for (A) 0◦, (B) 40◦, (C)

80◦, and (D) 120◦ rotations respectively; Row 2 shows the outputs
corresponding to all possible rotations superimposed for the (E) 1st, (F)

5th, (G) 9th, and (H) 13th levels of dilation respectively; Row 3 shows the
outputs (on re-initialization of the weights and retraining the SOM)
corresponding to all possible dilations superimposed for (I) 0◦, (J) 40◦, (K)

80◦, and (L) 120◦ rotations respectively; Row 4 show the outputs (on
re-initialization of the weights and retraining the SOM) corresponding to all
possible rotations superimposed for the (M) 1st, (N) 5th, (O) 9th, and (P)

13th levels of dilation respectively.

the apex (fovea) to the point which maps 4◦ eccentricity, 0◦
meridional angle is approximately 9 mm (Adams and Horton,
2003). The maximum extent of lateral connections in V1 is
roughly 8 mm (Gilbert and Li, 2012). In the primary visual cortex
the long-range inter-columnar connections are predominantly
inhibitory in effect for high contrast input stimuli, due to local
inhibitory inter-neurons (Hirsch and Gilbert, 1991; Weliky et al.,
1995). Hence in the LISSOM model the long range lateral con-
nection are inhibitory and have a maximum radius of radI set to
0.55 which corresponds to a radius of 26.4 in a 48 × 48 out-
put LISSOM, which in cortical length corresponds to 9.9 mm.
This roughly matches the known radius of lateral connections in
V1. There also exist short range (≤ 0.5 mm) lateral connections
in V1 (Stettler et al., 2002). The short range connections in V1

Table 1 | Parameter values chosen in the LISSOM model for the

simulation of the retinotopic map.

Parameter Value

p 1.5

q 1.1

r 1.1

ηA 0.3

ηE 0.25

ηI (inital) 0.25

ηI (after 500 iterations) 0.5

radA 1 (25)

radE 0.03 (1.44)

radI 0.55 (26.4)

The radii terms contain the radii in grid units for a 25 × 25 input and 48 × 48

output LISSOM in brackets.

could be both excitatory as well as inhibitory (Kisvarday et al.,
1997). The short range inhibitory connections are considered a
subset of the larger radius inhibitory connections specified in the
LISSOM model. The short range excitatory connections are mod-
eled in the LISSOM having a maximum extent of radE = 0.03
which corresponds to radius of 1.44 in a 48 × 48 output LISSOM,
which in cortical length corresponds to 0.54 mm. Thus, each neu-
ron in the V1 layer of LISSOM excites up to 8 of its neighboring
neurons.

Initially the afferent, excitatory and inhibitory connections
have a small radius and corresponding weights in that radius
as shown in Figures 7B–D, and are allowed to grow with some
bounding values. These bounding values for the radius of affer-
ent, excitatory and inhibitory connections are denoted as radA,
radE, and radI and are given in Table 1. In order for the map
to develop as required it is essential that radA, and p are greater
than radI , and r respectively so as to allow the spread of the map
in the direction allowed by the outer logarithmic boundary con-
straint (see Equation 16) as shown in Figure 7A. In order to train
the map, as mentioned earlier rectangular bars of varying dila-
tions and rotations are utilized. During the testing stage, that is
to demonstrate that the retinotopic map indeed develops, a point
in the input space should be mapped on to a point in the output
space. Thus, in the testing stage single point inputs are used to
construct the map.

After training, it may be observed in the developed map
that the meridional angle is mapped along the y-axis (see
Figure 8C); while the eccentricity is mapped along the x-axis (see
Figures 9A,D,G), an organization that bears strong resemblance
to the complex logarithmic map. It may be observed that the cen-
tral region is not very selective for the meridional angle, a fact
attested by the selectivity plot (see Figures 8A,B). In reality this
central region should be a single point at which all the mapped
meridional angles converge at the apex of the V1. However, due
to the minimum possible size of the rectangular bar, so as to still
maintain the aspect ratio, as well as to ensure a smooth change in
the learnt output of the LISSOM, this central region which is non-
selective to meridional angles is slightly larger in the model. This
is an artifact of the simulation. The region outside the logarithmic
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FIGURE 7 | Boundary and initial conditions for the LISSOM model. (A) shows the available neurons in the output layer of the LISSOM in white, the
boundary condition is set as per Equation (16); (B–D) represent the initial weights of afferent, excitatory and inhibitory connections respectively.

FIGURE 8 | V1 retinotopic map. (A) Meridional angle selectivity (gray
scale coded: black represents least selective portion, while white the most
selective one); (B) Meridional angle selectivity and preference combined;
(C) Meridional angle preference (color coded), superimposed with the
complex logarithmic map for validation.

boundary in Figure 8C is color coded as red by default, however
this region is unresponsive to any of the input patterns as seen in
Figure 8B.

After training, the map developed for varying eccentricities, is
also qualitatively similar to the theoretical estimation as given by
the complex log map, shown in Figures 9A,D,G. The one major
difference is that the theoretical estimate is on the log scale where
as the LISSOM outputs are on a linear scale along the eccentric-
ity axis. The logarithmic nature of eccentricity of the retinotopic
map, as mentioned earlier, is a consequence of the exponential
decay of the density of RGCs from the fovea, radially outward
(Wässle et al., 1990). The logarithmic transformation of eccen-
tricity in the retinotopic map could be approximated to a linear
transformation of the same. Thus, in all results where eccentricity
is being mapped a linear ratio is maintained in dilation between
different inputs used in the LISSOM model for map develop-
ment; whereas the same exponential ratio is maintained in order
to define the inputs for the complex logarithmic map used for
validation.

In order to validate the model, the output of the model is com-
pared with the output of the complex log map and the pixel by
pixel RMS error per pixel is calculated. This RMS error per pixel is
computed for 3 different input types: circular rings of increasing
dilation (see Figures 9A,D,G), a rectangular bar with fixed dila-
tion but changing rotation (see Figures 9B,E,H), a rectangular
bar with fixed rotation but changing dilation (see Figures 9C,F,I).
The low RMS error demonstrates a reasonable match, as can
also be visually ascertained. As mentioned earlier a linear ratio
is maintained in dilation between different inputs used in the
LISSOM model for map development; whereas the same expo-
nential ratio is maintained in order to define the inputs for the

complex logarithmic map used for validation. The RMS error
between the model output and the complex log map estimate is
shown in Figure 10.

In order to demonstrate the map formation, we simulate the
development of the map for meridional angle across iterations
as shown in Figure 11. Similarly the development of the map
for eccentricities is demonstrated by using a vertical bar of vary-
ing dilation and its corresponding LISSOM output is shown in
Figure 12. In one sense the boundary condition for the map,
guides the formation of the retinotopic map in the model. If
we changed this boundary condition, a very different retino-
topic map would be developed. To demonstrate this we simulated
the LISSOM with exactly the same parameters, but without any
boundary constraint. The map developed is shown in Figure 13.
In order to quantify this difference we plot a histogram of the
pixels based on the color code of their meridional angles present
in the developed map within the same cortical area (shown by
the black boundary in Figures 11H, 13H . The histograms cor-
respond to the area occupied by each meridional angle in the
map developed. As seen from Figures 11I, 13I the histogram
for the map developed without the boundary condition allocates
more area to the central meridional angles compared to the map
developed with the boundary condition.

This result has been experimentally observed: if the V1 cor-
tical arealization is itself altered, the map formed would also be
altered (O’Leary et al., 2007). This can also be demonstrated by
developing the retinotopic map for different species, by changing
the boundary conditions imposed, by varying the value of a in
Equation (16) as shown in Figure 14.

A number of additional simulations are performed to illu-
minate the various factors which lead to the emergence of the
retinotopic map as described by the LISSOM mechanisms. The
simulation results along with a brief description on what is
inferred from each of these simulations are included in the sup-
plementary material. These additional results can be summarized
as follows:

• It is the pattern of the objects (i.e., its rotations and dilations) in
the inputs that is necessary for the map formation rather than
the shape of the object itself.

• The rough retinotopy imposed initially in the LISSOM
architecture is not sufficient for the final map formation.

• Each of the 3 connection types: afferent, lateral excita-
tory, and lateral inhibitory are vital for the final map
formation.
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FIGURE 9 | LISSOM outputs corresponding to different inputs, post

training. (A) shows circular rings of increasing radii given as input; (B) shows
rectangular bars of 0◦, 45◦, and 90◦ given as input; (C) shows rectangular

bars of increasing dilation 0.6, 0.8, and 1 given as input; (D–F) shows the
corresponding LISSOM outputs for the given inputs; (G–I) shows the
corresponding complex log map transformation for the given inputs.

FIGURE 10 | Root mean square error (per pixel) between the developed map and the complex log map for (A) a rectangular bar at different rotational

configurations, (B) circular rings of increasing dilation, and (C) a rectangular bar at different dilations, given as inputs to the LISSOM.

FIGURE 11 | V1 map development. Meridional angle preference (color
coded) at (A) 200, (B) 300, (C) 400, (D) 500, (E) 600, (F) 700, (G)

800, (H) 900 iterations respectively, (I) shows the histogram of the

pixels based on their meridional angles present within the black
boundary in (H). The initial retinotopy is shown in Supplementary
Material Figure 3.

• Decreasing the maximum inhibitory radius (radI) results in
discontinuities in the final map formed.

• Increasing the maximum excitatory radius (radE) results in
an additional (beyond requirement) spread in the final map
formed.

3.4. LESION STUDIES WITH LISSOM
In the previous section the plasticity observed in the map was pre-
dominantly in the afferent connections. In order to demonstrate
the plasticity in the lateral connections, we simulate the same
model, but with lesions. Retinal lesions are introduced into the

Frontiers in Computational Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Philips and Chakravarthy Activity-dependent model of retinotopic map development in V1

input retinal layer of the LISSOM and, map development under
these conditions are observed. The size of the retinal lesions play a
crucial role in whether or not the LPZ in the output cortical layer
will show any response activity. For testing the extent of plasticity
a circular disc is given as an input and the activity in the output
layer is observed. The center of this disc where there is no input
activity represents the retinal lesion. The neurons in the output
layer which receive afferent projections from the lesioned area
(LPZ) will initially shown reduced activity. However, due to the
excitatory neurons in V1, the LPZ will gradually shrink in size (see
Figures 15A–J). If the entire LPZ is within the range of the excita-
tory laterals, the LPZ may in fact disappear (see Figures 15K–T).
As seen from Figures 15H–J,R–T there is an increase in the radius
of excitatory lateral connections just outside the LPZ; however
there is no such increase for neurons within the LPZ as shown
in Figures 15E–G,O–Q. These results are similar to those exper-
imentally observed (Kaas et al., 1990; Schmid et al., 1996; Eysel
et al., 1999), where there is activity observed even in the LPZ
shortly after lesioning. As speculated (Gilbert and Li, 2012) the
simulations seem to verify that this kind of plasticity is primarily
due to lateral connections in V1.

FIGURE 12 | Demonstration of the development of the map using

LISSOM across iterations, considering vertical rectangular bars of

different dilations as inputs. (A,E,I) are the inputs given to the LISSOM;
(B–D); (F–H); (J–L) are the corresponding outputs of the LISSOM after 200,
400, 600 iterations respectively.

4. DISCUSSION
The mapping of the visual space onto the primary visual cortex
in primates is one of the earliest topographic maps discovered
in the cortex. A function which empirically fits this transforma-
tion of a point in the visual space to a point in the cortical space
was proposed (Schwartz, 1977), namely the complex logarithmic
function. Although there have been attempts to refine this map-
ping function for a better fit (Balasubramanian et al., 2002; Schira
et al., 2010), there are few computational models which simulate
the map formation itself. The computational models that simu-
late the development of the retinotopic map in the primary visual
cortex could be broadly classified as chemo-specific, spontaneous
neural activity dependent and, stimulus dependent (Goodhill,
2007). Chemo-specific models are those which simulate the
development of the map based on certain molecular gradients
expressed (Gierer and Meinhardt, 1972; Prestige and Willshaw,
1975; Brown et al., 2000; Koulakov and Tsigankov, 2004), whereas
activity dependent models require correlated activity for the map
development (von der Malsburg and Willshaw, 1976; Linsker,
1986). It is speculated that both chemo-specific and spontaneous
neural activity dependent mechanisms are required for the initial
development of the retinotopic map. Stimulus dependent devel-
opment is initiated post eye opening, whereby the primary visual
cortex circuitry is refined to form more precise retinotopic maps
(Smith and Trachtenberg, 2007). However, the models which
do simulate stimulus dependent retinotopic development do not
simulate the global nature of the retinotopic map (Swindale,
2000).

It is thus evident that all three mechanisms based on: molec-
ular gradients, spontaneous retinal waves and visual stimuli are
involved in the retinotopic map formation. However, the final
refinement of the map appears to be visual stimuli dependent.
In the simulations performed we assume an initial rough retino-
topy which is almost identical to the retinotopy present in the
retina, i.e., eccentricity and meridional angle are mapped onto the
polar co-ordinates in the cortical space. This initial topography is
assumed to be provided by chemical gradients or the spontaneous
retinal waves. The LGNd layer which acts as a transmitting layer
is not simulated. The internal connections in V1 are also roughly
approximated in the later simulations. Thus, in this paper, we
demonstrate that given a rough topography preserving mapping

FIGURE 13 | V1 map development without any boundary condition. Meridional angle preference (color coded) at (A) 200, (B) 300, (C) 400, (D) 500, (E) 600, (F)

700, (G) 800, (H) 900 iterations respectively, (I) shows the histogram of the pixels based on their meridional angles present within the black boundary in (H).
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FIGURE 14 | Retinotopic map developed with different boundary conditions imposed by changing the value of a in Equation (16) for (A) Squirrel

monkey with a = 1, (B) Owl monkey with a = 2.5, (C) Cat with a = 4.

FIGURE 15 | Plasticity in excitatory lateral connections in V1 simulated

on introducing retinal lesions. (A,K) show a circular disc given as the input
to the LISSOM with the retinal layer having a circular lesion with its center;
(B,L) show the corresponding output activity of the LISSOM before training;
(C,M) show the corresponding output activity of the LISSOM after 100
iterations; (D,N) show the corresponding output activity of the LISSOM after
200 iterations; (E–G) show the excitatory connection weights for a neuron

(24, 26) which is inside the LPZ across iterations (0,100,200) on giving input
as (A); whereas (H–J) show the excitatory connection weights for a neuron
(24, 28) which is outside the LPZ across iterations (0,100,200) on giving input
as (A); (O–Q) show the excitatory connection weights for a neuron (24, 25)
which is inside the LPZ across iterations (0,100,200) on giving input as (K);
whereas (R–T) show the excitatory connection weights for a neuron (24, 26)
which is outside the LPZ across iterations (0,100,200) on giving input as (K).

from the retina via the LGNd to the V1 and given the appropriate
training criteria, a retinotopic map resembling experimental find-
ings could be developed, by a stimulus driven activity dependent
mechanism.

One of the insights gained from the retinotopic map in pri-
mates is that a complex logarithmic transformation results in
rotation and dilation variation in the input visual space to be
transformed to a shift (translational) variation in the output space
along 2 distinct axes (Schwartz, 1977). Now if we considered

the image of any object on the retina to be represented by a 2-
dimensional matrix, rotations and dilations could be considered
to be primary transformations of this matrix. This led us to spec-
ulate whether rotations and dilations of a particular object (in
our case a rectangular bar) would self-organize in such a way that
these would be mapped onto distinct axes. The initial simulations
demonstrate the validity of this hypothesis: indeed rotations and
dilations are mapped onto distinct axes. However, there are quite
a few drawbacks in the SOM model, the major one being that the

Frontiers in Computational Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Philips and Chakravarthy Activity-dependent model of retinotopic map development in V1

entire rectangular bar is mapped on to a single point in the SOM
output space, instead of the constituent points of the rectangular
bar being mapped onto their corresponding transformed points
in the output space. Thus, dilations and rotations are mapped
onto orthogonal axes instead of the eccentricity and meridional
angle. Also in the SOM as the first winner node selection is ran-
dom, since we initialize the weights randomly, every time the
SOM algorithm runs a different configuration of the SOM output
is seen. This is not the case in the LISSOM model, since each node
in the LISSOM receives input only from a small radius of neurons
in the retinal layer initially. This radius is allowed to grow with
time.

Thus, the LISSOM model was found to be more suitable for
our purpose. The idea here is to train the LISSOM model on
dilations and rotations of simple patterns, and test it as a point-
to-point retinotopic map with point inputs. The LISSOM model
is then simulated and it is observed that the output retinotopic
map developed is more accurate and biologically plausible than
the one obtained with the SOM model. It may be observed in
the developed map that eccentricity is mapped along the horizon-
tal axis, while the meridional angle is mapped along the vertical
axis, an organization that bears strong resemblance to the com-
plex logarithmic map. The simulated lesion studies hint at the
importance of lateral excitatory feedback. As seen from the simu-
lation results the amount of plasticity possible is restricted by the
radius of lateral excitatory connections. In the adult V1 this is the
only form of plasticity possible since the afferent connections are
already refined.

An additional insight we gain from the LISSOM simulations,
is that the boundary condition imposed on the available area
of V1, plays an important role in the map development. Recent
studies have demonstrated that retinal waves drive correlated
patterned activity in the superior colliculus as well as V1, dur-
ing the developmental period (Ackman et al., 2012). This has
led to speculation that activity dependent mechanisms could be
involved in the topography preserving nature of the retinotopic
map. However, this correlated activity, without the appropriate
boundary condition, would lead to the development of a totally
different retinotopic organization (O’Leary et al., 2007) as shown
in Figure 13 and Figure 14. We speculate that the available V1
area, is in part responsible for the complex logarithmic nature of
the retinotopic map.

The LISSOM model also elucidates the appropriate radii of
afferent and lateral connections required for the map develop-
ment. The amount of spread possible in the map is a direct
consequence of the radius of afferent connections. This afferent
radius then dictates the radius of inhibitory lateral connections
required for the map development. If too small an inhibitory
radius is chosen, it would result in discontinuities in the output
activity. If too large an inhibitory radius is chosen, the spread in
the output map would be hampered. In the adult V1, both the
afferent and lateral connection projections are too short range, to
account for such large scale changes in the map as shown in the
LISSOM simulations. Thus, the map in the adult V1 is robust to
changes in the visual input and only small variations are possible
once the map is fully developed. These changes are predominantly
due to plasticity in the lateral connections as mentioned earlier.

This raises the possibility of the training regime described in
this paper being used to develop the correct retinotopic map if in
case the map developed is abnormal as in the case of albinism.
The normal afferent visual fibers from the retina are disrupted in
albinism, where the line of decussation is moved into the tem-
poral retina and as a result the subsequent map formed in V1
is improper (Hoffmann et al., 2003). Even if it were possible to
redirect the afferent fibers in such a way that would resemble the
normal projections to V1, the map formation is not guaranteed.
One way to facilitate this formation would be to reestablish a
rough arrangement of the axon terminals on to neurons in V1,
followed by the training regime of an image at various dilation
and rotation given as visual inputs to the subject as described in
this paper. A prerequisite for this kind of map formation is an
induced plasticity in the afferent and lateral connections.

One of the limitations of the model is that the logarithmic
nature of the transformation of eccentricity is not captured. This
is due to the fact that the exponential decay of RGCs neurons radi-
ally outward is not incorporated in the model. Secondly although
the map developed captures the retinotopic nature of V1, the
other maps in V1 are not seen in the model. This is because of the
coarse nature of the map. A more detailed model which incorpo-
rates both the logarithmic nature as well as the multiple maps in
V1 would be an interesting future perspective.
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