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Recent theoretical models suggest that motor learning includes at least two processes:
error minimization and memory decay. While learning a novel movement, a motor memory
of the movement is gradually formed to minimize the movement error between the
desired and actual movements in each training trial, but the memory is slightly forgotten
in each trial. The learning effects of error minimization trained with a certain movement
are partially available in other non-trained movements, and this transfer of the learning
effect can be reproduced by certain theoretical frameworks. Although most theoretical
frameworks have assumed that a motor memory trained with a certain movement decays
at the same speed during performing the trained movement as non-trained movements,
a recent study reported that the motor memory decays faster during performing the
trained movement than non-trained movements, i.e., the decay rate of motor memory
is movement or context dependent. Although motor learning has been successfully
modeled based on an optimization framework, e.g., movement error minimization, the
type of optimization that can lead to context-dependent memory decay is unclear. Thus,
context-dependent memory decay raises the question of what is optimized in motor
learning. To reproduce context-dependent memory decay, I extend a motor primitive
framework. Specifically, I introduce motor effort optimization into the framework because
some previous studies have reported the existence of effort optimization in motor learning
processes and no conventional motor primitive model has yet considered the optimization.
Here, I analytically and numerically revealed that context-dependent decay is a result
of motor effort optimization. My analyses suggest that context-dependent decay is not
merely memory decay but is evidence of motor effort optimization in motor learning.

Keywords: motor learning, neural network modeling, context-dependent memory decay, effort minimization,

motor primitive

1. INTRODUCTION
After a few years of not training in a previously learned sport, it
is easy to forget how to move one’s body in a manner that is suit-
able for the sport. This phenomenon is known as memory decay
and is a well-known component of motor learning. Indeed, recent
studies suggest that motor learning includes at least two processes:
the minimization of movement error and motor memory decay
(Scheidt et al., 2001; Smith et al., 2006; Hirashima and Nozaki,
2012).

The properties of error minimization have been extensively
investigated using perturbation paradigms such as a force field
paradigm (Shadmehr and Mussa-Ivaldi, 1994) or a visuomo-
tor transformation paradigm (Krakauer et al., 1999). In these
paradigms, subjects exhibit trial-by-trial adaptations to the novel
environment, and the movement error between the desired and
actual movements decreases in each trial. The learning effect of
error minimization generalizes when kinematics (e.g., the move-
ment direction) change (Thoroughman and Shadmehr, 2000;
Donchin et al., 2003). For example, when trained in uniman-
ual reaching movements toward a target direction θ , the learn-
ing effects of the error minimization are partially available for

reaching movements toward other target directions. In other
words, the availability of the learning effect depends on context
(in this example, the context is equal to the target direction). In
the following, I refer to the learning effects of error minimiza-
tion as learning effects and to the context-dependent availability
of learning effects as generalization.

Generalization can be modeled using a motor primitive frame-
work (Thoroughman and Shadmehr, 2000; Donchin et al., 2003).
In this framework, the activities of the motor primitive deter-
mine the motor commands, the recruitment pattern of the motor
primitive is determined by a target direction, and the motor com-
mands are updated to minimize movement error. The motor
primitive framework can naturally reproduce the generaliza-
tion because a group of motor primitives recruited in reaching
movements toward a target direction θ overlaps with a group
of primitives recruited in movements toward other directions,
θ ′( �= θ), which results in learning effects embedded in the motor
primitives responsible for reaching movements toward θ are par-
tially available in other reaching movements. Recent studies have
revealed that the motor primitive framework can reproduce gen-
eralization in various situations, such as motor learning in a
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force field (Thoroughman and Shadmehr, 2000; Donchin et al.,
2003) or visuomotor rotation (Tanaka et al., 2009), motor learn-
ing of bimanual reaching movements (Yokoi et al., 2011), motor
learning of unimanual reaching movements when the both target
direction and shoulder posture change (Brayanov et al., 2012),
the dependence of the generalization on error-feedback informa-
tion (Taylor et al., 2012), and the generalization between reaching
movements of the right hand and those of the left hand (Yokoi
et al., 2014). Thus, the properties of error minimization or gen-
eralization in a wide range of situations can be explained by the
motor primitive framework.

By contrast, the properties of memory decay have rarely
been investigated. In the perturbation paradigms, the mem-
ory of the learning effects decays in each trial (Scheidt et al.,
2000). In the following, I refer to the memory of learning effects
as motor memory. Nearly all the models of motor primitives
assume that the rate of motor memory decay is context inde-
pendent (Thoroughman and Shadmehr, 2000; Scheidt et al.,
2001; Donchin et al., 2003; Smith et al., 2006; Tanaka et al.,
2009; Yokoi et al., 2011; Brayanov et al., 2012; Hirashima and
Nozaki, 2012; Taylor et al., 2012; Takiyama and Okada, 2012a;
Yokoi et al., 2014), i.e., the motor memory learned with reach-
ing movements toward θ decays during the trials of the reach-
ing movements at the same speed as during trials of reaching
movements toward other directions, θ ′( �= θ). In the motor prim-
itive framework, the context-independent decay is equivalent to
weight decay (Hirashima and Nozaki, 2012). The weight values
of each motor primitive determine how the primitives contribute
to generate motor commands, and the weight decay introduces a
trial-by-trial decay of the magnitudes of the weight values (see
the Weight Decay section in the Results for details). However,
a recent behavioral experiment found that the decay rate of
motor memory can be context dependent (Ingram et al., 2013).
When trained in reaching movements toward a target direction
θ , the motor memory decayed faster during the trials of reaching
movements toward θ than during trials of reaching movements
toward other target directions θ ′( �= θ). The authors of this study
reported that a conventional model of motor learning could be
fit well to their data with the assumptions of both generaliza-
tion function and context-dependent memory decay. Notably, the
authors heuristically introduced context-dependent decay to fit
the conventional model to the actual data. Thus, the reason that
memory decay is context dependent remains unclear. Although
motor learning has conventionally been modeled as an optimiza-
tion framework (Thoroughman and Shadmehr, 2000; Scheidt
et al., 2001; Donchin et al., 2003; Smith et al., 2006; Tanaka
et al., 2009; Yokoi et al., 2011; Brayanov et al., 2012; Hirashima
and Nozaki, 2012; Taylor et al., 2012; Takiyama and Okada,
2012a,b; Yokoi et al., 2014), e.g., movement error minimiza-
tion, no conventional optimization framework can reproduce the
context-dependent memory decay, i.e., context-dependent mem-
ory decay raises the question of what is optimized in motor
learning.

In the current study, I extend a motor primitive framework
to reproduce the context-dependent decay of motor memory.
Specifically, I introduce effort minimization, i.e., the minimiza-
tion of motor command magnitude (Harris and Wolpert, 1998;

Fagg et al., 2002), into the framework because previous studies
have reported the minimization during motor learning pro-
cesses, such as adapting to a force field (Emken et al., 2007;
Huang et al., 2012) and a visuomotor transformation (Huang
and Ahmed, 2014) and because no conventional model of the
motor primitive has yet considered effort minimization. Effort
minimization is a widely accepted framework in motor control
because the standard deviation of muscle activity is proportional
to the muscle activity itself, which allows effort minimization
to effectively minimize motor noise (Jones et al., 2002) or end-
point variance (Harris and Wolpert, 1998). Thus, it is natural to
introduce effort minimization into conventional frameworks of
motor primitives. Here, I analytically and numerically demon-
strate that a motor primitive framework can reproduce context-
dependent decay with the assumptions of both error and effort
minimization.

2. MATERIALS AND METHODS
2.1. GENERAL FRAMEWORK
The present study focused on unimanual reaching movements
in the horizontal plane toward radially distributed targets whose
directions were defined as θ ∈ [−π, π ] (Figure 1A). During each
reaching movement, an unpredictable perturbation p, such as a
force field (Shadmehr and Mussa-Ivaldi, 1994) or a visuomotor
transformation (Krakauer et al., 1999), was imposed and yielded
a movement error e (Figure 1B). The aim of the task was to
accurately reach to a given target by generating an additional
motor command x to compensate for the movement error, i.e.,
e = p − x. Here, following several previous studies, I assumed
that x represents the lateral force in the force adaptation (Yokoi
et al., 2011; Brayanov et al., 2012; Yokoi et al., 2014) or the move-
ment angle in the visuomotor rotation (Tanaka et al., 2009; Taylor
et al., 2012) at the time of the peak velocity because these val-
ues are considered to represent the degree of adaptation in a
feedforward controller, which many motor learning studies have
focused on. That is, p represents an applied lateral force in a curl
force field paradigm (the units of p, x, and e are newtons) and a
rotated movement angle in a visuomotor rotation paradigm (the
units of p, x, and e are degrees). Notably, the movement error
does not include the target direction. The motor primitive frame-
work assumes that the motor commands of the baseline trials
(before experiencing the adaptation paradigm) xb can be appro-
priately generated, i.e., xb = τθ in force field adaptation, where τθ

is the desired torque to achieve the reaching movements toward
θ , and xb = θ in the visuomotor rotation adaptation. When the
perturbation p is applied and the compensatory motor com-
mand x is generated, the baseline motor command is distorted
as xb − p + x, resulting in movement errors that can be writ-
ten as e = τθ − (xb − p + x) = p − x in the force field adaptation
and e = θ − (xb − p + x) = p − x in the visuomotor rotation
adaptation.

Following previous motor primitive models (Thoroughman
and Shadmehr, 2000; Donchin et al., 2003; Tanaka et al., 2009;
Yokoi et al., 2011; Brayanov et al., 2012; Taylor et al., 2012; Yokoi
et al., 2014), we assumed that the recruitment pattern of the
motor primitives or the motor primitive activities are determined
by a target direction θ and the Gaussian
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FIGURE 1 | Schematic diagram of the computational model and

assumed task. (A) Definition of the target direction. θ = 0 is defined
as the target for the straight-forward reaching movement. (B) The
target direction (desired movement direction) θt determined the
activities of the motor primitives Ai (θt ) in the t-th trial. The task was to
generate a motor command xt to compensate for an environmental

change (perturbation) pt . The motor command xt was determined by a
linear combination of motor primitive activities,

∑N
i=1 Wi Ai (θt ), and these

linear coefficients were modified to minimize a cost function Et (e.g.,
the squared movement error and effort): Wi,t+1 = Wi,t − η ∂Et

∂Wi,t
. These

procedures are summarized in the Summary of the Motor Primitive
Framework Section in the Materials and Methods.

Ai(θ) = exp

(
− 1

2σ 2
i

‖θ − ϕi‖2

)
, (1)

where the scaling parameter σi = σ is independent of i; ϕi is
the preferred direction (PD) of the i-th primitive, which is ran-
domly sampled from a uniform distribution in the range [−π, π ];
||θ || is a periodic function ||θ || = ||θ + 2π || such that ||θ || = θ

for −π ≤ θ < π (θ = 0 is defined as the target for a straight-
forward reaching movement, Figure 1A), and i = 1, ..., N, and
N is the number of primitives. The scaling parameter σ controls
the number of primitives responsible for a reaching movement
toward θ because the i-th primitive is activated independent of θ

when σ is sufficiently large (i.e., the number of recruited prim-
itives is large) and because the primitive shows its activity only
in the case θ = ϕi when σ is sufficiently small (i.e., the number
of recruited primitives is small). The PD determines the reaching
direction in which the i-th primitive shows its maximal activity.
Because the PD was randomly sampled in each simulation run,
the simulation results were variable across runs. The standard
deviation of the simulation results is plotted in Figures 3D–I.

The compensatory motor command for the reaching move-
ment toward θ , x(θ), is a linear summation of the motor primitive
activities A1(θ), ..., AN (θ):

x(θ) =
N∑

i = 1

WiAi(θ), (2)

where the adaptable weight value Wi determines how the i-th
primitive contributes to the generation of the motor command.
Each weight Wi is modified by

Wi,t+1 = Wi,t − η
∂Et

∂Wi,t
(3)

(gradient descent rule) at the t-th trial to reduce the cost function
Et , where the positive constant η > 0 denotes the learning rate.
Conventional motor primitive frameworks assume that Et con-
sists of the squared movement error e2

t and the sum of squared

weight values
∑N

i=1 W2
i,t , which leads to the learning rule of

Equation (12) in the Results section or to context-independent
decay of motor memory. Here, I suppose that the cost function
consists of the squared movement error and the squared motor
command amplitude (effort) x2

t , which leads to the learning rule
of Equation (15) in the Results section or to context-dependent
decay of motor memory. When Et = 1

2 e2
t + λ1

2

∑N
i=1 W2

i,t + λ2
2 x2

t ,
Equation (3) can be written as

Wi,t+1 = (1 − ηλ1)Wi,t − ηλ2xt(θt)Ai(θt) + ηetAi(θt), (4)

where λ1 and λ2 are regularization parameters to determine the
tradeoff between the minimization of the squared movement
error, the minimization of the sum of the squared weight values,
and the minimization of effort.

2.2. SUMMARY OF THE MOTOR PRIMITIVE FRAMEWORK
The motor primitive framework can be summarized as follows.
Setting the parameters σ , η, λ1, λ2, p to certain values, e0 = 0,
W0 = 0, ϕi to a randomly sampled value in the range [−π, π ],
and the target direction θt ∈ [−π, π ] to a certain value at the t-th
trial yields the following:

(Determining recruitment pattern of motor primitives)

Ai(θt) = exp

(
− 1

2σ 2
||θt − ϕi||2

)
. (5)

(Generation of a motor command) xt(θt)=
N∑

i=1

Wi,tAi(θt). (6)

(Observation of a movement error) et = pt − xt(θt). (7)

(Update of linear coefficients)

Wi,t+1 = (1 − ηλ1)Wi,t − ηλ2xt(θt)Ai(θt) + ηetAi(θt). (8)

Notably, with the assumptions of the motor primitive frame-
works and the gradient descent as the learning rule, these proce-
dures are exact and without approximation. This motor primitive
framework can explain trial-dependent changes in the movement
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error and generalization (Thoroughman and Shadmehr, 2000;
Donchin et al., 2003).

2.3. GENERALIZATION FUNCTION
Learning effects trained with reaching movements toward θt

were generalized to untrained reaching movements toward θ

through a generalization function G(θt, θ), where θt and θ were
assumed to be the target directions in the training and test tri-
als, respectively. Test trials indicate the trials to probe learning
effects during or after the training trials. Equation (4) indicates
the learning process during the training of reaching movements
toward θt . The degree of generalization from the reaching move-
ments toward θt to other reaching movements toward θ can be
derived by multiplying Ai(θ) and summing across all values of i in
Equation (4):

xt+1(θ) = xt(θ) + ηG(θt, θ)et, (9)

where the generalization function is defined as G(θt, θ) =∑N
i=1 Ai(θt)Ai(θ) and both λ1 and λ2 are set to 0 for sim-

plicity (cases in which λ1 �= 0 or λ2 �= 0 are discussed in the
Results section). The generalization function G(θt, θ) is defined
as the inner product of the recruitment pattern of motor prim-
itives during reaching toward θt and those for reaching toward
θ . Larger overlaps between the two recruitment patterns result
in greater generalization. In addition, the generalization func-
tion is dependent only on σ (see Equation (10) described
below) and is independent of other parameters, including the
perturbation p.

More intuitively, when the number of primitives N is suffi-
ciently large and η is divided by N (most conventional motor
primitive models assume these conditions), the generalization
function can be approximated as

η

N
G(θt, θ) � η

√
πσ 2 exp

(
− 1

4σ 2
||θ − θt ||2

)
, (10)

which indicates that the closer the target direction in the test
trials (θ) is to the direction in the training trials (θt), the
greater the generalization. In addition, the generalization func-
tion depends only on σ . Although this derivation of Equation
(10) requires a sufficiently large N, N does not significantly influ-
ence the shape of G(θt, θ) (Takiyama and Okada, 2012a). Thus,
Equation (10) permits an intuitive understanding of the results
of the current study. Furthermore, this type of generalization
function suitably explains the actual data from a wide range
of motor learning experiments (Thoroughman and Shadmehr,
2000; Donchin et al., 2003; Tanaka et al., 2009; Yokoi et al.,
2011; Brayanov et al., 2012; Taylor et al., 2012; Yokoi et al.,
2014).

2.4. STATE SPACE MODELING
Although the motor primitive framework assumed trial-by-trial
variations in the weight value, W , it was possible to model only
the trial-by-trial variation of the motor command x. In con-
ventional state space models, motor learning is modeled as an
optimization process regarding motor commands:

xt+1 = xt − η
∂Et

∂xt
, (11)

where Et is a cost function at the t-th trial, e.g., the squared
movement error. Notably, Equation (9) is equivalent to Equation

(11) when θ = θt and
√

πσ 2η is redefined as η. Thus, this state
space model can be viewed as a motor learning model that
focuses only on the trial-by-trial variation of the motor com-
mands without assuming any generalization function. A previous
study demonstrated that the state space model fits the data well
if context-dependent decay and the generalization function are
heuristically introduced into this model (Ingram et al., 2013), i.e.,
xt+1(θ) = (1 − ηλ2G1(θt, θ))xt(θ) + ηG2(θt, θ)et (G1 and G2 are
some functions).

2.5. NUMERICAL SIMULATION
The learning rates in the motor primitive framework and state
space modeling, i.e., η in Equations (12) and (15) and η in
Equation (14), were set to 0.5 and 0.04, respectively. The rates of
forgetting in weight decay (λ1 in Equation 12) and in state space
modeling (λ2 in Equation 14) were set to 0.0015/η. The rate of
forgetting in effort minimization in a motor primitive framework
(λ2 in Equation 15) was set to 0.03/η. The number of motor prim-
itives N was set to 100, and the perturbation p was set to π/4.
The three types of models considered in the current study, i.e.,
the motor primitive framework with weight decay, the state space
model with effort minimization, and the motor primitive with
effort minimization, produced nearly identical learning curves
using these parameters (Figure 3D). To investigate the param-
eter dependencies, p was set to π/6 or π/12 in Figures 2E,F,
respectively, and η and λ2 were set to 0.8 and 0.01 in Figures 3H,I.

3. RESULTS
I analytically and numerically investigated a condition in which
the decay of motor memory and the availability of learning
effects were context dependent. The present study assumed a
task involving unimanual reaching movements toward radially
distributed target directions in the horizontal plane (Figure 1A;
detailed descriptions of the following framework, analytical
calculations, and each parameter value were provided in the
Materials and Methods section). The goal of the task was to
reach to the target accurately in a situation in which exe-
cuted movements were perturbed by changes in the environ-
ment p, e.g., the external force generated by a manipulandum
(Shadmehr and Mussa-Ivaldi, 1994) or visuomotor transforma-
tion (Krakauer et al., 1999). The motor command x to com-
pensate for a perturbation was modeled by the summation of
the activities of the motor primitives as x(θ) = ∑N

i=1 WiAi(θ),
where the adaptable Wi represents how the i-th primitive con-
tributes to the production of the motor command and Ai(θ)
is the activity of the i-th primitive determined by the target
direction. The current study assumed that the recruitment pat-
tern of motor primitives was determined by the target direction.
The movement error in the t-th trial can thus be expressed
as et = pt − xt . To minimize the squared movement error, the
squared sum of the weight values, and the squared motor
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FIGURE 2 | Results of simulation 1. (A) Simulated experimental setting in
simulation 1. This setting consisted of 100 training trials, 100 test trials, and 50
retest trials. In the training trials, the (simulated) subjects were required to
adapt to p = π/4 during reaching movements toward θ = 0. In the test trials,
“error clamp” trials in which the movement error e was forcibly set to 0 were
imposed. In these trials, θ = 0 (blue line in B–F), θ = π/12 (green line in B–F),
θ = π/6 (red line in B–F), and θ = π/4 (cyan line in B–F). After these test trials,
another 50 error clamp trials were imposed with θ = 0. The vertical black

dotted lines denote the trials in which the training trials were switched to the
test trials and the test trials were switched to the retest trials. (B) Trial-by-trial
variation in the motor command x in the motor primitive framework with a
weight decay. (C) Trial-by-trial variation in the motor command in the state
space model with effort minimization. (D) Trial-by-trial variation in the motor
command in the motor primitive framework with effort minimization. (E,F)

Trial-by-trial variation in the motor command in the motor primitive framework
with effort minimization when p = π/6 in (E) and p = π/12 in (F).

command amplitude (effort), Wi was modified in each trial
(Equation 4).

3.1. WEIGHT DECAY
Conventional models of motor primitives assume weight decay
(Thoroughman and Shadmehr, 2000; Donchin et al., 2003;
Tanaka et al., 2009; Yokoi et al., 2011; Brayanov et al., 2012;
Hirashima and Nozaki, 2012; Takiyama and Okada, 2012a; Taylor
et al., 2012; Yokoi et al., 2014), i.e., the cost function Et to be min-
imized is defined as a weighted sum of the squared error and the
squared sum of weight values Et = 1

2 e2
t + λ1

2

∑N
i=1 W2

i,t , where
a regularization parameter λ1 determines the trade-off between
error minimization and weight value minimization. The learning
rule can thus be written as

Wi,t+1 = (1 − ηλ1)Wi,t + ηetAi(θt), (12)

where λ1 indicates the forgetting rate and η denotes the learning
rate: The larger λ1 is, the faster the motor memory decays, and
the larger η is, the faster the movement error is minimized. In
addition, the larger the i-th primitive is activated, the faster the

motor memory can be embedded in the i-th primitive because
the learning rate η is modulated by Ai in Equation (12). However,
the forgetting rate is not modulated by Ai, which results in motor
memory decays in the trial when the i-th primitive is not acti-
vated. The assumed situation in this equation was an adaptation
process in which the subjects adapted to a perturbation with
reaching movements toward θt . Equation (12) can be rewritten
as a recursive equation of x:

xt+1(θ) = (1 − ηλ1)xt(θ) + ηG(θt, θ)et, (13)

where G(θt, θ) = ∑N
i=1 Ai(θt)Ai(θ) is the generalization func-

tion (detailed derivation and description are provided in the
Generalization Function section in the Materials and Methods).
This equation indicates how the learning effects trained dur-
ing reaching toward θt are generalized to the untrained reaching
movements toward θ in each trial. The generalization function
indicates that the learning effects can be largely observed in test
trials when tested movement direction θ is close to the trained
movement direction θt . Although this generalization function can
be fit well to a wide range of experimental data (Thoroughman
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FIGURE 3 | Results of simulation 2. (A) Simulated experimental setting for
simulation 2. Training trials were conducted for 200 trials with θ = 0. After the
training, 20 test trials with θ ′ = −π + 2π k

K and 100 relearning trials with θ = 0
were alternately simulated for K cycles, where K = 16, and the integer k was
pseudorandomly sampled from the range [0, K − 1] to assume different
values in each cycle. In the test trials, the movement error was forcibly set to
0 assuming error clamp trials. (B) Trial-by-trial variation of the motor command
x in the test trials with the motor primitive framework with effort
minimization, θ ′ = 0 (blue line), θ ′ = π/12 (green line), θ ′ = π/6 (red line), and
θ ′ = π/3 (cyan line). The vertical black dotted line indicates the 10th test trial.
(C) Trial-by-trial variation of the motor command in the relearning trials with
the motor primitive framework with effort minimization. The black dotted line
denotes the trial-by-trial variation of the motor command in the relearning
trials with the motor primitive framework with weight decay (independent of
θ ′). The vertical black dotted line indicates the 10th relearning trial. (D)

Learning curves. The horizontal axis indicates the trial number, and the vertical
axis denotes the movement error et . The red line, blue line, and circle denote
the trial-by-trial variation of et averaged across 20 simulation runs in the motor
primitive framework with effort minimization, the framework with weight
decay, and the state space model with effort minimization, respectively. The

red and blue shaded areas indicate the standard deviations of the learning
curves in the 20 simulation runs in the motor primitive framework with effort
minimization and those with weight decay, respectively. After 200 trials, the
motor commands x200(0) converged to x0 in all three models. (E)

Generalization function averaged across 20 simulation runs. The horizontal
axis indicates the tested movement direction θ ′, and the vertical axis indicates
the motor command x(θ ′). To draw the generalization function, I averaged the
motor commands of the initial 10 test trials in each cycle (the 10th test trial is
indicated by the vertical black dotted line in B). The red and blue shaded areas
indicate the standard deviation of the generalization function in the 20
simulation runs in the motor primitive frameworks with effort minimization
and weight decay, respectively. (F) Context-dependent decay investigated in
the relearning phase with θ ′ = 0. The horizontal axis indicates the tested
movement direction θ ′, and the vertical axis indicates the normalized motor
command in relearning trials. The normalized motor command was defined as
1
10
∑10

t=1 xrelearning,t(0)/x0, where xrelearning,t(0) is a motor command at the t-th
relearning trial in each cycle, i.e., I averaged the motor commands of the initial
10 relearning trials in each cycle (the 10th relearning trial is indicated by the
vertical black dotted line in C) and divided the averaged value by x0. The

(Continued)
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FIGURE 3 | Continued

red and blue shaded areas indicate the standard deviations of the memory
decays in the 20 simulation runs in the motor primitive frameworks with
effort minimization and weight decay, respectively. (D,E,F) Parameter
sensitivities of the learning curve, the generalization function, and the
context-dependent memory decay in the motor primitive with effort

minimization. The red lines denote the generalization function and the
context-dependent decay with η = 0.5 and λ = 0.03, and the green lines
denote those with η = 0.8 and λ = 0.01. The red and green shaded areas
indicate the standard deviations of the learning curves in the 20 simulation
runs in the motor primitive frameworks with effort minimization when η = 0.5
and λ = 0.03 and η = 0.8 and λ = 0.01, respectively.

and Shadmehr, 2000; Donchin et al., 2003; Tanaka et al., 2009;
Yokoi et al., 2011; Brayanov et al., 2012; Taylor et al., 2012; Yokoi
et al., 2014), the decay of motor memory, the first term in the right
side of Equation (13), is independent of the target directions θ

and θt (i.e., the context-independent memory decay), in contrast
to the results of a previous behavioral experiment (Ingram et al.,
2013). Thus, the motor primitive framework with weight decay
does not reproduce context-dependent memory decay.

3.2. EFFORT MINIMIZATION IN A STATE-SPACE MODEL
In addition to the motor primitive framework, the state space
model is another widely used model of motor learning (Scheidt
et al., 2001; Smith et al., 2006; Lee and Schweighofer, 2009). The
state space model focuses on the trial-by-trial variation of the
motor command x rather than the trial-by-trial variation of the
weight value W . Thus, weight decay cannot be assumed in the
state space model because this model does not assume any weight
value. Memory decay was modeled as effort minimization in the
state space model using the cost function Et = 1

2 e2
t + λ2

2 x2
t , i.e.,

a weighted sum of squared error and effort. Optimizing this cost
function led to the minimization of movement error and effort.
The learning rule can be written as

xt+1(θt) = (1 − ηλ2)xt(θt) + ηet, (14)

where the memory decay and the availability of learning effects
are context independent, also in contrast to the results of previ-
ous behavioral experiments (Thoroughman and Shadmehr, 2000;
Donchin et al., 2003; Ingram et al., 2013). Although the state space
model can be fit well to actual data by heuristically introducing
context-dependent memory decay and a generalization function
(Ingram et al., 2011, 2013), such modeling leaves the question
of what is optimized in motor learning. While more compli-
cated versions of state space models can be considered (Smith
et al., 2006; Lee and Schweighofer, 2009; Takiyama et al., 2009;
Takiyama and Okada, 2011), context-dependent memory decay
cannot be reproduced. Thus, the state space model is a power-
ful model in some cases (Scheidt et al., 2001; Smith et al., 2006;
Lee and Schweighofer, 2009), but is not suitable for modeling and
interpreting the context-dependent decay of motor memory and
generalization in an optimization framework.

3.3. EFFORT MINIMIZATION IN THE MOTOR PRIMITIVE FRAMEWORK
In the previous two models, the parameter being optimized dif-
fered: the weight value was minimized in the conventional motor
primitive framework, while effort was minimized in the state
space model. Although the functional roles of weight decay in
motor learning remain unclear (cf. Hirashima and Nozaki, 2012),
effort minimization has been reported to be effective in mini-
mizing motor noise (Jones et al., 2002) and endpoint variance

(Harris and Wolpert, 1998). Furthermore, some previous stud-
ies have reported that not only movement error but also effort is
minimized in the adaptation to a force field (Emken et al., 2007;
Huang et al., 2012) and a visuomotor transformation (Huang
and Ahmed, 2014). Thus, I propose a motor primitive framework
with effort minimization. When Et is defined as Et = 1

2 e2
t + λ2

2 x2
t ,

motor learning can be modeled as

Wi,t+1 = Wi,t − ηλ2x(θt)Ai(θt) + ηetAi(θt). (15)

The second term in the right side of Equation (15) is a memory
decay that can be modulated by x(θt) and Ai(θt); the larger the i-th
primitive is activated, the faster the motor memory embedded in
the primitive decays. Equation (15) yields a recursive equation for
motor commands:

xt+1(θ) = (1 − ηλ2G(θt, θ))xt(θ) + ηG(θt, θ)et, (16)

where both memory decay and error minimization are context
dependent. When trained with reaching movement toward θt

and tested with movements toward θ , the motor memory decays
faster in the test trials when the tested movement direction is
close to the trained movement direction because the forgetting
rate ηλ2G(θt, θ) is maximal when θ = θt . This result is consis-
tent with results of a previous experiment (Ingram et al., 2013).
Taken together, effort minimization in a motor primitive frame-
work is the only candidate that can simultaneously reproduce
context-dependent memory decay and generalization.

3.4. SIMULATION 1: VALIDATION OF THE ANALYTICAL
CONSIDERATION

To validate the analytical considerations, I conducted numerical
simulations (Figures 2, 3). The first simulation consisted of 100
training trials, 100 test trials, and 50 retest trials (Figure 2A). In
the training trials, the (simulated) subjects were required to adapt
to p = π/4 in reaching movements toward θ = 0. The test tri-
als were “error clamp” trials in which the movement error e was
forcibly set to 0 to enable a clear discussion of learning effects
by excluding any adaptation process (Scheidt et al., 2000). These
test trials were simulated to investigate how the learning effects
trained in training trials are generalized to reaching movements
toward θ = 0 (blue line), θ = π/12 (green line), θ = π/6 (red
line), or θ = π/4 (cyan line). Notably, the error clamp trials
also enabled a clear discussion of forgetting processes because no
adaptation can be assumed to occur during the trials. Thus, the
memory of learning effects trained in the training trials decayed
during the test trials depending on θ . To investigate how the tar-
get direction (context) affected the decay of the motor memory,
another 50 error clamp trials were imposed with θ = 0 after the
test trials (Figure 2A).
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The above simulated experimental setting enabled an investi-
gation of whether the decay of motor memory and the availability
of learning effects are context dependent or context independent.
If the availability of learning effects is context dependent, the
learning effects trained with θ = 0 in the training trials will be
generalized to other reaching movements in the test trials, and
the motor command toward the other target directions x(π/12),
x(π/6), and x(π/4) will not be 0 in those trials. By contrast, if
the availability of learning effects is context independent, then
no generalization should be observed, and x(π/12), x(π/6), and
x(π/4) are 0 in the test trials. If the memory decay is context
independent, the motor commands in the retest trials should be
independent of the target direction in the test trials, i.e., the blue,
green, red, and cyan lines that indicate x(0) should converge to
the same value in the retest trials. This result would indicate that
the motor memory decays at the same rate in the test trials inde-
pendent of the target direction. However, if the memory decay is
context dependent, then the motor commands in the retest trials
should depend on the target direction in the test trials, and the
blue, green, red, and cyan lines that indicate x(0) should diverge
to different values in the retest trials. This result would indicate
that the motor memory decays with different rates in the test trials
depending on the target direction.

In the motor primitive framework with weight decay Equation
(12), the availability of learning effects is context dependent
(Figure 2B, the blue, green, red, cyan lines in the test trials).
However, the memory decay is context independent (Figure 2B,
all the lines converged to the same value in retest trials). In the
state space model with effort minimization Equation (14), nei-
ther the availability of learning effects nor the memory decay is
context dependent (Figure 2C). Thus, these conventional frame-
works are not sufficient to reproduce both generalization and
context-dependent memory decay.

By contrast, the motor primitive framework with effort min-
imization Equation (15) reproduced both generalization and
the context-dependent memory decay (Figure 2D). Furthermore,
these generalization and context-dependent decay were indepen-
dent of the magnitude of perturbation (Figures 2E,F). Thus,
my analytical considerations were validated; context-dependent
memory decay is a result of effort minimization in the motor
primitive framework.

3.5. SIMULATION 2: REPRODUCTION OF PREVIOUS EXPERIMENTAL
DATA

Next, I reproduced the results of a previous behavioral experi-
ment (Ingram et al., 2013) using the assumptions of a similar
experimental setting (Figure 3). The training involved 200 tri-
als with θ = 0. After these trials, the motor command x200(0)
converged to x0 (Figure 3D). After the training, 20 test trials
with θ ′ = −π + 2π k

K and 100 relearning trials with θ = 0 were
alternately simulated for K cycles in which the integer k was peu-
dorandomly sampled from the range [0, K − 1] to take different
value in each cycle and K was 16. Once the integer k was sampled,
k, or θ ′ was fixed across the 20 test trials. The movement error was
forcibly set to 0 in the test trials (error clamp trials). These test
trials enabled to investigate the generalization. If the availability
of the learning effects is context independent, motor commands

in test trials will be 0 except for the case when θ ′ = 0. By con-
trast, the availability of the learning effects is context dependent,
the learning effects trained in training or relearning trials will be
generalized to other reaching movements in test trials. Because
the magnitude of the motor commands (motor memory) decayed
during the test trials (Figure 3B), I averaged the motor commands
in the initial 10 test trials to obtain the generalization function
shown in Figures 3E,H to eliminate the effects of decay on the
function.

After the test trials, 100 relearning trials with θ = 0 were
imposed to investigate the context dependence of the memory
decay. If the decay rate of the memory was independent of θ ′ in
the test trials, the motor commands in the relearning trials should
have the same values independent of θ ′. By contrast, if the decay
rate of the memory depended on θ ′, the motor commands in
the relearning trials should have different values depending on
θ ′. Because the motor commands converged to the same value
during the relearning trials (Figure 3C), I averaged the motor
commands in the initial 10 relearning trials to obtain the context-
dependent memory decay in Figures 3F,I to eliminate the effects
of relearning on the function of the context-dependent mem-
ory decay. In addition, based on a previous study (Ingram et al.,
2013), the motor commands in relearning trials were denoted
after normalizing by x200(0) in the training trials (Figures 3C,F,I).

Similar to the previous section, Simulation 1: Validation of
the Analytical Consideration, neither the motor primitive frame-
work with weight decay nor the state space model with effort
minimization reproduced the context-dependent memory decay
in an experimental setting similar to that of the previous study
(Ingram et al., 2013) (blue line and circles in Figures 3E,F).
By contrast, the motor primitive framework with effort mini-
mization reproduced both the context-dependent memory decay
and the generalization in this experimental setting (red line in
Figures 3E,F). Furthermore, these results were not sensitive to
parameter changes (Figures 3G–I); although the magnitude of
the memory decay was reduced when λ2 was small, the context
dependencies of the memory decay and the generalization were
invariant. Thus, this framework was able to reproduce the gen-
eralization and context-dependent decay within an experimental
setting similar to that of the previous study (Ingram et al., 2013).
Taken together, the context-dependent decay and the generaliza-
tion were the results of optimizing the effort and movement error
in the motor primitive framework.

4. DISCUSSION
In the current study, I revealed that context-dependent decay is
evidence of effort minimization in motor learning by extending
a motor primitive framework. The conventional motor prim-
itive framework succeeded in reproducing the availability of
the learning effects trained with reaching movements toward θ

in other reaching movements (Thoroughman and Shadmehr,
2000; Donchin et al., 2003; Tanaka et al., 2009; Yokoi et al.,
2011; Brayanov et al., 2012; Taylor et al., 2012; Yokoi et al.,
2014). Although the conventional models of motor learning
support the existence of memory decay in motor learning pro-
cesses (Thoroughman and Shadmehr, 2000; Scheidt et al., 2001;
Donchin et al., 2003; Smith et al., 2006; Tanaka et al., 2009;
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Yokoi et al., 2011; Brayanov et al., 2012; Hirashima and Nozaki,
2012; Takiyama and Okada, 2012a; Taylor et al., 2012; Yokoi
et al., 2014), these conventional models assume that the rate
at which memory decays is independent of the target direc-
tion or assume context-independent decay of motor memory.
Context-independent decay is equivalent to the minimization of
weight values (weight decay) in a motor primitive framework
Equations (12) and (13) and effort minimization in a state space
model Equation (14). Nevertheless, a recent behavioral experi-
ment (Ingram et al., 2013) reported that the rate of memory decay
is context dependent. Although motor learning has been mod-
eled by an optimization framework, context-dependent decay
raises the following question: what is optimized in motor learn-
ing? Here, based on the results of recent behavioral experiments
(Emken et al., 2007; Huang et al., 2012; Huang and Ahmed,
2014), I introduced effort minimization into a motor primitive
framework and concluded that context-dependent decay results
from effort minimization in the motor primitive framework
Equations (15) and (16), Figures 2D, 3E,F). Furthermore, this
context dependence of the motor memory decay was not sensitive
to the parameters η, λ2, and p (Figures 2E,F, 3G–I). This finding
permits the seamless connection of conventional models of motor
learning with the recent finding of context-dependent decay.

The ability of effort minimization to reproduce context-
dependent decay is related to activity-dependent memory decay.
In the error clamp trials, Equation (15) can be written as Wi,t+1 =
Wi,t − ηλ2xtAi(θt), which indicates that the more the i-th primi-
tive is activated in the t-th trial, the faster the memory embedded
in the primitive decays. In other words, if the i-th primitive is not
activated in a trial, the memory embedded in the primitive can
be completely maintained during the error clamp trials. When
trained with θ = 0 and test trials imposed with θ = π/4 (cyan
line in Figures 2D–F), the recruitment patterns differed greatly
between the training and test trials, and thus the motor memories
embedded in the motor primitives that were activated when θ = 0
were maintained in the test trials with θ = π/4. Thus, after the
test trials with θ = π/4, the motor memory was maintained, and
the magnitudes of the motor commands in the retest trials were
not significantly different from the motor commands in the latter
half of the training trials (Figures 2D–F). When trained with θ =
0 and test trials imposed with θ = 0 (blue line in Figures 2D–F),
the same primitives were activated during the training and test
trials, which led to faster forgetting of the motor memory in the
test trials. Thus, after the test trials with θ = 0, the motor memory
decays and the magnitudes of the motor commands in the retest
trials were smaller than the motor commands in the latter half
of the training trials (Figures 2D–F). By contrast, weight decay
entails activity-independent memory decay. In the error clamp
trials, Equation (12) can be written as Wi,t+1 = (1 − λ1)Wi,t ,
which indicates that the motor memory embedded in the i-th
primitive decays trial-by-trial independent of the activity of the
i-th primitive or the target direction in the test trials (Figure 2B).
Hence, activity-dependent memory decay is responsible for the
association of effort minimization with the context-dependent
decay of motor memory.

Functional roles of effort minimization in motor learning
needs to be discussed. One possible functional role of effort

minimization is to reduce mean squared movement error when
a motor command includes signal-dependent noise (the noise
whose standard deviation is proportional to its mean value),
i.e., y = x + ξ , where y is a motor command that includes
motor noise, x is a noiseless motor command, and ξ is a motor
noise with a mean of 0 and a variance of λ2x2. In this case,
the mean squared error can be written as follows: 〈e2

t 〉 = (pt −
〈yt〉)2 + 〈(yt − 〈yt〉)2〉 = e2

t + λ2x2
t , where 〈f (ξt)〉 indicates f (ξt)

averaged across all possible realizations 〈f (ξt)〉 = ∫
dξtp(ξt)f (ξt).

This equation indicates that the mean squared movement error
consists of constant error, (pt − xt)2 and variable error 〈(yt −
xt)2〉 = λ2x2

t (Schmidt and Lee, 1988). The constant error rep-
resents the bias of the motor command. The smaller (larger)
the motor command is down-regulated (up-regulated), e.g., yt =
pt − b + ξt (yt = pt + b + ξt), where b is bias, the larger the con-
stant error. By contrast, the variable error represents how variable
the motor command is in each trial. The more variable the motor
command, the larger the variable error. When the motor noise
is signal dependent, effort minimization can decrease the trial-
by-trial variability such that effort minimization decreases the
variable error and the mean squared movement error.

One limitation of this study must be discussed. Although
a previous behavioral experiment reported that both context-
dependent decay and the generalization function can be modeled
by Gaussian functions, the width of the function was wider for
context-dependent decay than for the generalization function
(Ingram et al., 2013). In Equation (16), the width of the Gaussian
was the same for the two functions; the reason for the difference in
the widths reported in the previous study remains unclear. A pos-
sible solution is the introduction of a multi-rate concept (Smith
et al., 2006) into the motor primitive framework (Tanaka et al.,
2012). In this concept, the motor memory consists of at least two
processes, i.e., fast and slow processes in which, roughly speaking,
the fast processes, including a large forgetting and a large learn-
ing rate, are involved when the movement error is large (e.g., the
early part of the training trials) and slow processes, including a
small forgetting and a small learning rate, are involved when the
movement error is small (e.g., the latter part of the training tri-
als). In the previous study (Ingram et al., 2013), generalization
functions were investigated using error-clamp trials in which the
movement error was forcibly set to 0. By contrast, for investigat-
ing context-dependent decay, error clamp trials were not used,
which indicates that the movement error was not 0. If a larger
number of primitives are activated in a fast process compared to a
slow process, i.e., if σ is larger in the motor primitives associated
with the fast process than in those associated with the slow pro-
cess, the difference in the widths of the context-dependent decay
and the generalization function can be reproduced. Another pos-
sible solution is to determine the recruitment pattern of motor
primitives based on the movement error (Takiyama et al., 2013).
In this model, the recruitment patterns of the motor primitives
are different between the trials used to investigate the context-
dependent decay (i.e., when the movement error is large) and
the trials used to investigate the generalization function (i.e.,
when the movement error is small) in the experimental set-
ting, which results in a difference in σ between the recruited
primitives that enables the reproduction of the difference in the
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widths of the context-dependent decay and the generalization
function.
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