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The vestibulo-ocular reflex (VOR) is an involuntary eye movement evoked by head
movements. It is also influenced by viewing distance. This paper presents a hybrid
nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) in the
dark. The model is based on known interconnections between saccadic burst circuits in
the brainstem and ocular premotor areas in the vestibular nuclei during fast and slow
phase intervals of nystagmus. We implemented a viable switching strategy for the timing
of nystagmus events to allow emulation of real nystagmus data. The performance of the
hybrid model is evaluated with simulations, and results are consistent with experimental
observations. The hybrid model replicates realistic AVOR nystagmus patterns during
sinusoidal or step head rotations in the dark and during interactions with vergence,
e.g., fixation distance. By simply assigning proper nonlinear neural computations at the
premotor level, the model replicates all reported experimental observations. This work
sheds light on potential underlying neural mechanisms driving the context dependent
AVOR and explains contradictory results in the literature. Moreover, context-dependent
behaviors in more complex motor systems could also rely on local nonlinear neural
computations.
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1. INTRODUCTION

The vestibulo-ocular reflex is an involuntary eye movement that
stabilizes gaze in space during head movements for clear and
blur-free vision. The rather simple neural substrate of the VOR,
the so-called three neuron arc (de No, 1933), makes it an appro-
priate model to study sensory-motor behavior. Rotational and
translational head movements are sensed by the vestibular sys-
tem (semicircular canals and the otolith organs) in the inner
ear. Vestibular afferents relay sensory information to the vestibu-
lar nuclei (VN) and prepositus hypoglossi (PH) centers in the
brainstem. These centers act as the main controller and combine
sensory signals with internal efference copies of the controlled
plant(s), eye orientation, to drive motor-neurons appropriately.
Extraocular muscles then apply torques on the eyeball that result
in the eye movements.

VOR nystagmus consists of compensatory (slow phase) and
reorienting (fast phase) segments. The slow phases of the VOR
stabilize gaze in space by moving the eyes in the opposite direc-
tion to the head movement, while the fast phases redirect the gaze
at high speeds in the direction of the head velocity. We focus on
the angular VOR (AVOR), tested with passive whole-body rota-
tion in the dark while recording conjugate (eye movements in
the same direction) or monocular horizontal eye movements.
Figure 1 shows an example of the VOR during sinusoidal head
rotations using electrooculography (EOG) in the dark: some slow
and fast phase segments are marked. The sawtooth-like pattern
of the eye movement is a characteristic of most types of eye

movements and is known as ocular nystagmus. In clinical tests,
the VOR is characterized by its gain defined as the ratio of peak eye
velocity to peak head velocity during harmonic testing or short
pulse perturbations.

While the head movements initiate the VOR, this reflex is also
influenced by contextual factors such as viewing distance (Viirre
et al., 1986; Crane and Demer, 1998). Since the eyes are not cen-
tered on the head, holding gaze on a near target requires more
ocular rotation than for a relatively far target during head move-
ments. In other words, the AVOR gain increases as a function of
decreasing fixation distance, that can be described geometrically.
The majority of models that attempted to explain target-distance
dependent VOR responses relate this property to (i) an internal
signal proportional to the inverse of target distance that scales
VOR gain (Viirre et al., 1986; Chen-Huang and McCrea, 1999),
(ii) cortical computations (Snyder and King, 1992), (iii) para-
metric changes (Green, 2000), (iv) multiplication of vestibular
and eye position signals (Zhou et al., 2007) or (v) parallel linear-
nonlinear pathways (Lasker et al., 1999). All these models are only
focused on the slow phases of VOR nystagmus.

In our recent work (Ranjbaran and Galiana, 2013a), we pre-
sented a nonlinear bilateral model for AVOR slow phases in the
dark. The model is developed based on known realistic physi-
ological mechanisms and anatomical connections including the
semicircular canals, the VN and PH neural populations, motor-
neurons and eye plants (Figure 2A). Based on geometrical rela-
tions, we showed that combining monocular and vergence angle

Frontiers in Computational Neuroscience

www.frontiersin.org

February 2015 | Volume 9 | Article 6 | 1


http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2015.00006/abstract
http://community.frontiersin.org/people/u/172525
http://community.frontiersin.org/people/u/207199
mailto:mina.ranjbaranhesarmaskan@mail.mcgill.ca
mailto:mina.ranjbaranhesarmaskan@mail.mcgill.ca
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ranjbaran and Galiana

Hybrid VOR model

T T T I I I
A
-~ Conjugate eye position
= o0} P ~ s 4
) , ™S = = = Head Position/5
T
)
Y
=
-
£ -20
©
-4 5]
200F T T T T T T
— B 1Al
®
©» 100 i
o ip
-8 - - o L.
> O} 1 e
T
=
£-100 (N )
E Conjugate eye velocity
-200- = = = Head velocity/4
1 I I I ; T
36 37 38 39 40 41 42 43
time (sec)
FIGURE 1 | VOR in response to sinusoidal head rotation recorded with EOG. (A) Conjugate eye position and scaled head position (degree). (B) Conjugate
eye velocity and scaled head velocity (degree/s). Sample slow and fast phase segments are marked with gray and dashed-gray rectangles, respectively.

(eye movements in opposite directions) information is sufficient
to locate a target in space relative to the eyes. By assigning
properly tuned nonlinear neural computations at the VN level,
this slow phase model is capable of replicating target-distance
dependent VOR responses that meet geometrical requirements.
Nonlinear computation in neural responses, so-called gain mod-
ulation, exists in many cortical and subcortical areas (Salinas and
Sejnowski, 2001). Different mechanisms are proposed to explain
them, such as recurrent neural networks (Salinas and Abbott,
1996), changes in the synchrony of inputs to a neuron (Salinas
and Sejnowski, 2000) or varying the level of background synaptic
input (Chance et al., 2002). In this slow phase model (Ranjbaran
and Galiana, 2013a), it is postulated that the sensitivity of the VN
cells to vestibular signals modulates nonlinearly with eye posi-
tion and vergence state, enabling auto-adjustment of the VOR
to the set point of both eyes- a great improvement over the ini-
tially proposed model that only used ipsilateral monocular signals
(Khojasteh and Galiana, 2009b). In addition to the near ideal
AVOR gain modulation with target distance, the central premo-
tor responses in that model are also consistent with experimental
observations. The model also reproduces experimental observa-
tions of the VOR responses with simulated unilateral canal plug-
ging, an emerging property. Due to nonlinearities in the sensors
and premotor circuits, the model predicted a disconjugate VOR in
the dark. However, prior explorations of the model behavior were
examined only during high frequency head pulses or low ampli-
tude sinusoidal rotations to remain in the range of feasible eye
rotations. In order to have more relevance to the clinical VOR, we
now examine the predicted responses to low frequency sinusoidal
and large head rotations. This requires the implementation of a
fast phase circuit to replicate realistic nystagmus patterns in the
AVOR and compare simulations to experimental data.

Classically, the two phases of the VOR are believed to be gener-
ated by independent and parallel pathways as originally suggested
by Chun and Robinson (1978). Based on this approach, the two
phases function independently from each other and a switch-
ing strategy implements the timing of changes from one system
to the other. Such a black box approach was also employed by
other researchers to study VOR slow and fast phase interactions
(Winters et al., 1984). However, more recent data demonstrate
that slow and fast phases of the VOR share efference copies of
eye position from PH and premotor cells in VN (Fukushima
and Kaneko, 1995). The first model to include shared connec-
tions between the slow and fast circuit was proposed by Galiana
(1991) where distinct dynamics for slow and fast phases are gen-
erated here through structural modulation. In other words some
of the projections during slow phases alter their response char-
acteristics during a fast phase: e.g., position vestibular pause
(PVP) and eye head velocity (EHV) cells in the VN pause for
ipsilaterally directed fast-phases (McFarland and Fuchs, 1992)
and burster cells that are only active during fast phases or sac-
cades, play an important role in facilitating response changes
on premotor cells (Kitama et al., 1995). It should be noted that
structural modulation does not refer to any change in anatom-
ical connectivity, but rather to changes in the available set of
active pathways (Galiana, 1991). Another comparable physiolog-
ically relevant model was also developed using realistic spiking
neurons that replicated VOR nystagmus in the guinea pig with
shared connections between the slow and fast circuits (Cartwright
et al., 2003). However, both these models do not address VOR
gain modulation with target distance nor vergence interactions.
The hybrid model developed by Khojasteh and Galiana (2009b)
considered VOR gain modulation; however, they considered a
nonlinear block in a feedback loop in their slow phase model
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FIGURE 2 | (A) Right and left eye positions (Eg, E;) for an eccentric target at a
location given by (D, 6) during head rotation about radius r. / is the interocular
distance. (B) Bilateral model of slow phase horizontal AVOR in the dark. (C)
Model structure for a rightward fast phase. Inactive projections and paused
cells are indicated by dashed-gray lines. Long dashed-black lines are the
centers that are only active during fast phase and solid black lines are shared

projections during both slow phase and rightward fast phase of the VOR.
Silenced cross midline projections are not shown for simplicity. PVP cells are
located on the opposite side from their physical location to better view the
connections crossing the midline. See Table 1 for projection weights that are
shown on the connections. Projection weights that are not shown are assumed
to be 1. Parts (A) and (B) partially adapted from Ranjbaran and Galiana (2013a).

to account for VOR gain modulation which resulted in variable
VOR dynamics with context and head velocity profiles. Moreover,
in their model only ipsilateral monocular signals are used to
modulate VOR gain, thus it is not possible to test VOR gain
modulation during simultaneous vergence goals and harmonic
vestibular inputs.

In this paper, the fast phase circuit shares premotor centers
with the bilateral nonlinear slow phase circuit previously pre-
sented (Ranjbaran and Galiana, 2013a) to form the VOR hybrid

model. A novel feature is that for the first time, VOR and ver-
gence interaction is included in a physiologically relevant hybrid
model that can replicate experimental observations, i.e., mod-
ulation of the VOR gain in response to simultaneous variable
vergence goals and vestibular inputs in the dark. A viable switch-
ing strategy is also implemented to trigger and stop VOR fast/slow
phases, originally suggested by Galiana (1991). Simulation results
are presented to evaluate the performance of this hybrid model
under different rotation profiles and the results are compared
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with experimental observations. Such a model allows new inter-
pretations of the underlying mechanisms in the VOR system and
explains contradictory observations in experiments. Preliminary
results are presented in Ranjbaran and Galiana (2013b).

The remainder of this paper is organized as follows. Materials
and Methods in Sections 2.1 and 2.2 review briefly the refer-
ence coordinates and the previously developed slow phase model.
Sections 2.3 and 2.4 describe the fast phase model and the nys-
tagmus strategy. Simulation results in Section 3 are followed by
discussion and concluding remarks in Section 4.

2. MATERIALS AND METHODS

In developing mathematical representations for the slow and fast
phases of the VOR, we are modeling population responses of
cells. Therefore, each element of the models represents the average
behavior of a particular cell type rather than the response of any
individual cell. Moreover, only firing modulation around a pop-
ulation resting rate is considered; biases due to resting rates are
not included and a negative firing rate refers to a cell firing below
its resting rate. Finally, we wish to represent the simplest model
that can replicate general VOR characteristics, i.e., a minimalist
approach. Adding more projections and loops between elements
in a bilateral model will only affect the current assigned projection
weights and not the general characteristics of the model.

2.1. REFERENCE COORDINATES

For each eye, zero position is defined as looking straight ahead at
optical infinity; temporal deviations are considered positive and
nasal deviations, negative. Conjugate and vergence eye positions
are thus defined as E,pj = %(ER — Ep) and Eyerg = —(ER + EL),
where Eg and Ef refer to the right and left eye angle, respectively
(see Figure 2A).

2.2. SLOW PHASE MODEL

The original nonlinear model for slow phases of the AVOR
(Figure 2B) is described in detail in Ranjbaran and Galiana
(2013a). The input is head velocity, sH(s), sensed by semicircular
canals. The canals are modeled as high-pass filters of head veloc-
ity, V(s) = STSE%, followed by a static nonlinearity on sensory
modulation. The nonlinear block accounts for the mechano-
neural transduction process that causes asymmetric changes in
the firing rate on the primary afferents (Goldberg and Fernandez,
1971). The nonlinear block has asymmetric gains around zero
(knegative = 0.4 and kpositive = 0.6) and limits the primary affer-
ent output Vg 1 by saturation (4110 spikes/s) and cutoff levels
(—90 spikes/s), appropriate for primary vestibular afferents with
the 90 spikes/s resting rate. PVP and EHV cell populations in the
VN are distinct in the model and receive sensory projections from
the canals as well as efferent copies of eye position from PH. T-II
in our model refers to type II neurons in the medial VN (Shimazu
and Precht, 1966) that receive projections from the contralat-
eral VN. We assume that contralateral VN projections arise from
from PVP cells and form a feedback loop between the two sides
of the VN (Keller and Precht, 1979). These commissural path-
ways play an important role in the dynamics of the VOR system
(Galiana and Outerbridge, 1984). Premotor PVP and EHV cells
project to motor neurons (MN) to drive the eye plants. The eye

globe and muscles smooth the motoneural signals. This is repre-
sented mathematically as a low-pass transfer function. Therefore,
the eye plants as well as neural filters in PH are modeled with
first order low pass dynamics as P(s) = STk T and F(s) = Skarl
Here, we assume that efference copies of the ipsilateral monocu-
lar eye position, Eg 1, and of the vergence eye position, E,,erg, reach
EHV cells and define their sensitivities (gain) to vestibular signals
in a nonlinear fashion; i.e., EHVR = gr 1 {ER,L, E,erg}szR,L,
where gr 1{.} is the nonlinear sensitivity of EHV cells to vestibu-
lar afferents. These nonlinear computations account for the target
distance related gain modulation of the VOR.

The equations for conjugate and vergence angles in the model
are

kp(c — 1)(gLl3p2 Ve — grl3p2 VR) — akyp1 (VL — Vg)
2((c = I)(Ts + 1) + adky)

Econj =

(1a)

ko(c + 1)(gLl)p2 Ve + gri3p2VR) — akpp1 (VL + Vi)
(c+ I)(Ts+ 1) — adks

Everg =

(1b)
Modulation of gr(.) and gz(.) changes the context gain but not
the system dynamics (poles). In simpler terms, the sensory sig-
nals from the semi-circular canals are smoothed and tuned by
the brainstem circuits to generate the eye movement, described
by nonlinear low pass dynamics. For complete justification of
the model elements and connections see (Ranjbaran and Galiana,
2013a).

The slow phase model is originally designed to replicate VOR
responses in the dark with no visual cue. In order to evaluate the
effect of far vs. near target flashes during sinusoidal rotation in
the dark, additional inputs to trigger vergence eye movements are
required. It is postulated that viewing a flashed target causes sig-
nals to be relayed to the neural filters in the PH from any cortical
or brainstem center coding visuomotor error commands, such as
superior colliculus (SC) (Cova and Galiana, 1996; Green, 2000).
We define these visual error signals (Ver and Ver) as additional
input signals to the PH (Figure 2B). In the absence of head veloc-
ity input, i.e., Vg 1 = 0, the conjugate and vergence response to
Ver, 1 are obtained as

akpksdq(Ver — Ver)
2(Ts+ 1) ((c = 1)(Ts + 1) + adky)

Econj = (2a)

—akpksdq(Ver + Ver)
(Ts+ 1)(c+ 1)(Ts + 1) — adky

Everg = (Zb )

Assigning identical visuomotor error commands, i.e., Ver = Vey,
results in pure vergence with no conjugate response due to the
bilateral structure of the model. It should be noted that we are
not including light conditions or continuously visible targets in
the dark since the VOR dynamics will change as additional visual
loops are added to the circuit (Green, 2000). This is a question for
future studies.

Two sets of parameters are provided in Table 1 that simulate
two different time constants for the conjugate slow phase sys-

tem obtained from Equation (1A), i.e., Teonj = % equals
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Table 1 | Numerical values of the model parameters.

T conj Tverg P1 P2 c a d m by bge ks
5s 0.4s 1 0.5 0.58 0.75 0.65 1 10 10 0.813
12s 04s 1 0.5 0.5 0.75 0.77 1 10 10 0.65
T conj Tverg kp ki kpf o q T Te ON-Th OFF-Th
5s 04s 0.407 0.3 0.15 0.2 0.135 0.3 6 90 -5
12s 04s 0.325 0.3 0.15 0.2 0.1 0.3 6 60 -5
5sor 1.2s and Ty = % from Equation (1B) equals ¢ is the projection weight from the PH to contralateral BDN (con-

0.4s with both parameter sets. By simply changing projection
weights or filter gains, e.g., c and d or ky, new time constants for
the model can be obtained. However this then requires retuning
of the nonlinear surfaces at the EHVs. The canal time constant
is set to T, = 65. Nonlinear surfaces assigned to the EHV cells
(Ranjbaran and Galiana, 2013a) are provided in Appendix 5.1.
Here interocular distance is: I = 6 cm and the axis of rotation is:
T = Thead = 8.8 cm.

2.3. FAST PHASE MODEL

The model structure for a rightward fast phase circuit is shown
in Figure 2C. A leftward fast phase is generated with a mirror
image of this model. Similar to the slow phase circuit, only mod-
ulations in cell populations are provided. Summing junctions
are linear except for the nonlinear EHV cells (Ranjbaran and
Galiana, 2013a). The bilateral structure of the slow phase system
with reciprocal signals across the midline switches to a unilat-
eral structure during fast phases. This is the result of silenced
VN cells such as the ipsilateral PVPs and EHVs as well as the
cross-midline projections during a fast phase (gray dashed lines
and circles in Figure 1B, cross midline projections are not shown
for simplicity). Omnipause neurons (OPN) and burster-driving
neurons (BDN) as well as excitatory and inhibitory burst neu-
rons (EBN and IBN) are included in the fast phase circuit (long
dashed black lines and circles in Figure 1). OPNs are located near
the midline of the pons and act as triggers for the initiation of fast
eye movements in all directions (Scudder et al., 2002). OPNs dis-
charge at high firing rate and exert a tonic inhibition on premotor
BNs during slow eye movements and fixation. Prior to a fast eye
movement or saccade, OPNs cease firing, remain silent during the
saccade, and resume firing as the saccade ends (Yoshida et al.,
1999). OPNs receive projections from the SC as well as projec-
tions from cells in the medial VN (Ito et al., 1986). In our model,
it is assumed that the projections from the medial VN, specifically
PVPs, to the OPNs play a role in triggering and ending the fast
phases (see Section 2.4). BDNs are located below the PH and are
found to be excited by contralateral horizontal head rotation and
they send projections to contralateral BNs (Kitama et al., 1995).
We assume BDN excitation is a result of an excitatory vestibu-
lar drive that comes from contralateral vestibular-only (VO) cells.
BDNss also modulate with a PH response (eye position efference
copies) to close the loop and shape bursts during fast phases
(Kitama et al., 1995). Therefore, the output signal from left BDNs
during rightward fast phase is: BDNp = m x Vg — « x Eg where

nections are simplified in Figure 1). BDNSs project to contralateral
EBNs and IBNs that are located in the reticular formation and
have monosynaptic connections to abducens motoneurons. EBNs
send excitatory projections to ipsilateral MNs while IBNs with
similar firing patterns send inhibitory projections to contralateral
MNs. In our model, the same projections to MNs are sent to PH
neurons that produce efferent copies of eye position for VN cells
(Fukushima and Kaneko, 1995).

In order to achieve faster dynamics in the fast phase circuit,
it is assumed that the feedback loops including PVP and EHV
cells between the VN and PH nuclei change their net sensi-
tivity direction as originally suggested in Galiana (1991). This
can be a result of competition between parallel inhibitory and
excitatory projections from PVP and EHV cells whose balance
is modified by EBN/IBN effects. Projections from burst neu-
rons to VN are studied in Igusa et al. (1980) and have been
used in former models and studies (Curthoys, 2002; Cartwright
et al., 2003). We assume that the population response of the VN
cells is a mixed combination of individual inhibitory and exci-
tatory projections. During slow phases, the population response
is dominated by the excitatory PVPs and inhibitory EHVs as
the burst neurons are silenced. During a fast phase, however,
as the burst neurons become dis-inhibited, along with silenc-
ing of the ipsilateral PVPs and EHVs, the inhibitory projec-
tions dominate the response of PVPs and excitatory projec-
tions dominate the response of EHVs; thus, the net projec-
tions from contralateral PVPs and EHV populations appear
to change their direction of sensitivity. Similar incrementing-
decrementing behavior is also observed on the BDN activity
during slow-fast intervals (Ohki et al., 1988). The change in
effective connectivity assumed here does not conflict with basic
knowledge about the neural firing patterns. Thus, in our model
during a fast phase, PVPs and EHVs contralateral to the fast
phase direction change their sensitivity and their activity profiles
decay.

As in the slow phase model, the eye plants and neural filters in

_ kur
- Ts+1

and Fy(s) = TsLL EHV cells are silenced during ipsilateral fast
phases and are active during contralateral fast phases with the
same nonlinear sensitivity to the ipsilateral canal signal, i.e., g(.)
(Ranjbaran and Galiana, 2013a). Due to the unilateral structure
of the fast phase of the VOR, distinct monocular dynamics for eye
responses are obtained during fast phases, i.e., during a rightward
fast phase (see Appendix 5.2)

the PH remain as first-order low-pass dynamics as Py(s)
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_ kpp(—ap1 Vi, + mbgVg)
7 T4 1 1 ky(ad + bpa)

(3a)

. kpr (B1VL + B2VR)
~ (14 T)(Ts + 1 + kg(ad + bgat))

Er (3b)

where

4
B2 = —(1+ Ts + ky(ad + bpa))mby + brakgmbg @

{m = (14 Ts + ky(ad + bpe)gl-}p2 — biakgapy
During a leftward fast phase, the dynamic equations for Eg and
E} are obtained by switching the R and L subscripts in Equations
(3A,B). The above equations imply that monocular eye trajecto-
ries have different dynamics during rightward and leftward fast
eye movements.

The model parameters (Table 1) are selected to preserve the
stability of the fast phase system with a small time constant.

2.4. STRATEGY FOR NYSTAGMUS

So far, the slow and fast phase models with shared connections
are described. However, an important feature of the VOR is the
switching mechanism between these two phases. The linear range
of the VOR is improved by nystagmus as eye excursions are kept
inside a reasonable limit. Therefore, a proposed switching strat-
egy is based on limiting eye deviations by avoiding cut-off and
saturation limits in the responses of premotor neurons (Galiana,
1991). It is known that the activity of OPNs acts as a logical cir-
cuit to trigger and end a fast phase. In this model, the OPN circuit
constantly monitors the output of PVPs. If the firing rate of PVPs
on one side reaches a threshold (ON-Th spikes/s), a fast phase is
triggered ipsilateral to the PVPs’ side. During the fast phase, the
ipsilateral PVPs and EHVs are silenced and the contralateral PVPs

and EHVs change direction and decay as explained in the fast
phase circuit structural modulation. The fast phase ends as the
firing rate of the contralateral PVPs decays to a second threshold
(OFF-Th spikes/s). The fast phase intervals are therefore gener-
ated in the same direction as head movement and eye position
signals are kept below their physical limits. ON-Th and OFF-
Th control the frequency of fast phases and their duration. For
instance, with fixed model parameters and dynamics, increasing
ON-Th results in later triggering of fast phases and lowering the
OFF-Th leads to longer fast intervals. We have imposed a refrac-
tory period of 20 ms in the model after switching back to a slow
phase to enforce a minimum time interval before triggering a new
fast phase.

The performance of the model under different conditions are
provided next. All simulations were performed using MATLAB
Simulink (The MathWorks Inc., USA), with a first order Euler
approximation and a step size of 1 ms.

3. RESULTS

The model is designed to simulate the human AVOR responses
during yaw rotations around a vertical axis centered on the head.
We focus here on the global, behavioral aspects of the AVOR
model rather than on individual components. PVP and EHV
firing behavior is previously addressed in Ranjbaran and Galiana
(2013a).

3.1. RESPONSE TO SINUSOIDAL ROTATION IN DARKNESS

Figure 3 depicts the response of the hybrid model with Tpj = 55
at two different rotation frequencies: 1/6 Hz (A,B) and 1/2Hz
(C,D) with velocity peaks of 180 degree/s. As in experimental
observations, the number of fast phases per cycle decreases for
higher frequency sinusoidal head rotations. In other words, fast
phases are triggered more often during low frequency head rota-
tions. This is due to the band pass characteristics of the central

40 . : 40 —
—~———(deg/sec) c -———(deglsec) ,”

L 20 (deg) 20+ (deg)

2

a O 0

g

-20 -20}
. 4 -
-40 :

3 200} D

o

Y 100

Z

K 0

3

= -100}

=%

& -200} ~

24 26 28 30 32 34 36 24
time (sec) time (sec)

FIGURE 3 | Simulated conjugate eye position (top) and conjugate frequency is 1/2 Hz. solid-black — top: conjugate position(degree)- bottom:
velocity (bottom) in response to sinusoidal head velocity rotation conjugate eye velocity (degree/s), dashed-gray — top: head velocity/5
(amplitude = 180 degree/s). (A,B) input frequency is 1/6 Hz. (C,D) input (degree/s)- bottom: head velocity (degree/s).
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neurons in the VOR pathway. At lower frequencies the gain of cen-
tral neurons is higher which increases the possibility of exceeding
their firing thresholds and triggering a fast phase. Furthermore,
at a given rotation frequency, fast phases are more frequent
at the higher head velocity levels; consistent with experimental
observations (Buettner et al., 1978).

We have also compared our model performance with Ty, =
1.2s in response to a specific rotation profile (180 degree/s at
1/6 Hz) where binocular records are available in our archive; for
details of the experiment see (Khojasteh and Galiana, 2009a).
Figure 4 depicts the recorded conjugate eye position (A) and eye
velocity (B) (gray), as well as our model responses to this rotation
stimulus (black). Clearly, general nystagmus characteristics in the
simulation and data are similar: the amplitude of conjugate eye
position, the number of fast phases and their timing, suggest that
the switching mechanism is plausible.

Given nonlinear canals and nonlinear premotor (EHV) com-
putations, eye movements are disconjugate and a vergence com-
ponent is now present in the response of our hybrid model
to head perturbations. This vergence response shows a car-
rier frequency that is twice that of the stimulus, as also seen
in the experimental data (Figure 4C). The peak-to-peak ampli-
tude of the vergence component is greater than EOG resolu-
tion limits, suggesting that it cannot be a result of inappropri-
ate calibration in the binocular recording. Instead, as predicted

from the nonlinear model, this vergence component can be a
direct result of nonlinearities at the premotor and sensory lev-
els. It should be noted that here we did not attempt to iden-
tify a system directly from eye recordings but rather compare
the general characteristics of recorded AVOR and our model
response.

3.2. CONTEXT DEPENDENT RESPONSE TO SINUSOIDAL ROTATION

The experimental work of Paige et al. (1998) studied the role of
fixation distance in adjusting the gain of the VOR during sinu-
soidal angular head rotation. Here, we will test the response of
our model during sinusoidal rotations while fixating on a near or
far flashed target. Vergence movement as a result of fixating a tar-
get in the model is obtained by assigning proper visuomotor error
commands, i.e., Ve 1.

Starting with zero initial conditions (i.e., looking straight
ahead at optical infinity), Er(0) = EL(0) = 0, Ver = Ver, are set
to replicate a flashed target in the dark appearing in the sagit-
tal plane between the eyes. This flashed target appears 5s after
the start of head rotation, at D = 43 cm from the eyes requiring
8 degree of vergence (given the interocular distance of I = 6 cmy;
see Ranjbaran and Galiana, 2013a for geometrical relations). At
t = 105, a new flashed target appears at D = 21 cm that requires
16 degree vergence. At t = 15 s a far flashed target appears to reset
vergence to zero.
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FIGURE 4 | Simulation results compared to recorded VOR nystagmus.
(A) Conjugate eye position (degree) and scaled (1/5) head velocity
(degree/s). (B) Conjugate eye velocity (degree/s) and head velocity

(degree/s) (C) Vergence eye position (degree) and scaled (1/5) head
velocity (degree/s). black — Simulated, gray— Recorded, dashed-gray—
Head velocity.
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The simulation results are obtained with model parameters
where Tionj = 1.25and Tyerg = 0.4's (see Table 1). In the absence
of head rotation, there is no conjugate eye movement, only a
vergence response (Figure 5). During sinusoidal head rotation at
0.5 Hz with 120 degree/s peak velocity and the same visuomotor
inputs, the conjugate and vergence AVOR responses are appro-
priate (Figure 6). The gain of the VOR (peak of envelope of eye
velocity/peak head velocity) is near unity during the first 5s with
no visuomotor response as expected. During t = 5 — 10 s inter-
val, the first flashed target, causes a VOR gain increase from unity
to compensate for the visuomotor command and the vergence
movement. As the second target appears at t = 10s, a still larger
vergence is required and therefore the VOR gain also increases
further. As the final far target appears at t = 155, the vergence
position decays to zero (looking far ahead) and the AVOR gain

decreases smoothly to default unity. This is in agreement with the
experimental observations (Paige et al., 1998; Viirre et al., 1986).
Note that the pure vergence response seen in Figure 5 is combined
with vergence modulations during each fast phase of nystagmus
in Figure 6: this has been seen by Sylvestre et al. (2002) during
visual disjunctive saccades, an emerging property.

We also tested the effect of head rotation frequency on the
gain of the VOR while fixating central flashed targets at differ-
ent depths. According to observations by Paige et al. (1998), the
AVOR gain increases with rotation frequencies while fixating an
imaginary earth fixed target in darkness. Moreover, in plots of the
resulting VOR against concurrent vergence, they report that both
the slope, and the intercept of this graph at 0 vergence, increase
with rotation frequency (see Figure 8 in Paige et al., 1998). We
emphasize the context of imaginary target, since our model does
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FIGURE 5 | Vergence eye movement in response to visuomotor command (Veg ;) with stationary head, while orienting to flashed target at different
distances.
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not include vision related loops in the light or constant visual
input, but rather a vergence cue given by a flashed target.

To replicate this experiment, the hybrid model with T, =
1.2s is simulated with sinusoidal head rotation in the range
of 1/6-4Hz, with 30 degree/s peak head velocity while fix-
ating central flashed targets at one of these distances: D =
[2000 85.9 42.9 28.54 21.34 17.01]cm. Given the interocular
distance and the rotation radius, the vergence angles for these tar-
get distances are: [0 4 8 12 16 20] degree, respectively. Figure 7
describes the effects of rotation frequency. The AVOR gain dur-
ing low frequency rotation, 0.5Hz, is closer to the ideal gains
obtained from geometrical relations (for detail see Ranjbaran
and Galiana, 2013a) compared to higher frequency rotation
at 4Hz (Figure 7A). Moreover, the slope and intercept plots
(Figures 7B,C) show an increase with increasing frequency. These
emerging results are in agreement with experimental observations
of Paige et al. (1998).

3.3. DO CHANGES IN VOR ANTICIPATE CHANGES IN VERGENCE
ANGLE?

The work of Snyder and King (1992) investigated the contribution
of the vergence angle to VOR performance. In their experiments,
they measured eye velocity in rotating monkeys while the ver-
gence angle was required to change by flashing targets at different
distances. Their results demonstrated that the VOR gain changed
toward its correct value for the new target distance, before the
correct vergence was acquired. They concluded that VOR gain
modulation by target distance anticipates changes in vergence
angle; thus, the binocular vergence angle alone, derived either
from proprioception or from efference copy of motor command,
is not sufficient to drive VOR modulation. They suggested that
the transient discharge of gaze velocity Purkinje cells in the floc-
culus, associated with changes in vergence angle early enough,
could drive VOR gain modulation with target distance (Snyder
and King, 1992).

Here, we replicate their experiment with our nonlinear model.
The visuomotor inputs, Ver 1 are applied after + = 100 ms such

that a vergence movement is generated from 0 degree to 8 degree.
This emulates a subject initially fixating on a far target straight
ahead, and then fixating on a near central target at D = 43 cm.
During this vergence movement lasting ~ 2.5s in our model, a
vestibular input, i.e., a pulse of head velocity (accelerating with
500 degree/s*> to 30 degree/s, maintained for 40 ms and then
decelerated) is added to the model and the peak eye velocity
response is measured. As done by Snyder and King (1992), this
vestibular input is applied at different times from 0 to 2.5 s in steps
of 50 ms or 100 ms during the time course of the vergence move-
ment (one pulse in each trace). Given the brief and small head
perturbation, no fast phase is triggered. Figure 8 shows that the
velocity of the eye movement evoked by VOR changed smoothly
over the course of the 8 degree convergence. Both VOR peak eye
velocity and vergence angle were normalized and replotted as
functions of time to resemble the experimental results obtained
by Snyder and King (1992) (their Figure 3). Our model simu-
lations replicate their observations: VOR gain changes lead the
vergence angle changes, and the change in VOR was completed
before the vergence angle reached its goal.

Contrary to the suggestion by Snyder and King (1992), here,
this observation is a result of VOR gain modulation by the effer-
ence copies of the vergence and monocular angles at the premotor
level. In our nonlinear model, the effect of the required change
in vergence appears in the efference copies ER, 1 before Ep 1 via
visuomotor projections to the PH. Consequently, the projections
to the EHVs from the PH carry early vergence information to
modulate the VOR gain, before the vergence movement actually
begins or completes. It may appear that VOR changes anticipate
vergence angle changes, but instead we suggest that the effer-
ence copies of the vergence angle modulating the VOR gain carry
the vergence command before vergence responses appear at the
behavioral level.

3.4. RESPONSE TO STEPS IN HEAD VELOCITY
Raphan et al. (1979) explored extensively the characteristics of
VOR nystagmus during and after steps of passive head velocity,
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both in the dark and in the light. Eye velocity profiles in man and
monkey decay to zero in the dark if the rotation interval exceeds
2-3 times the time constant of the canals. This is expected from
a high-pass sensor. The simulations below focus on nystagmus in
the dark, the context of our current model, using steps of head
velocity of variable amplitude and duration.

3.4.1. Per and post rotatory nystagmus

The simulations in Figure 9 replicate the main characteristics of
VOR nystagmus during and after steps of head velocity. First,
for long 45 steps of rotation, it is clear that the post-rotatory
nystagmus velocity appears equal in magnitude but opposite in
direction to that during the rotation. In addition, the nystag-
mus velocity peak scales in both per- and post-rotation with the
amplitude of the head velocity (Figures 9B,C). Second, for short
duration rotations (Figures 9D,E), the initial post-rotatory nys-
tagmus in the opposite direction is reduced in magnitude as the
interval of rotation shortens. This is expected since the high-pass
dynamics of the sensor will cause the change of nystagmus velocity
to remain constant, if measured from the current eye velocity at
the moment rotation ceases (see arrow in Figure 9D,E). As found
in experimental data (Raphan et al., 1979), the frequency of fast
phases in all cases is also modulated by the concurrent level of
slow phase eye velocity.

3.4.2. Dynamics of nystagmus decay

Raphan et al. (1979) also studied the decay rate of nystagmus
velocity. As commonly done in the literature, they evaluated
the dynamics of the VOR slow phase velocity by removing fast
phases and replacing the gaps by interpolation: the reconstructed
envelope was deemed to represent VOR dynamics, fitted with
exponentials. The main result is that nystagmus decay appears
much slower than the underlying slow-phase system (= 15s vs.
4-6s canal), hence the term velocity storage in the VOR coined
by Raphan et al. However, an envelope fit ignores the contri-
bution of initial conditions introduced at the start of each slow
phase segment, biasing estimates of the slow phase time constant.
To illustrate, Figure 10 provides the hybrid model response to a
step of —250 degree/s in head velocity, with a canal time con-
stant of 6 s and a conjugate slow-phase time constant of 1.2 s (see
Table 1). The slow phase central time constant is intentionally low

to highlight the effects, but these hold whenever there is nystag-
mus, especially at very low frequencies like steps. In Figure 10A,
the envelope of slow phase velocities decays with a time constant
of 5.555, despite slow phase central dynamics of 1.2s. Such a
response is often seen in unilateral vestibular patients. As dis-
cussed for sinusoidal rotations in Galiana (1991), ignoring the
effect of nystagmus results in biasing the estimated conjugate
VOR dynamics. There is a plateau-like response in the initial
nystagmus velocity also seen by Raphan et al. (1979) at higher
head speeds. Here it is caused by nonlinearities in the canal sen-
sitivity, now exceeded by the input range. In addition, with the
hybrid model, we predict the appearance of vergence nystagmus
(Figure 10B) during step rotations in the dark. In order to extend
velocity storage beyond both canal and central time constants, it
is sufficient to incorporate the resting rates of sensors and central
components (Galiana, 1991); at this time we only include mod-
ulations at all sites about resting rates, so only the central time
constants can be masked during nystagmus.

4. DISCUSSION

This paper introduces a hybrid nonlinear model to replicate
human AVOR nystagmus in the dark. This bilateral model
includes nonlinear sensors as well as nonlinear surfaces assigned
to EHV cells to account for the target distance dependence of the
VOR. It is shown that vergence can appear with both vestibu-
lar and visual depth stimuli. A physiologically relevant fast phase
circuit and a nystagmus strategy are imbedded to generate nys-
tagmus automatically and extend the functional range of the
AVOR. In our former work (Ranjbaran and Galiana, 2013a), a
comprehensive study was performed on the slow phase aspects
of the VOR and their characteristics under different conditions.
Here, we evaluated the performance of the hybrid model through
simulations in response to passive head rotations with or with-
out flashed visual goals. For the first time, a hybrid model
based on known brainstem connections replicates different VOR
characteristics, consistent with experimental observations. The
comparison between the hybrid model simulation responses and
experimental observations are qualitative at this stage, showing
the capacity to explain reported behavior. Clearly experiments on
individual subjects results in distinct numerical responses which
require retuning of the parameters in the hybrid model.
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Simulated nystagmus patterns replicate reported experimen-
tal observations (Figure 3) and trajectories that resemble human
data (Figure 4). This suggests that the switching mechanism in
our model is both plausible and testable with lesions and new
inputs.

4.1. DISCONJUGACY OF THE AVOR:

Contrary to common belief, the AVOR is not purely conju-
gate in the dark; binocular recordings during sinusoidal rota-
tions in darkness confirmed a vergence component in the AVOR
(Khojasteh and Galiana, 2009a). In our model, this vergence
component is a result of nonlinear sensors as well as nonlin-
ear premotor cell responses that account for context dependent
VOR responses. This suggests that local nonlinearities in the VOR
circuit are the underlying mechanism for the disconjugate VOR
in the dark.

4.2. VESTIBULAR VERGENCE INTERACTIONS:

In addition to the vestibular input, i.e., head movement,
visuomotor commands are included to enable vergence move-
ments in response to flashed targets in the dark. Simulations
show the effect of vergence goals during sinusoidal rotations:
they confirm that the context dependency of the AVOR gain in
the model is preserved with nystagmus and variable vergence
goals. AVOR gain dependency on rotation frequency is also in
agreement with experimental observations (Paige et al., 1998), an
emerging property.

It appears experimentally that AVOR gain modulation with
target distance precedes changes in vergence (Snyder and King,
1992), which questions vergence itself as the drive for AVOR
gain modulation. We replicated this experiment (Snyder and
King, 1992) with our model and found the same result:
AVOR gain changes anticipate or precede the vergence profile
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step rotation stimuli in the dark (prediction).
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FIGURE 10 | (A) Envelope fit on the decay rate of conjugate nystagmus velocity. (B) Vergence nystagmus associated with conjugate nystagmus in response to

(Figure 8). We conclude that AVOR gain modulation using effer-
ence copies of the vergence angle can support this anticipatory
VOR modulation, even in the dark: we postulate that efference
copies with visuomotor inputs affect EHV cells immediately, and
so modulate the AVOR gain before the behavioral vergence is fully
executed.

4.3. AVOR DYNAMICS DURING STEPS OF HEAD VELOCITY:

Per and post rotatory nystagmus characteristics are influenced
by the peak velocity and duration of the stimuli. The proposed
model replicates these data patterns (Figure 9). Given the switch-
ing aspect of nystagmus, we demonstrate that envelope measures
provide biased estimates of slow-phase dynamics (Figure 10). So
an important goal is to develop algorithms that provide unbiased
estimates of nystagmus dynamics.

4.4. TESTABLE PREDICTIONS:

The goal of modeling a sensory-motor system is revealing poten-
tial strategies in the brain to control motion and to gain insight
for clinical applications. Since the modeling results are fully
consistent with available experimental data, the model struc-
ture warrants further study. Several assumptions or predictions
remain to be verified: (i) Assumptions regarding anatomy of
the VOR:

e Projections from brain centers (e.g., SC) to PH cells, carrying
vergence goal information. These are necessary to cause VOR
gain changes that precede the intended vergence change.

e Signals carrying on-going vergence angle information to EHV
cells directly or via other VN cells to support target-distance
dependent gain modulation of the VOR.

e The presence of premotor (e.g., PVP) projections to OPN cells,
to enable the proposed switching strategy.

(ii) Predictions regarding VOR dynamics and behavior:

e Expected different monocular dynamics during fast phases
directed temporally or medially (Equations 3A,B); This
property could help distinguish between lesions in the burst
circuits and those in the vestibular system.

e Increased vergence response after unilateral vestibular lesions;
in addition to a decreased conjugate gain, unbalanced sen-
sory projections in our bilateral model also predict an
increase in the vergence response that is directionally assy-
metric relative to rotation direction, compared to a normal
case.

e Biased estimation of the VOR dynamics using envelope
approaches; the dynamics of AVOR slow phases should be esti-
mated taking into account the effects of nystagmus and initial
conditions.

In summary, we explored AVOR online gain modulation with tar-
get distance by introducing a physiologically relevant hybrid non-
linear model. We proposed local nonlinear computations at VN
levels to account for the gain modulation of the VOR with con-
text. It is likely that this hypothesis could also support long term
adaptation or lesion compensation in the VOR. Furthermore,
this hybrid model, given the realistic aspect of its simulated
data, can also be used to generate virtual data for validation of
algorithms that classify nystagmus segments and identify reflex
dynamics.
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Hybrid VOR model

APPENDIX

5.1. NONLINEAR SURFACE

The nonlinear surface assigned to the EHV cells, gr 1, is obtained
as a 3th order polynomial of x = Ep for the right EHV and x = Er
for the left EHV and a 1st order polynomial of y = Eve,g according
to the following equation:

grL = My + mix + nmyy + m3x2 + maxy + msx3 + mﬁxzy
(A1)
For the model with T,,j = 1.2 s, the coefficients in Equation (A1)
are: my = 2.59, my = —8.051le — 5, mp = 0.12, m3 = —4.8e — 6,
my = 1.52e — 5, m5 = —4.12e — 6, mg = —1.19¢ — 7.

For the model with Ty, =5s, these coefficients are
re-tuned to: my=1.68, m = —6.43¢e—5, mp;=0.09,
m3 = —3.84e — 6, my = —1.2le — 5, ms = —3.29¢ — 6, mg =
9.54e — 8.

5.2. FAST PHASE MODEL EQUATIONS

In this section, the equations to obtain the fast phase dynamic
relations in Equations (3A,B) are described. Subscripts R
and L refer to the right and left side of the brainstem,
respectively. PVP, EHV ,BDN, EBN, and IBN here refer to
the net output from these cell populations. The parame-
ters a, p1, pa, d, m, by, bg, and o define weight of the
projections between cell types or brainstem centers accord-
ing to Figure 2C. Lower case letter s is the complex Laplace
variable.

During a rightward fast phase, ipsilateral PVPs and EHVs
and contralateral IBNs and EBNs are silenced. Signals from
BDN; =m x Vg —a X ER are projected to EBNg and IBNg;
therefore

EBNg = mVg —afr EBN, =0 (A2)
IBNg = mVg —aEr  IBN, =0

PVPs receive projections through linear summation of the ipsi-
lateral canal V, contralateral PVPs and the PH. EHVs receive
ipsilateral canal projections V as well as efference copies of ipsi-
lateral eye position and vergence angle. The net output of EHVs
,however, is scaled by a nonlinear gain that modulates the weight
of canal projections according to the concurrent ocular angles
(Ranjbaran and Galiana, 2013a); therefore,

PVPp =dEg +p1Vy PVPR=0 (A3)

EHVE = gip2 V1 EHVR =0

Signals from VN and BN are added at MNs and then relayed to

the eye plant P(s) = Tf’il

to generate ocular movements:

k
Eg = (= aPVPL + bpEBNp) (57 )

) (A%)
E; = (EHV — biIBNR) (%)

Eye position efference copies IASR, 1 are available through projec-
tions from PH with similar dynamics as the eye plant, Fy(s) =

ki

Ty T therefore,

. k
Epr = iER,L

(A5)
kor

By substituting Equation (A5) into Equations (A2) and (A3)
and combining with Equation (A4), one can obtain the dynamic
equations provided in Equations (3A,B), to describe Ep 1.
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