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The general idea of nonstationarity of
brain activity or dependence of the
dynamics on some, potentially unob-
served, temporally changing or fluctuat-
ing parameter, has been familiar in the
neuroscience community in contexts such
as sleep dynamics or epileptology for a
long time. However, recently it has been
attracting increasing attention in the con-
text of functional brain network analysis.
This seems as a natural development of the
field—once that functional connectivity as
computed under the simplifying stationar-
ity assumption has been well established,
it is only logical to try to detect changes in
brain functional connectivity over time. In
general, detecting such nonstationarities
in a reliable fashion is a methodologically
challenging task, as changes in estimates
of functional connectivity over time may
be also due to random fluctuations, rather
than genuine changes of the process. There
is a wide array of approaches to study-
ing such nonstationarities documented in
literature (Hutchison et al., 2013), and
an important but often neglected general
methodological step is assessing the results
against an appropriate null model corre-
sponding to stationary process.

In the following, we give an illustrative
example of how a typical nonstationar-
ity analysis can generate spurious signs

of nonstationary dynamics even when
applied to stationary process. To show that
this is not a purely theoretical issue, we
closely follow the analysis procedure used
in a recently published study by Betzel
et al. (2012). We note that this partic-
ular paper have caught our attention by
coincidence, while we believe the issue is
pertinent to a substantial fraction of the
literature.

In their paper, (Betzel et al., 2012)
deal with characterizing the dynamics of
brain activity measured by EEG. In par-
ticular, Betzel et al. report the detection
of rapid transitions between intermittently
stable states, explicitly saying that “As pre-
dicted, fast (∼100 ms) dynamics of whole-
brain synchronization were observed during
resting-state EEG,” documenting the typ-
ical fast (∼100 ms) time scale of these
states in Figure 6B of their paper (see
also Figures 4, 5). Their argument is based
on the following data-processing scheme:
First, for each time point of filtered EEG
data, a functional connectivity matrix is
computed using pairwise synchronization
likelihood values and the time points are
clustered based on similarity of the cor-
responding functional connectivity matri-
ces. Next, contiguous stretches of time
points that are members of the same
cluster are interpreted as corresponding
to a duration of an atomic brain state.
Finally, the brain-state-representing func-
tional connectivity matrices are pooled
across subjects and clustered based on
their similarity to define higher-order
states.

Notably, the procedure applied by
Betzel et al. is principally data-driven,
rather than relying on some model testing
or assumptions, and it includes band-pass

filtering and sliding-window-like analysis.
We therefore conjectured that the tem-
poral structure of the observed func-
tional connectivity dynamics might have
been crucially affected by the procedure
itself (as the authors tentatively admit-
ted in their discussion, albeit unfortu-
nately have not tested the results against
stationary model data). To explore the
viability of this alternative explanation,
we applied a processing pipeline built
according to the description given in the
original manuscript to model data, con-
sisting of 100 samples (each of length
T = 2500 time points, representing mock
5 s epoch of EEG data) of a mul-
tivariate (N = 20) white noise process.
The applied processing steps included
application of frequency filtering (using
elliptic filters corresponding to the four
specified frequency bands; we applied
zero-phase digital filtering by processing
the input data in both the forward and
reverse directions) and subsequent com-
putation of the synchronization likelihood
(Stam and van Dijk, 2002). The param-
eters of the synchronization likelihood
l, m, w1, w2, nrec were set for each fre-
quency band as in Betzel et al. (2012). The
resulting functional connectivity matri-
ces were clustered using the standard
k-means clustering method (Lloyd, 1982).
In Figure 1 you see that the typical dura-
tion of detected states closely corresponds
to the distributions observed in the origi-
nal paper (compare with Figures 6B, 4A,B
in Betzel et al., 2012). In particular, the
typical timescale is in the order of tens
to hundreds of ms. Also, this time scale
depends on the selected filtering in the
same way as in the original work, with the
time scales of the beta and theta bands
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FIGURE 1 | Temporal dynamics of synchronization likelihood (SL)

networks generated from realizations of stationary processes: white

noise (A,C,E) and correlated noise [linear stationary (FFT) surrogates

from EEG data] (B,D,F). The top, middle and bottom images were created

using analogous procedures as Figures 6B, 4A,B of the original paper. Note
the similarity to figures in the original paper, suggesting a possible role of
processing pipeline rather than genuine “state switching” in the observed
time scales.

markedly shorter and longer, respectively,
than those of the broadband and alpha
bands, the latter two being relatively close
to each other.

Even though spatially and temporally
independent (white) noise model used

here is clearly not a realistic model for EEG
data; such a simplistic stationary model
reproduces the clustering time scales of the
original paper with a surprising accuracy.
Of course, due to spatial independence
of the processes, it does not reproduce

the spatiotemporal patterns correspond-
ing to Figures 4A,B in Betzel et al. (2012).
We have further repeated the procedure
using multivariate Fourier transform sur-
rogates generated from a single segment
of EEG data (for more details on the data
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see Horacek et al., 2010. Such surrogates
correspond to realizations of linear sta-
tionary process with conserved auto- and
cross-correlation structure, see Prichard
and Theiler, 1994). The results are shown
in the right column of Figure 1. Moving
from white noise to EEG surrogates, the
time scales of the observed clustering
hardly changed. However, as expected due
to the introduced spatial dependence, the
EEG surrogates show now a patchy spa-
tiotemporal pattern Figures 1D,F more
closely corresponding to those in the orig-
inal paper. The similarity of the spa-
tiotemporal patterns is of course only
qualitative—range of differences may have
arisen due to combination of different
acquisition parameters as well as intra-
and inter-individual variability.

Note that we applied the basic k-
means clustering method instead of
the evolutionary-clustering algorithm
from the original paper; insufficient
detail of description of the procedure
in the original paper made reproduc-
ing it prohibitively difficult. The value
k = 3 was chosen for display of the
clustering results, however, the results
proved to be quite insensitive to the
choice of k.

Our numerical simulation above
focused particularly on the observed time
scales of the network states as obtained
with the described analysis approach. One
could indeed ask further, what evidence
regarding “repertoire of states” can be
provided by the detection of clusters per
se—and whether the detection of (some)
clusters could be merely a consequence
of running a clustering algorithm. For a
k-means clustering, the answer is obvious.
Even for more complex approaches with-
out fixed number of clusters such as the
approach of Betzel et al. (2012), we con-
jecture that a repertoire could be observed
even for a stationary process, however this
depends on the details of applied analysis
approach.

In summary, we aimed to illustrate the
proposition that spurious nonstationarity
manifesting itself as alternation of network

states may appear due to methodological
issues even in stationary processes such as
white noise. In our example, we showed
that for instance the observation of clus-
tering of time points (more precisely, tem-
poral windows) into consecutive clusters
(“states”) of duration in the order of sev-
eral hundred milliseconds (the time scale
of putative brain microstates) might be
reproduced by white noise to a remarkable
detail. Of course, this does not disprove the
existence of such states—it just suggests
the evidence may not be sufficient.

From a wider perspective, one could
see a parallel here with other exam-
ples of data analysis approaches that may
lead to spurious observation of intrigu-
ing structures due to intrinsic bias of
the methods—such as apparent signs of
chaos in power-law spectra stochastic pro-
cesses (Osborne and Provenzale, 1989) or
small-world properties of functional con-
nectivity graphs (Hlinka et al., 2012). Or,
from an experimental point of view, with
the role measurement artifacts such those
as due to head motion might play in
observed network properties (Hlinka et al.,
2010; van Dijk et al., 2012).
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