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INTRODUCTION

In the operating room, general anesthesia is important to guar-
antee successful surgery and ensure patients’ safety and comfort.
For anesthesia, the reliable monitoring of anesthetic drug effects
on the brain is a clinical concern for anesthesiologists (Monk

Highlights:

» Twelve entropy indices were systematically compared in monitoring depth of anesthesia
and detecting burst suppression.

» Renyi permutation entropy performed best in tracking EEG changes associated with
different anesthesia states.

» Approximate Entropy and Sample Entropy performed best in detecting burst
suppression.

Objective: Entropy algorithms have been widely used in analyzing EEG signals during
anesthesia. However, a systematic comparison of these entropy algorithms in assessing
anesthesia drugs’ effect is lacking. In this study, we compare the capability of 12 entropy
indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression
pattern (BSP), in anesthesia induced by GABAergic agents.

Methods: Twelve indices were investigated, namely Response Entropy (RE) and
State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE),
Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE),
approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three
permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE
(RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia
respectively were selected to assess the capability of each entropy index in DoA
monitoring and BSP detection. To validate the effectiveness of these entropy algorithms,
pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (P)
analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a
non-entropy measure was compared.

Results: All the entropy and MDFA indices could track the changes in EEG pattern during
different anesthesia states. Three PE measures outperformed the other entropy indices,
with less baseline variability, higher coefficient of determination (R?) and prediction
probability, and RPE performed best; ApEn and SampEn discriminated BSP best.
Additionally, these entropy measures showed an advantage in computation efficiency
compared with MDFA.

Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA.
Overall, it is suggested that the RPE index was a superior measure. Investigating the
advantages and disadvantages of these entropy indices could help improve current clinical
indices for monitoring DoA.

Keywords: EEG, anesthesia, entropy, pharmacokinetic/pharmacodynamic modeling, depth of anesthesia
monitoring

et al., 2005). The central nervous system (CNS) is the main target
of anesthetic drugs. Originated in CNS, the electroencephalo-
gram (EEG) reflects the neural activities of brain, and has been
widely used as a surrogate parameter to quantify the anesthetic
drug effect (Rampil, 1998; Bruhn et al., 2006; Jameson and Sloan,
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2006). However, only limited information can be obtained from
the EEG signals purely by waveform observation. With the devel-
opment of signal processing, various methods have been applied
to analyze, identify or detect mental disorders and consciousness
mechanisms from EEG signals (Okogbaa et al., 1994; Natarajan
et al., 2004; Abdsolo et al., 2006), as well as evaluating the effects
of anesthesia.

In recent decades, numerous attempts have been made to
develop an index for describing anesthetic drug effects on the
brain, including zero crossing frequency, spectral edge, wavelet
analysis, high-order spectral analysis etc. These studies laid the
foundation of commercial EEG-based monitors of depth of anes-
thesia (DoA), such as BIS (Aspect Medical Systems, Newton, MA)
(Bruhn et al., 2006; Ellerkmann et al., 2010) and M-entropy (GE
Healthcare, Helsinki, Finland) (Viertio-Oja et al., 2004; Bruhn
et al., 2006). Many of these methods are derived from linear the-
ories. However, various studies have shown that the EEG is a
non-stationary signal that exhibits non-linear or chaotic behav-
iors (Elbert et al., 1994; Pritchard et al., 1995; Zhang et al,
2001; Natarajan et al., 2004). This prompted many researchers to
adopt non-linear analysis methods in anesthesia study, for exam-
ple largest Lyapunov exponent (Fell et al., 1996), Hurst exponent
(Alvarez-Ramirez et al., 2008), fractal analysis (Klonowski et al.,
2006; Gifani et al., 2007; Liang et al., 2012), detrended fluctua-
tion analysis (DFA) (Jospin et al., 2007; Nguyen-Ky et al., 2010b),
recurrence analysis (Huang et al., 2006), and non-linear entropies
(Bruhn et al., 2001; Li et al., 2008a). In particular, non-linear
entropy methods describing the complexity of EEG signals, have
received considerable attention.

The word “entropy” was first proposed as a thermodynamic
principle by Clausius (1867). It describes the distribution proba-
bility of molecules of gaseous or fluid systems. In 1949, Claude E.
Shannon introduced entropy into information theory to describe
the distribution of signal components (Shannon and Weaver,
1949). So far, numerous entropy algorithms have been proposed
and used to quantify DoA, covering Spectral entropy [which
includes Response Entropy (RE) and State entropy (SE)] (Viertio-
Oja et al., 2004; Klockars et al., 2012), Approximate entropy
(ApEn) (Bruhn etal., 2000), Sample entropy (SampEn) (Richman
and Moorman, 2000), Fuzzy entropy (FuzzyEn) (Chen et al,
2007), Shannon Permutation entropy (SPE) (Li et al., 2008a,
2012), Shannon Wavelet entropy (SWE) (Sirkeld et al., 2007), and
Hilbert-Huang spectral entropy (HHSE) (Li et al., 2008b).

Spectral Entropy is the method applied in the commercial
M-Entropy Module (Viertio-Oja et al., 2004). It consists of two
parameters: Response Entropy (RE) and State Entropy (SE). SE
primarily includes the spectrum of the EEG signal from 0.8 to
32 Hz, and RE includes electromyogram activity from 0.8 to 47 Hz
(Viertio-Oja et al., 2004). Shannon Wavelet entropy (SWE) is the
Shannon entropy in the wavelet domain, which indicates signal
variation at each frequency scale (Rosso et al., 2001). And the
Hilbert-Huang spectral entropy (HHSE) is the Shannon entropy
based on the Hilbert—Huang transform proposed by Huang et al.
(1998). HHSE has been successfully applied to the anesthetic EEG
signals (Li et al., 2008b).

The above methods are based on the frequency spectrum.
Whereas many entropy methods are based on the time series

and phase space analysis. ApEn is an algorithm derived from
the Kolmogorov-Sinai entropy (Pincus, 1991). It quantifies the
predictability of subsequent amplitude values of a signal. A
previous investigation showed that ApEn correlates well with
the concentration of desflurane (Bruhn et al., 2000). However,
ApEn lacks relative consistency and is highly dependent on data
length, SampEn was proposed to overcome ApEn’s limitation
by removing self-matching and relieving its bias (Richman and
Moorman, 2000). SampEn has been used for analyzing EEG sig-
nals (Montirosso et al., 2010; Yoo et al., 2012). FuzzyEn was
proposed by Chen et al. (2007). It is based on the fuzzy member-
ship functions to define the vectors’ similarity, using the soft and
continuous boundaries of fuzzy functions to ensure the continu-
ity and the validity of FuzzyEn’s definition (Chen et al., 2009).
SPE was introduced by Bandt and Pompe (2002). It is a com-
plexity measure based on symbolic dynamics (Bandt and Pompe,
2002). Because of its simple concept and fast computation, SPE
has been widely used in EEG signal analysis (Cao et al., 2004;
Li et al., 2007, 2008a). Furthermore, its derivatives, multi-scale
permutation entropy (Li et al., 2010) and composite permutation
entropy index (Olofsen et al., 2008) have been successfully applied
to analyze EEG signals during anesthesia.

However, “No one knows what entropy really is, so in a debate
you will always have the advantage.” This statement is true for
EEG analysis today (Ferenets et al., 2006). Each entropy index has
its own advantages and disadvantages, but how does their perfor-
mance compare when evaluating the effect of anesthesia on brain
activity? To this end, some researchers have compared the per-
formance of different entropy methods for anesthesia monitoring
(Sleigh et al., 2001, 2005; Bein, 2006). Unfortunately, these arti-
cles analyzed no more than three entropies. To our knowledge, a
systematic comparison of the performance of them in assessing
anesthesia drug effect is lacking. In this study, we aim to com-
pare the capability of several commonly used entropy indices for
monitoring DoA.

We noticed that definitions of all the above entropies are
based on Shannon information theory, which belongs to a short-
range or extensive concept. However, the physical systems espe-
cially the biomedical systems are often characterized by either
long-range interactions, long-term memories, or multifractality
(Zunino et al., 2008). To describe these characters, two general-
ized forms of entropy were proposed: Renyi entropy (Renyi, 1970)
and Tsallis entropy (g-entropy) (Tsallis et al., 1998). For exam-
ple Tsallis entropy has a parameter g for non-extensity. If g > 1,
the entropy is more sensitive to events that occur often, whereas
if 0 < g < 1 it is more sensitive to the events that occur seldom
(Maszczyk and Duch, 2008). In the limit g — 1, it coincides with
Shannon entropy. These generalized entropies can provide addi-
tional informational about the importance of specific events, such
as outliers or rare events. The two classes of entropies and their
combinations with current signal processing methods have been
already applied in EEG analysis (Bezerianos et al., 2003; Tong
et al., 2003; Inuso et al., 2007) and often been proved advan-
tageous than the Shannon version (Zunino et al., 2008; Arefian
et al., 2009). To make the research more instructive, we believe it
useful to investigate these non-extensive entropy measures along
with those extensive Shannon entropies in DoA monitoring. In

Frontiers in Computational Neuroscience

www.frontiersin.org

February 2015 | Volume 9 | Article 16 | 2


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Liang et al.

EEG entropy measures in anesthesia

this study, we involved the Tsallis wavelet entropy (TWE) and
Renyi wavelet entropy (RWE) proposed by Rosso et al. (2003,
2006), as well as the Tsallis permutation entropy (TPE) pro-
posed by Zunino et al. (2008) and a new Renyi permutation
entropy (RPE).

For illustrative purpose, we divide the entropies into two
families:

(1) Entropies in the time-frequency domain: RE, SE, SWE, TWE,
RWE, and HHSE;

(2) Entropies in the time domain: ApEn, SampEn, FuzzyEn, SPE,
TPE, and RPE.

In this work, their performance for monitoring DoA were com-
pared. Using data sets obtained during sevoflurane and isoflurane
anesthesia, we quantified for each index the responsiveness to
loss of consciousness, computation complexity and the ability to
detect BSP. Pharmacokinetic/pharmacodynamic (PK/PD) mod-
eling and prediction probability statistics were applied to evaluate
the efficiency of each index for tracking anesthetic concentra-
tion. Additionally, in order to prove the efficiency of the entropy
approaches, two non-linear dynamic methods: DFA (Jospin et al.,
2007) and multifractal DFA (MDFA) (Kantelhardt et al., 2002)
are compared.

ENTROPY INDICES

The computation of each entropy index is briefly described as
follows.

SPECTRAL ENTROPY (RE AND SE)

Spectral Entropy quantifies the probability density function
(PDF) of the signal power spectrum in the frequency domain.
The detail of the Spectral Entropy algorithm can be seen in Inouye
etal. (1991) and Rezek and Roberts (1998). Spectral Entropy con-
sists of the RE and the SE. RE is computed over a frequency range
from 0.8 to 47 Hz while SE is computed over the frequency range
from 0.8 to 32 Hz. The normalization step for RE and SE are
defined as follows:

Hyp

RE = — 0847 (1)
log (No.g—47)
SE H5P0,3732 (2)

~ log(Nos_47)

where Hgp, ,, and Hgp,, ,, means the sum of spectral power
between 0.8 and 47 Hz, and 0.8 to 32 Hz, respectively. And Ny g_47
equals the total number of frequency components in the range
0.8-47 Hz. Spectral Entropy describes the degree of skewness in
the frequency distribution. For example, in the normalized case,
the Spectral Entropy of a pure sine wave with a single spectral
peak is 0, while that of white noise is 1.

WAVELET ENTROPY (SWE, TWE, AND RWE)

WE differentiates specific brain states under spontaneous or
stimulus-related conditions and recognizes the time localiza-
tions of a dynamic process. To calculate Wavelet Entropy, wavelet

energy E; of a signal is determined at each scale j as follows:

E=Y"" dky 3)

where k and L; are the summation index and the number of coef-
ficients at each scale j with in a given epoch, respectively. The total
energy over all scales is obtained by:

B =y Ej=) Zijz 101]‘(k)2 (4)
j j

Then wavelet energy is divided by total energy to obtain the
relative wavelet energy at each scale j:

L.
U BN B . G
1 Eiotal Z] Ej Z] Zijz 1dj (k)2

(5)

SWE is calculated from Shannon entropy of p; distribution
between scales as follows:

$¥ = — ijj log pj (6)

The detail of the algorithm used in this study can be seen in
Sirkeld et al. (2007).
And the TWE is defined as,

1
(T) — . (p;)1
Sy = -1 j[PJ ()] ()
where g is a non-extensity parameter.

Based on the definition of Renyi entropy (Renyi, 1970), the
RWE is defined as Rosso et al. (2006):

S®)

= e[ )] ®

For Sés), the normalized SWE is
SWE = S /log Ny )

where Nj is the number of wavelet resolution levels.
And SéT) is normalized by dividing [1 — N]1 7q] /(g —1),
defined by Rosso et al. (2003):

(1)
Sq

e [1-N "] /@-1)

(10)

Further, the normalized S;R) is defined as Maszczyk and Duch
(2008):

§®

RWE = —~
log Ny

(11)

The values of three WE measures depend on the wavelet basis
function, the number of decomposed layers (n) and the data
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length (N). Furthermore, the TWE and RWE are related to the
parameters g and a respectively. Among these parameters, the
wavelet basis function is most important. Because of the lack of a
fixed criterion, it is very difficult to select an appropriate wavelet
basis function in practical applications and many studies choose
it based on experiments. The details of the selection process in
this study can be found in Supplement Material 1.

HILBERT-HUANG SPECTRAL ENTROPY (HHSE)

HHSE is based on the Hilbert-Huang transform, which applies
the Shannon entropy concept to the Hilbert-Huang spectrum.
The detail of the algorithm is seen in Li et al. (2008b). For
a given non-stationary signal x(¢), the EMD method decom-
poses the signal into a series of intrinsic mode functions (IMFs),
Cy(1,2,..., M), where M is the number of IMFs. The signal x(t)
can be written by:

X0 = 3" imf @)+ 1 () (12

Apply the Hilbert transform to the IMF components,
Z (1) = imf (1) + iH [imf (1)) = a (1) /@04 (13)
in which  a@ = fimf2 () + B2 [imf(0)], @)=

% [arctan (H [imf(t)] /imf(t))], where w (t) and a(t) are
the instantaneous frequency and amplitude, respectively, of the
IMFs.

The Hilbert-Huang marginal spectrum is defined by:

h(w) = [H(w, t) dt (14)

To simplify the representation, the Hilbert-Huang spectrum is
denoted as a function of frequency (f) instead of angular fre-
quency (w). The marginal spectrum is normalized by:

h(f) =h()/ Y h(f) (15)
Next, the Shannon entropy concept is applied to the Hilbert-
Huang spectrum, and Hilbert-Huang spectral entropy is obtained

by:

HHSE =~ h(f) log (i) (16)
The HHSE values are mainly affected by the frequency resolution
and data length (N). For accurate computation, the frequency res-
olution is chosen as 0.1 Hz. N directly influences the EMD. In
general, the boundary effect may be induced if N is too large or
too small, which can contaminate the data and distort the power
spectrum. The selection of N in this study is given in Supplement
Material 1.

APPROXIMATE ENTROPY (ApEn)
ApEn is derived from Kolmogorov entropy. It was introduced by
Pincus (1991). It can be used to analyze a finite length signal

and describe its unpredictability or randomness. Its computation
involves embedding the signal into the phase space and estimat-
ing the rate of increment in the number of phase space patterns
within a predefined value r, when the embedding dimension of
phase space increases from m to m + 1.

For a time series x (i), 1 < i < N of finite length N, reconsti-
tute the N — m + 1 vectors X,,(7) following the form:

Xn(@)={x@,xG+1),....,xG(4+m—1)},

i=1,2,...,N—m+1 (17)

where m is the embedding dimension.

Let C;"(r) be the probability that any vector X,,(j) is within
distance r of X,,, (i), defined as:

1 N—m+1 m
N-m+1 Zj=1 O<d’7 _r)’

ij=1,2,...,N—m+1

(18)

where d is the distance between the vectors X,,(i) and X,, (J),
defined as:

)

di’]f’ =d [XI’”,XJ’”] = max(}x G+k) —x(G—k)

k=0,1,...,m (19)
and O is the Heaviside function.
After that, define a parameter & (r):
m _ 1 N—-—m+1 m
" (r)=(N—m+ 1) Zi:l In C" (r) (20)

Next, when the dimension changes to m + 1, the above process is
repeated.

N-—m
<I>m+1(r)=(N—m)_IZi=1 InC"* 1 (r) (21)
Finally, the approximate entropy is defined by:
ApEn (m, r,N) = ®" (1) — ®" T (1) (22)

The detailed algorithm is seen in Bruhn et al. (2000). The ApEn
index is influenced by data length (IN), tolerance (r) and embed-
ding dimension (m). According to Pincus (1991) and Bruhn et al.
(2000), N is recommended to be 1000, r 0.1~0.25 of the stan-
dard deviation of the signal and m 2~3. The selection of these
parameters is described in Supplement Material 1.

SAMPLE ENTROPY (SampEn)
The SampEn proposed by Richman and Moorman (2000) is
based on ApEn but differs from it in three ways to remove bias:

(1) SampEn eliminates self-matches;

(2) To avoid In0 caused by removing self-matches, SampEn
computes the additional operation of the total number of
template well-matches prior to the logarithmic operation.
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(3) Inorder to have an equal number of patterns for both embed-
ding dimension m and m + 1, the time series reconstitution
in SampEn have N — m rows instead of N — m + 1 in ApEn
in embedding dimension #1.

The first step of calculating SampEn is the same as ApEn. When
the embedding dimension is m, the total number of template
matches is:
B =N-m 3" (23)
i=1 !
Similarly, when the embedding dimension is m + 1, the total
number of template matches is:

mey — ng o on—1 NN T g1
A" =(N=m~t Y ) (24)
Finally, the SampEn of the time series is estimated by:
Am
SampEn (r, m, N) = —In () (25)

B™(r)

SampEn is based on ApEn, so its parameter selection procedure is
similar to that of ApEn (see Supplement Material 1).

FUZZY ENTROPY (FuzzyEn)
Zadeh introduced the concept of “fuzzy set” (Zadeh, 1965). Fuzzy
set provides a mechanism for measuring the degree to which a
pattern belongs to a given class, by introducing the concept of
“membership degree” having a fuzzy function u.(x). The nearer
the value u.(x) is to unity, the higher the membership grade of x in
the set C will be. Inspired by this, Chen et al. (2007) developed the
FuzzyEn based on SampEn. FuzzyEn uses the fuzzy membership
function u(d;]f’, r) to obtain the similarity between X" and X]?“
instead of the Heaviside function.

FuzzyEn is based on SampEn, so its parameter selection is
similar to that of SampEn (see Supplement Material 1).

PERMUTATION ENTROPY (SPE, TPE, AND RPE)
There are three types of PE measures involved in this study. PE is
an ordinal analysis method, in which a given time series is divided
into a series of ordinal patterns for describing the order relations
between the present and a fixed number of equidistant past val-
ues (Bandt, 2005). The advantage of this method is its simplicity,
robustness and low computational complexity (Li et al., 2007).
For an N-point normalized time series {x(i) :1 <i < N},
firstly the time series is reconstructed:

Xi={x(@),xG+1),...,x(i+ (m—11)},

i=1,2,....N—(m—1)t (26)
where 7 is the time delay, m is the embedding dimension.
Then, rearrange X; in an increasing order:
i+ G- 1)7) <3+ (2= 1) 1)) < oo
<x(i+(im—1)t} (27)

There are m! permutations for m dimensions. Each vector X; can
be mapped to one of the m! permutations.
Next, the probability of the jth permutation occurring p; can
be defined as:
1
=T
Zj:l 1

where 7; is the number of times the jth permutation occurs.
Based on the probability of the jth permutation p;, we define
SPE, TPE and RPE as follows.
SPE is just the Shannon entropy associated with the probability
distribution p;:

(28)

(s) !
SIS = — Z}: . p]logpj (29)
And the normalized SPE is:
e m o log pi
spr, = S >i— 1 pjlogp; (30)
Sls,max log (m!)

Based on the definition of Tsallis entropy, Zunino et al., proposed
the normalized TPE and defined it as Zunino et al. (2008):

(31)

Furthermore, the normalized RPE measure based on the Renyi
entropy and permutation probability distribution p; is:

log Z]m; 1 P]q

RPE,, =
"T Q—a)lnm!

(32)

In Li et al. (2008a, 2010, 2012), SPE was used to evaluate the
effect of sevoflurane and isoflurane anesthesia on the brain. In
this study, the parameters of m = 6 and 7 =1 are selected for
sevoflurane anesthesia as proposed in Li et al. (2008a). The SPE’s
parameters for isoflurane anesthesia are the same as those pro-
posed by Li et al. (2012). TPE and RPE are first used in DoA
measure, therefore selection of the appropriate parameters of TPE
and RPE should be based on the experiments. The details of the
selection process is shown in Supplement Material 1.

MATERIALS AND STATISTICAL METHODS

SUBJECTS AND EEG RECORDINGS

EEG data set during sevoflurane-induced anesthesia

In this study, the first data set we used was from a previous
study (McKay et al., 2006), in which 19 patients aged 18—63 years
were recruited from Waikato Hospital, Hamilton, New Zealand.
The subjects were scheduled for elective gynecologic, general, or
orthopedic surgery. All patients fasted for at least 6 h before anes-
thesia and received no premedication. Patients were American
Society of Anesthesiologists physical status I or Il and signed writ-
ten informed consent following approval by the Waikato Hospital
ethics committee.
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Before application of Ag/AgCl electrodes, the skin was carefully
cleaned with an alcohol swab to ensure electrode-skin impedance
of less than 7.5kS2. A composite electrode, the Entropy™ Sensor,
composed of a self-adhering flexible band holding three elec-
trodes were used to record the EEG signals between the forehead
and temple (active = FpZ, earth = Fpl, and reference = F8).
RE and SE were measured every 5s with a plug-in M-Entropy
S/5 Module (Datex-Ohmeda). The sevoflurane concentration was
measured at the mouth at 100/s (McKay et al., 2006). All data
were recorded and stored on a laptop computer. Oft-line analysis
was performed using the MATLAB (version 8, MathWorks Inc.)
software.

EEG data set during isoflurane-induced anesthesia

The second data set contains 29 patients (9 men and 20 women,
age 33-77 year) receiving elective abdominal surgery during
combined isoflurane general anesthesia and epidural anesthe-
sia (Hagihira et al., 2002). These patients had no neurologic
or psychiatric disorders and didn’t receive medication with any
drugs known to influence anesthesia. The data recordings were
approved by the Osaka Prefectural Habikino Hospital and all
patients gave written informed consent.

Each patient was injected intramuscularly with 0.5mg
atropine before entering the operating room. Initially, an epidu-
ral catheter was placed at the appropriate spinal location. Then,
after confirming the effect of epidural analgesia, 3 mg/kg thiopen-
tal was used to induce anesthesia. Anesthesia was subsequently
maintained with isoflurane, oxygen, and nitrogen after tra-
cheal intubation. Vecuronium was given as required. Lidocaine
1% (80-110 mg/h; initial dose, 90-100 mg) was administered
epidurally. Patients received controlled ventilation to maintain
adequate oxygenation and normocapnia. To keep mean blood
pressure at 60 mmHg, dopamines were administered as required
at a dose of 2-5 pg/(kg-min).

Before induction of anesthesia, five EEG electrodes (Al, A2,
FP1, FP2, and FPz) were attached to the patients according to
the International 10-20 System. FPz was used as the ground
electrode. The EEG signal used was recorded from a unipo-
lar lead (FP1-Al) through a 514 X-2 EEG telemetry system
(GE Marquette, Tokyo, Japan) with sample frequency of 512 Hz
(another Fp2-A2 channel was not analyzed). Isoflurane was ini-
tially increased to 1.5% and then stepped down to 0.7%. The
end-tidal concentration of isoflurane was purposely maintained
at set levels (1.5, 1.3, 1.1, 0.9, and 0.7%) for 30 min at each level.
The EEG recordings at 0.3 and 0.5% isoflurane were collected
immediately after the operation. The concentration of isoflurane
was continuously monitored and recorded by Canomac (Datex,
Helsinki, Finland). The BSP was evident in six of the 29 EEG
recordings.

The two data sets used can be obtained by asking the authors
of corresponding original papers.

EEG PREPROCESSING

All the EEG recordings were preprocessed by following the steps
outlined in Li et al. (2010) before further analysis. Firstly, data
points whose amplitude values exceeded a threshold determined
by mean and standard deviation (SD) statistics were removed as

outliers. Then, the filter function filter.m was used to remove the
frequency components higher than 60 Hz. This FIR filter ensures
that phase information is not distorted. Thirdly the stationary
wavelet transform was used to reduce electro-oculogram (EOG)
artifact. Finally, an inverse filter was used to detect and remove
EMG and other high-amplitude transient artifacts.

PHARMACOKINETIC/PHARMACODYNAMIC MODELING
To derive the relationship between effect-site anesthetic drug
concentration and the measured EEG index, PK/PD modeling
was used. These methods have been successfully used to eval-
uate the proposed EEG indices (Li et al., 2008a; Olofsen et al.,
2008). It describes the relationship between drug dose and its
effect through two successive physiological processes (McKay
et al., 2006). The pharmacokinetic (PK) side of the model
describes the changes in blood concentration of the drug over
time, while the pharmacodynamic (PD) aspect shows the relation
between the concentration of drug at its effect site and its mea-
sured effect. The simplest effect site model is a first order model,
defined as:
dceff/dt = keo(Cet — Cetr) (33)

where Ceff denotes the effect-site concentration, ke, is the first-
order rate constant for efflux from the effect compartment and
Cet is the end-tidal concentration.

In addition, a non-linear inhibitory sigmoid Ep,x model was
used to describe the relationship between the estimated Cegr and
the measured EEG indices.

CV
eff (34)

Effect = Emax - (Emax — X e
EC5o + Cogr

Emin )

where Effect is the processed EEG measure, Ep,y and Epi, respec-
tively are the maximum and minimum Effect for each individual,
EC;/O is the drug concentration that causes 50% of the maxi-
mum Effect and y is the slope of the concentration-response
relationship.

The coefficient of determination R? is calculated by:

Yo (J’i _)A’i)z
P ()’i _7)2

RE=1-— (35)

where y; is the measured Effect for a given time and y; is corre-
sponding modeled Effect.

Ceft is estimated by iteratively running the above model with a
series of ke, values, with the optimal ke, yielding the greatest R
for each patient.

MDFA EXPONENT

Kantelhardt et al., proposed the MDFA method to describe the
non-stationary time series, which is based on a generalization
DFA method (Kantelhardt et al., 2002). Nguyen-Ky et al., used
the moving-average DFA method to monitoring the DoA and
the results showed that DFA could accurately estimate a patient’s
hypnotic state (Nguyen-Ky et al., 2010a).
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For a time series x(t) of length N, the main computation
procedure of MDFA consists of three steps.
Step 1. Construct the profile as the equation showed below,

() =Y [x()— ()

where (x) represents the average value of x(t).

Step 2. Divide the new profile {y(j)} into Ny = N/s non-
overlapping segments of equal length s. Since the record length N
may not be a multiple of the considered time scale s, a short part
at the end of the profile will remain in most cases. In order not to
disregard this part of record, the same procedure is repeated start-
ing from the other end of the profile {y (j)}. Thus, 2N; segments
are obtained altogether.

Step 3. Calculate the local trend for each segment by a least-
square fit of the data and calculate the variance F? (s, v). Thus,
the qth order fluctuation function is calculated as follows:

(36)

1 N / 1/q
Fy(s) = {ZNS > [Pew? 2} (37)
If g = 0, then
1 2N
Fo (s) = exp {TNS ZV: . In [Fz(s, 1/)]} (38)

It is obvious that when g = 2, we have the standard DFA proce-
dure.

MEFDFA characterizes the evolution of F (s) is a function of
the segment length s. Modeling fluctuations that present a power-
law behavior between F; (s) and s, Fy(s) o "9 where the h(q) is
generalized Hurst exponent.

For the multifractal time series, the scaling behavior is sensitive
with the parameter q. For positive g, h(q) describes the scaling
behavior of the segments with large fluctuations. On the contrary,
for negative g, h(q) is sensitive to small fluctuations. For more
detail of the MDFA method, see in Kantelhardt et al. (2002).

In this study, we only considered the influence of q with
the MDFA measure. The selection of parameter is described in
Supplement Material 1.

STATISTICAL ANALYSIS

To further evaluate the correlation between the measured EEG
index and underlying anesthetic drug effect, prediction probabil-
ity (Py) statistics were applied, as described in Smith et al. (1996).
Given two random data points with different Ceg, Py describes
the probability that the measured EEG index correctly predicts
the Cefr of the two points. Its definition is:

P = P+ Py /2

S e—— (39)
Pc+ Pg+ Py

where P, P; and Py, separate the probability that two data points
drawn at random, independently and with replacement from the
population are a concordance, a discordance or an x-only tie. A
value of 1 means that the EEG index is perfectly concordant with
Cefr; whereas a value of 0.5 means the EEG index is obtained by

chance. When the monotonic relation between the drug concen-
tration and the EEG index is negative, the resultant Py value is
replaced by 1 — Pg.

In addition, The Kolmogorov—Smirnov test was used to deter-
mine whether the data sets were normally distributed. To assess
the index stability during the awake state and the sensitivity to
the induction process, the relative coefficient of variation (CV)
(Li et al., 2008a) was used. Kruskal-Wallis test was used to deter-
mine the significant difference of the index values between awake,
induction, anesthesia and recovery states.

RESULTS

First we used these entropy measures on EEG data from sevoflu-
rane anesthesia. Figure 1A shows a preprocessed EEG recording
and the derivative from the EEG signal during the whole sevoflu-
rane induction process, from awake to induction, then to deep
anesthesia, and finally to recovery. With deepening anesthesia,
the mean amplitude of the EEG gradually increased and then the
amplitude decreased in the state of recovery. The concurrent end-
tidal sevoflurane concentration is represented by the black line
given in Figure 1B. It can be regarded as the drug concentration in
blood, derived from the recorded sevoflurane concentration at the
mouth (represented by gray line). The changes in RE, SE, SWE,
TWE, RWE, HHSE, ApEn, SampEn, FuzzyEn, SPE, TPE, RPE,
and MDFA corresponding to the EEG recording are successively
given in Figures 1C-K. As can be seen, all the entropy indices
generally followed the changes in EEG pattern as the drug con-
centration increased and decreased. And MDFA had the opposite
trend with entropy indices.

Then we analyzed the EEG recording during isoflurane anes-
thesia using the same entropy algorithms and MDFA methods.
Figures 2A,B are the EEG recording and isoflurane end-tidal
concentration respectively. It can be seen that the drug concentra-
tion increased and then decreased. Figures 2C-K shows the same
entropy and MDFA indices as Figures 1C-K, and demonstrate
equivalent trends, in line with changes in drug concentration.

Loss of consciousness (LOC) is the most important clinical
time point during anesthesia. We investigated the ability of these
entropies in tracking LOC. Figure 3 demonstrates the changes
in each index around LOC, from LOC—30s to LOC+30s for
all subjects during sevoflurane anesthesia. For these plots, index
values were normalized to between 0 and 1. It can be seen in
Figures 3A-N that MDFA(—8) decreased most rapidly, followed
by SWE. Thus, the MDFA with g = —8 appeared to be the most
sensitive to LOC. To verify this, we calculated the absolute slope
values (mean =+ SD) of the linear-fitted polynomials vs. time for
these indices, as shown in Figure 30. As can be seen, the absolute
slope value for MDFA(—8) (0.44 £ 0.22) is largest, followed by
SWE (0.43 £ 0.23).

To further compare the ability of the indices to distinguish
different anesthesia states, the sevoflurane anesthesia procedure
was divided into four states, i.e., awake, induction, deep anesthe-
sia, and recovery. For each index, a box plot is given in Figure 4.
The data was not normally distributed, so the statistics of the
19 patients undergoing sevoflurane anesthesia were expressed as
median (min—max), as shown in Table 1. All the entropy indices
monotonically decreased as anesthesia deepened, then increased
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FIGURE 3 | Entropy and MDFA analysis around the time of LOC for
subject undergoing sevoflurane anesthesia (n=19). (A-N) The
normalized indices around LOC (from LOC — 30s to LOC + 30s) for
all subjects. The red plus sign denotes the point of LOC. (O)
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FIGURE 4 | Box plots of RE, SE, SWE, TWE, RWE, HHEn, ApEn, SampEn, FuzzyEn, SPE, TPE, RPE, MDFA(2) and MDFA(-8) (A-N) at awake (I), induction

during recovery. The MDFA indices have an opposite trend with
the entropy measures. These are consistent with the results in
Figure 1. The overlap of three types of PE (SPE, TPE, and RPE)
values between the awake and deep anesthesia states were smaller
than the other indices. This means the PE has a better ability
to separate these states and a greater robustness for individual
differences.

To estimate the baseline variability and the sensitivity to the
induction process of each index, the CV value of all the indices
for the sevoflurane data set are computed and the results are given
in Table 2. During the awake state, the CV value of SampEn was
0.095, which was the highest; The CV value of TPE was 0.003, sig-
nificantly lower than MDFA(2) (0.240) and MDFA(—8) (0.125)
and the other indices. The CV values of SPE and RPE were lower
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Table 1| The statistics of the studied indices at different anesthetic states [median (min-max)].

Awake Induction Deep anesthesia RoC
RE 0.87 (0.65-0.90) 0.58 (0.35-0.89) 0.59 (0.37-0.68) 0.66 (0.34-0.79)
SE 0.77 (0.65-0.79) 0.61 (0.37-0.79) 0.63 (0.39-0.73) 0.71 (0.37-0.79)
SWE 0.86 (0.37-0.96) 0.40 (0.10-0.83) 0.36 (0.07-0.66) 0.68 (0.32-0.83)
TWE 0.93 (0.71-0.98) 0.61 (0.37-0.91) 0.57 (0.32-0.71) 0.76 (0.55-0.85)
RWE 0.88 (0.52-0.96) 0.46 (0.16-0.83) 0.43 (0.12-0.62) 0.71 (0.39-0.82)
HHSE 5.63 (4.43-6.26) 4.43 (2.93-6.01) 4.40 (3.02-5.02) 4.81 (3.76-6.03)
ApEn 1.44 (0.63-1.59) 0.95 (0.54-1.35) 1.08 (0.47-1.50) 1.26 (0.63-1.60)
SampEn 1.88 (0.52-2.65) 1.08 (0.15-2.37) 0.97 (0.01-1.63) 1.44 (0.13-2.16)
FuzzyEn 3.28 (1.49-4.33) 1.80 (0.81-4.14) 1.70 (1.01-3.72) 2.22 (1.13-3.44)
SPE 0.81 (0.79-0.83) 0.64 (0.49-0.82) 0.58 (0.46-0.82) 0.65 (0.56-0.75)
TPE 0.91 (0.87-0.92) 0.74 (0.49-0.91) 0.57 (0.44-0.69) 0.62 (0.53-0.80)
RPE 0.91 (0.87-0.92) 0.67 (0.33-0.91) 0.46 (0.29-0.62) 0.60 (0.47-0.79)
MDFA (2) 0.62 (0.23-1.26) 1.67 (0.56-2.25) 1.67 (1.35-2.36) 1.00 (0.72-1.68)
MDFA (-8) 0.54 (0.38-1.32) 1.79 (0.35-2.47) 2.05 (1.54-2.68) 1.43 (0.84-2.06)

RE, response entropy in the M-entropy module; SE, state entropy, SWE, Shannon wavelet entropy; TWE, Tsallis wavelet entropy; RWE, Renyi wavelet entropy;

HHSE, Hilbert-Huang spectral entropy; ApEn, approximate entropy; SampEn, sample entropy; FuzzyEn, fuzzy entropy; SPE, Shannon permutation entropy, TPE,

Tsallis permutation entropy, RPE, Renyi permutation entropy, MDFA(2), Multifractal detrended fluctuation analysis with q = 2, MDFA(-8), Multifractal detrended

fluctuation analysis with g = —8.

Table 2 | The CV of the studied indices at different anesthetic states.

Awake Induction Deep RoC
RE 0.025 0.149 0.047 0.052
SE 0.016 0.122 0.047 0.050
SWE 0.080 0.338 0.177 0.077
TWE 0.024 0.161 0.063 0.038
RWE 0.043 0.276 0.127 0.057
HHSE 0.029 0.089 0.027 0.024
ApEn 0.040 0.193 0.064 0.043
SampEn 0.095 0.259 0.087 0.094
FuzzyEn 0.089 0.193 0.088 0.073
SPE 0.006 0.115 0.028 0.025
TPE 0.003 0.138 0.030 0.028
RPE 0.004 0.219 0.043 0.041
MDFA(2) 0.240 0.176 0.046 0.100
MDFA(-8) 0.125 0.256 0.047 0.097

than other indices as well. The lower CV value of PE illustrates
that PE measures were less sensitive to noise, while MDFA meth-
ods were least robust against noise. During induction, the CV of
SWE (0.338) was the highest. This demonstrates that SWE had a
faster response speed compared to the other indices.

In order to verify the performance of all the indices for moni-
toring DoA and detecting the burst suppression state, we analyzed
the isoflurane anesthesia data set, in which some subjects entered
into the burst suppression state during deep anesthesia. The
results are given in histogram form and shown in Figure 5. All the
indices except SE and MDFA decreased with increasing isoflurane
concentration. During burst suppression, only ApEn and SampEn
continued to decrease. This means that the ApEn and SampEn
algorithms could be used to evaluate DoA including detection of

the burst suppression state, without the need for Supplementary
Methods. The tabulated results for each index at the different
isoflurane concentrations and BSP are presented in Table 3. The
CV of the indices show that PE (0.033) outperformed the others
in awake state (0% concentration) (see Table 4). And the CV of
two MDFA measures were relative higher in awake state. It indi-
cate that MDFA algorithms were no better than some entropy
measures in anti-noise performance.

To further compare the performance of the studied indices,
PK/PD modeling was performed to describe the relationship
between the index values and the estimated sevoflurane and
isoflurane effect-site concentration. Tables 5, 6 give these param-
eters for isoflurane and sevoflurane anesthesia respectively, in
which the maximum coefficient of determination (R?) gives the
correlation between the index values and the anesthetic effect site
concentration. Figures 6A,B show the R? values of the indices for
the two data sets. Figure 6A shows the R? values for sevoflurane.
It can be seen that R? for TPE (0.95, 95% confidence interval
0.92-0.98) was significantly higher than the other entropy indices.
Figure 6B shows R? values for isoflurane. Again, R? for SPE (0.81)
was higher than the other entropy indices. Although R? of MDFA
with g = 8 was relative higher in sevoflurane anesthesia, the value
in isoflurane anesthesia was lower. The statistical analysis also
shows that for the same entropy algorithm, the mean R* value
for sevoflurane was significantly higher than for isoflurane.

To assess the performance of the indices to correctly predict
drug effect-site concentrations, we evaluated the prediction prob-
ability Py of all the indices from the PK/PD modeling for all the
subjects, as shown in Figures 7A,B. And the statistical results are
shown in Table 7. Overall, most Pj values of indices for sevoflu-
rane were higher than for isoflurane. For sevoflurane, Py of RPE
and MDFA were equal (0.87, 95% confidence interval is 0.83—
0.90 and 0.83-0.92 respectively), slightly higher than RWE (0.85)
and TWE 0.81 (95% confidence interval 0.79-0.84). Also, Pj of
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Table 3 | The statistics of the studied indices at different isoflurane concentrations [median (min-max)].

Concentrations and BSP

0% 7% 9% 1% 13% 15% BSP

RE 0.70 (0.42-0.91)  0.70(0.46-0.80)  0.68 (0.49-0.79)  0.67 (0.50-0.77)  0.65(0.43-0.73)  0.65(0.55-0.72) ~ 0.65 (0.37-0.82)
SE 0.73 (0.45-0.83)  0.75(0.49-0.85)  0.73 (0.52-0.85)  0.71(0.54-0.83)  0.70(0.46-0.78)  0.69 (0.59-0.77) ~ 0.69 (0.39-0.83)
SWE 0.73(0.03-0.95)  0.70(0.02-0.87) ~ 0.67 (0.30-0.87) ~ 0.63(0.34-0.81)  0.61 (0.30-0.80)  0.60 (0.41-0.74) 0.62 (0-0.94)

TWE 0.82(0.24-0.97)  0.76 (0.22-0.91) 0.74 (0.56-0.88)  0.71(0.14-0.85)  0.70(0.52-0.86)  0.67 (0.55-0.80)  0.72(0.12-0.97)
RWE 0.89 (0.36-0.98)  0.85(0.33-0.95)  0.83(0.69-0.93)  0.81(0.24-0.91)  0.80(0.66-0.91)  0.78 (0.68-0.87)  0.82 (0.19-0.98)
HHSE 5.06 (3.63-56.95)  4.82 (3.67-5.48) 4.71(3.93-5.33)  4.64 (3.62-5.24)  4.68 (3.66-5.07)  4.53 (4.02-4.95)  4.70 (3.38-5.33)
ApEn 1.45 (0.07-1.60) 1.17 (0.06-1.55) 1.14(0.82-1.48)  1.06 (0.01-1.42)  0.98 (0.63-1.34)  0.95(0.73-1.29)  0.90 (0.07-1.51)
SampEn 1.75(0.03-2.58)  1.31(0.02-2.18) 1.22 (0.78-1.90) 1.10(0.01-1.78) ~ 0.99 (0.40-1.49)  0.95(0.38-1.42)  0.78 (0.02-1.88)
FuzzyEn 2.37(0.566-3.93)  2.00 (0.33-3.29) 1.86 (1.23-2.89)  1.86(0.61-3.04)  1.87 (1.13-3.17) 1.81(1.29-2.65)  2.45(0.32-3.47)
SPE 0.92 (0.66-0.94)  0.90 (0.39-0.94)  0.89 (0.76-0.94) 0.87(0.41-0.94)  0.84 (0.69-0.92)  0.82(0.69-0.92)  0.88(0.47-0.92)
TPE 0.88(0.73-0.92)  0.79(0.65-0.92)  0.78(0.61-0.91)  0.76 (0.59-0.89)  0.72 (0.59-0.88)  0.69 (0.58-0.85)  0.82 (0.67-0.89)
RPE 0.85 (0.569-0.91)  0.76 (0.60-0.90) 0.74 (0.55-0.90)  0.70(0.36-0.87)  0.66 (0.47-0.85)  0.63 (0.48-0.81)  0.75 (0.55-0.86)
MDFA (2) 0.96 (0.41-1.61)  1.07 (0.81-1.42) 1.23 (0.56-1.56)  1.20(0.69-1.66)  1.31 (0.92-1.81) 1.37 (1.01-1.74) 1.27 (0.77-1.95)
MDFA (-8) 1.21 (0.55-2.13) 1.68 (1.19-2.22) 1.69(1.04-2.32)  1.62(0.98-2.36)  1.71 (1.09-2.36) 1.88 (1.32-2.59)  1.42(0.32-2.89)

RPE was higher than that of TPE and SPE. Similarly, P of RWE
was highest in three WE methods. It means that Renyi entropy
had a better performance in predicting drug effect-site concentra-
tions comparing with Shannon entropy and Tsallis entropy. The
differences between RPE and the other indices were statistically
significant (all p < 0.05, paired t-test), except for MDFA(-8). And
the difference between RPE and TPE, SPE were statistically signif-
icant (p = 0.03 and 0.01 respectively, paired ¢-test), which means
that RPE had a stronger ability to track the sevoflurane effect-site
concentration during anesthesia. In order to get a more intuitive
comparison, the best curve fits of all indices against the effect-site

concentration are demonstrated for both sevoflurane (Figure 8)
and isoflurane (Figure 9).

To compare the timeliness performance of each index in track-
ing DoA, we recorded the computing time of each index for the
same subject. 20 EEG recordings from the two data sets were
selected. The calculate epoch length (N) of each algorithm is
equal to 10's, and the overlap select 5.0 s. The computing time for
1 min of EEG data compared for each index is given in Table 8.
The fastest index was WE (0.025 & 0.001s). The RE/SE and PE
computation times were 0.096 £ 0.008s and 0.545 £ 0.016s
respectively. The MDFA (16.338 £ 0.280s) was the slowest.
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The desktop computer used for this test had the following con-
figuration: Intel Core i3 CPU, 4 cores at 2.93 GHz, with 2 GB of
RAM, running Windows XP professional operating system.

DISCUSSION AND CONCLUSION

In this study, we investigated the performance of 12 entropy algo-
rithms to assess the effect of GABAergic anesthetic agents on
EEG activity, including RE, SE, SWE, TWE, RWE, HHSE, ApEn,
SampEn, FuzzyEn, SPE, TPE, and RPE. Two data sets includ-
ing sevoflurane and isoflurane anesthesia were employed as the
test samples for evaluating the entropy algorithms. We compared
their performance in estimating the DoA and detecting the burst
suppression pattern. PK/PD modeling and prediction probability

Table 4 | The CV of indices for different isoflurane concentrations.

Concentrations and BSP

statistics were applied to assess their effectiveness. In addition, we
compared the MDFA measure with all entropy indices to test the
efficiency of entropy approach.

The twelve entropy measures could be divided into two classes:
time-domain-based and time-frequency-domain-based analyses.
On one hand, ApEn, SampEn, FuzzyEn, and PE are time domain
analysis methods. All these entropy algorithms are based on non-
linear theories, and the first three are phase space analytical
methods (Chen et al., 2009). PE is based on ordinal pattern analy-
sis of the time series (Bandt, 2005). Considering that the EEG has
non-linear characteristics, these four methods have their advan-
tages. For example, FuzzyEn and PE are less sensitive to the signal
quality and calculation length (Pincus, 1991; Li et al., 2008a).
Relative to ApEn and SampEn, FuzzyEn can resolve more detail
in the time series and has more accurate definition in theory
(Chen et al., 2009). On the other hand, RE, SE, WE, and HHSE
indices are based on the time-frequency domain. The start point
of RE and SE is the spectral entropy, which has the particular

0% 7% 9% "% 13% 15% BSP advantage that the contributions to entropy from any particular
RE 0118 0070 0057 0046 0056 0045 0097 requency range are explicitly separated. In.order.to achieve opti-
SE 0089 0070 0057 0046 0055 0044 0093 mal response time, RE and SE ado.pt a variable time window for
SWE 0237 0125 0114 0411 0118 0090 0328 €ach partlcular. freguegcy—called time-frequency balanced spec-
TWE 0430 0070 0084 0065 0071 0060 04187 t'ral ent'ropy (Viertio-Oja et al., 20(?4). Compar.ed to the v'ar1abl'e
RWE 0087 0047 0042 0045 0048 0040 07a3 tme .wmdows. of RE and SE, the w1nd0.w function of WE is Yarl—
HHSE 0077 0048 0041 0037 0040 0035 0.060 fible in both time and frequer.lcy domains. The HHSE algorithm
ApEn 0216 0108 0106 0414 0103 0119 0308 1S based on the EMD and Hlll?ert tra.nsform (.L1 et al,, 2.008b).
SampEn 0368 04172 0156 0478 0147 0154 0466 The advantag'e of this method is that it can es.tlmate the instan-
FuzzyEn 04196 0456 0431 0441 0452 0422 0249 taneous .amphtu.de and .phase/freque:ncy. Als'o it can break.down
SPE 0033 0028 0033 0038 0046 0053 0064 2 comphcatec.l 51gn.al without a b.asw function (such as sine or
TPE 0052 0073 0069 0074 0078 0085 0.050 wave}et fupcﬂons) into sev.eral oscillatory modes that are err.lbed—
RPE 0079 0083 0086 0086 0095 0101 0.090 ded in this complicated s1gna'l. The n.larg',lnal' spectrum gives a
MDFA®) 024 008 019 019 013 009 013 moreaccurate and ne:ctrly continuous dlStrl]?uthIl of EEG energy,
MDFA(-8) 021 009 017 016 012 01 045 which is completely different from the Fourier spectrum (Li et al.,

2008b).
Table 5 | The PK/PD modeling parameters for sevoflurane.
t1/2keo(min) Y Emax Emnin ECso R

RE 0.04 £0.03 8.25 + 762 0.46 +£0.09 0.13 £ 0.06 1.19 £ 0.60 0.80 +£0.14
SE 0.06 £+ 0.06 522 +£232 0.35+0.09 0.14 £ 0.05 171 +£0.93 0.72+0.16
SWE 0.07 £0.02 4.01 £3.12 1.01 £ 0.16 0.15 £ 0.07 1.42 £+ 0.51 0.79 +£0.12
TWE 0.03 £+ 0.01 3.81 + 1.86 0.50 £0.10 0.05+0.16 1.54 £ 0.63 0.86 £ 0.06
RWE 0.04 £0.02 595 +3.98 0.58 £0.10 0.12 £ 0.07 1.68 £+ 0.60 0.85 £ 0.06
HHSE 0.05 + 0.02 4.156 +3.43 1.99 + 0.41 0.62 +0.34 1.66 + 1.15 0.80 &+ 0.06
ApEn 0.05 &+ 0.02 8.22 + 6.62 0.82+0.17 022+ 0.1 1.84 £ 0.52 0.78 £ 0.11
SampEn 0.05 £+ 0.02 5.68 + 4.45 1.46 +0.38 0.40 +£0.22 1.64 + 0.62 0.76+0.12
FuzzyEn 0.06 &+ 0.04 2.75+ 164 2.14 £0.40 0.58 &+ 0.32 1.056 +0.38 0.69 +0.17
SPE 0.70 £0.32 4.65 + 1.57 0.32 £0.05 0.08 £ 0.03 1.30 £ 0.33 0.94 &+ 0.04
TPE 0.18 £ 0.01 6.98 £ 3.19 0.39 £0.04 0.02 £0.12 1.33 £ 0.37 0.96 £ 0.02
RPE 0.02 £+ 0.01 4.67 £3.25 0.50 £0.14 0.10 £ 0.16 140 £ 0.48 0.95+0.03
MDFA(2) 0.07 £0.03 4.92 +3.10 0.27 £0.15 1.37 £0.32 152 +£0.49 0.88 £ 0.06
MDFA(-8) 0.05 £ 0.02 4.54 + 257 0.083 £0.27 1.67 £0.14 1.33 £ 0.40 0.94 £0.03

t1/2keo, blood effect-site equilibration constant, y, slope parameter of the concentration-response relation; Emax, EEG parameter value corresponding to the maxi-

mum drug effect; Emin, EEG parameter value corresponding to the minimum drug effect; ECso, concentration that causes 50% of the maximum effect; R?, maximum

coefficients of determination.
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Table 6 | Parameters of PK/PD models for isoflurane.

t1/2 Keo (min) Yy Emax Emin ECso R
RE 0.04+0.04 28.88+61.28 0.20+£0.04 2.91+0.81 0.91+0.20 0.64 £0.07
SE 0.05+0.05 33.32+70.92 0.21+£0.04 —1.27+0.50 0.74+0.19 0.65+0.08
SWE 0.05+0.07 19.44 +£47.62 0.40+£0.09 0.14+0.19 1.01+0.20 0.72+£0.09
TWE 0.03+0.03 4.80+7.32 0.32+0.1 0.07+£0.19 1.00+0.31 0.74+0.09
RWE 0.02+0.01 3.87+£6.82 0.23+0.05 0.05+0.15 0.98+0.33 0.75+0.09
HHSE 0.02+0.01 16.70+27.10 1.294+0.58 —5.03+14.83 5.00+10.90 0.72+£0.08
ApEn 0.06+0.06 6.46+6.48 0.74+0.27 0.256+0.32 0.75+0.21 0.69+0.17
SampEn 0.03+0.02 5.32+6.73 12.95+13.50 6.79+0.81 0.87+0.28 0.72+£0.10
FuzzyEn 0.02+0.01 7.82+15.16 9.21+32.21 0.52+0.42 0.72+0.37 0.61+0.14
SPE 0.06+0.2 3.32+£7.35 0.13+0.12 —0.01+0.21 1.30+1.41 0.81+£0.07
RPE 0.02+0.01 1.94£5.51 0.42+0.44 0.04+£0.34 0.77+£0.22 0.78£0.09
TPE 0.01£0.01 5.556+6.64 0.90+2.37 0.08+£0.09 0.68+0.24 0.76 £0.07
MDFA(2) 0.01£0.02 4.54+£10.73 0.17+£0.24 0.33+0.45 0.41+£0.50 0.78£0.09
MDFA(-8) 0.02+0.01 11.54 +£20.60 0.02+£1.52 1.07+£0.51 0.68+0.23 0.69+£0.1
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FIGURE 6 | Statistical analysis of the sevoflurane and isoflurane
anesthesia datasets for each of the entropy and MDFA indices. (A)
Maximum coefficient of determination values for sevoflurane anesthesia

(n=19). For comparison, the R? values for each index are expressed by a
different sign and color. (B) The R? value of the same entropy indices for
isoflurane anesthesia (n = 20).
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FIGURE 7 | Statistical analysis of prediction probability (Py) values for sevoflurane and isoflurane anesthesia. (A) The P values for each entropy and
MDFA index under sevoflurane anesthesia (n = 19). (B) The P values for each index during isoflurane anesthesia (n = 20).

Although each entropy algorithm has theoretical advantages
with respect to the characterization of EEG recordings dur-
ing GABAergic anesthesia, we still need to assess the practical
performance from several perspectives. In qualitative terms, all
the indices are effective at tracking the changes of drug con-
centration through the EEG analysis. As demonstrated in the
presented figures and tables, all the entropies decreased with

deepening anesthesia. However, there are quantitative differences
between indices for different anesthesia states. This is because
the principles underlying each algorithm are entirely different.
Entropies based on the time domain, ApEn for example, measure
the predictability of future amplitude values of the electroen-
cephalogram based on the knowledge of one or two previous
amplitude values. With increasing GABAergic anesthetic drug
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concentration, the EEG signals become more regular, which leads
to a reduction in the ApEn value. Entropies based on the time-
frequency domain, such as RE and SE, also decrease with increas-
ing DoA because the EEG shifts to a simpler frequency pattern as
the anesthetic dose increases (Rampil, 1998).

In all 12 entropy measures, the TWE, RWE, TPE, and RPE are
based on the Tsallis entropy and Renyi entropy theory respec-
tively. Tsallis entropy and Renyi entropy theory are considered

Table 7 | The Py statistics for sevoflurane and isoflurane anesthesia
for each entropy and MDFA index.

Entropy index

Py sevoflurane

Py isoflurane

generalized concept of entropy compared to Shannon entropy.
Similar to Renyi entropy, the Tsallis entropy uses the non-
extensive parameter q to measure the information of specific
events. The results showed that TPE and RPE were better than SPE
in assessing the effect of anesthesia. Similar results can also be seen
in TWE, RWE, and SWE. There are no studies using TPE or RPE
in DoA monitoring before. The excellent performance indicates
their potential usefulness in anesthesia analysis.

Furthermore, the coefficient of determination and prediction
probability statistics were used to assess the correlation of each
index with the anesthetic drug effect site concentration. Three PE
measures had a higher P and R? compared with the other indices.
Also, MDFA at q = 2 had a relative higher Py and R? in all indices.
Comparing anesthetic drugs, the R? values for sevoflurane anes-
thesia were higher than for isoflurane anesthesia, while the Py

RE 0.74 + 0.06 0.78 + 0.06 gl ; .
SE 073 4+ 0.06 0.77 + 0.07 values were similar (see Figures 5, 6 and Table 3). This means that
SWE 083 4 0.04 078 4 0.07 t[he entropy measures were betFer able to track sevoflurane than
TWE 084 4 0.05 077 £ 040  isoflurane effe.ct site concentration. . .
RWE 085 4 0.05 078 4 0.07 Four addrqonal measures were considered for evaluation of
HHSE 081 4004 080 4 0.06 e.th' entropy n}dex. First, 'Fhe Ccv was used to evaluate the sen-
ApEn 0.80 4+ 0.04 077 +007 Sitivity of each index to artifacts during the awake state (Li et al.,
SampEn 0814003 081 4006 .200.81), 2010).. The results showed that PE outperformed the ther
FuzzyEn 080 4003 0714009 indiceson 'th1s level. In. a1.1 entro.py measures, SWE h%d'the high-
SPE 0834005 0824005 Ot CY durlng anést}.lesw.\ induction, 1n}<111cat1nl§<; that this 1n(iex.was
TPE 0.83 4 0.06 0804005 Superior at dllscrllinlnat;ng betwe;n the awake alrlld anest fe‘uzed
RPE 087 + 0.03 0831006 States. Sec.;)nd g, t Tier ollrlmehnc}e1 or estimating the point c;dL(?C
MDFA() 0.83 4 0.05 0834004 Was c.o}rllsi) ered. Alt olllg 2(11 the int.rolziy measures could dis-
MDFA(—8) 0.87 + 003 0.76 &+ 0.11 tinguish between .a.wa e and anesthetized states (see Figure 4),
the speed of transition (slope) between the two states was fastest
A
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FIGURE 8 | Dose-response curves between the RE(A), SE(B), SWE(C), the best fit, with the greatest value of R? show above the figures. The
TWE(D), RWE(E), HHSE(F), ApEn(G), SampEn(H), FuzzyEn(l), SPE(J), dots denote the measured EEG indices values. The solid lines denote the
TPE(K), RPE (L), MDFA(2) (M), MDFA(-8) (N) and the sevoflurane Ce for PK/PD modeled EEG index values.
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Table 8 | The computing time for different entropy and MDFA indices
for 1 min data length.

Entropy index Calculation time(s)

RE/SE 0.096 +0.008
SWE/RWE/TWE 0.025+0.001
HHSE 14.718 £ 1.563
ApEn 2.490+0.098
SampEn 2.541+£0.073
FuzzyEn 4.785+0.119
SPE/RPE/TPE 0.545+0.016
MDFA 16.338 £0.280

for SWE, while SE had the slowest transition. Thirdly, the per-
formance for discriminating different drug concentrations was
considered, especially the ability to distinguish the burst suppres-
sion state. The mean %+ SD value of the indices showed that all
the entropy measures can distinguish different drug concentra-
tions, while only ApEn and SampEn have the ability to distinguish
burst suppression from the other states. This means that, if using
PE as a DoA index, an additional method for detecting the burst
suppression pattern would need to be incorporated, such as Non-
linear Energy Operator (NLEO) (Sirkeli et al., 2002). The results
are in accordance with the findings during desflurane anesthesia
for ApEn (Bruhn et al., 2000) and sevoflurane anesthesia for PE
and HHSE (Li et al., 2008b, 2010). Finally, the computing time
was used to assess algorithm complexity. The results showed that
the WE index is the fastest algorithm of all the entropy indices
tested. HHSE was the slowest: its computing time for the same
data length was about 580 times longer that for WE. In order
to improve the computational efficiency, the parallelized method

based on the graphics processing unit has been proposed (Chen
etal., 2010).

The efficiency of these entropy measures were compared with
other two non-linear dynamic measures, the MDFA with g = 2
and —8, where MDFA with q = 2 is a standard DFA measure. The
results and statistics show that MDFA were better in some aspects
compared to some of entropy measures, such as sharper slope
in LOC, higher Py and R? for sevoflurane (almost equal to RPE)
measure. However, there are several shortcomings in MDFA mea-
sures. First, CVs of MDFA in awake state were higher compared
to those of entropy indices. Second, MDFA could not distinguish
the burst suppression state from other states. Most importantly,
the computing time of MDFA is the longest in all algorithms,
even longer than HHSE, which means that MDFA algorithms are
not suitable for real time DoA monitoring. Therefore, entropy
approaches are capable for monitoring the EEG changes in anes-
thesia, and are often advantageous in computation efficiency.

Although this study covers a number of entropy methods
and two types of anesthesia, the research has its limitations.
For instance, errors caused by individual variability, e.g., age,
physical wellness, intraoperative tolerance are hard to control
because of the difficulty in data collection in clinical practice.
Besides, Interactions between EEG activities and drug concentra-
tions could be studied using finer-grained paradigm, for instance
by increasing the drug concentration in a stepwise pattern.
Additionally, optimal parameters for each entropy measure may
not have been achieved and need further investigation.

This study doesn’t provide an absolute measure of “depth”
of clinical anesthesia, nor of consciousness for the prevention
of intra-operative recall; but rather focuses on understanding
the inner workings of each entropy index, and explores whether
these indices correlate with GABAergic drug effect. Having a good
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understanding of the strengths and weaknesses of each measure is
necessary before possibly applying them within a clinical context.

In conclusion, each entropy measure has its advantages, and
several indices show promise as a simple open-source method
for quantifying the brain effects of GABAergic drugs. In partic-
ular, the PE indices perform better than other entropy indices
as an EEG derivative in several aspects, especially for RPE mea-
sure. However, further work is required to accurately quantify the
burst suppression pattern. Also, to be useful as a clinical measure,
each algorithm still needs additional parameter and computation
efficiency optimizations.
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