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The cerebellum plays a crucial role in motor learning and it acts as a predictive controller.
Modeling it and embedding it into sensorimotor tasks allows us to create functional
links between plasticity mechanisms, neural circuits and behavioral learning. Moreover,
if applied to real-time control of a neurorobot, the cerebellar model has to deal with
a real noisy and changing environment, thus showing its robustness and effectiveness
in learning. A biologically inspired cerebellar model with distributed plasticity, both at
cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have
been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple
sessions of acquisition and extinction and with different stimuli and perturbation patterns.
The cerebellar controller succeeded to generate conditioned responses and finely
tuned eye movement compensation, thus reproducing human-like behaviors. Through
a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar
controller showed in both tasks the capability to optimize learning on multiple time-scales,
to store motor memory and to effectively adapt to dynamic ranges of stimuli.
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INTRODUCTION
In order to develop a comprehensive theory of learning, it is
crucial to define a causality chain linking neural signals, plastic-
ity mechanisms, neural circuits and behavioral learning (Cheron
et al., 2013). Cerebellar-mediated learning ranges from associative
conditioning of discrete behavioral responses to on-line adapta-
tion in voluntary and reflex movement control (Ito, 1982), driv-
ing acquisition, tuning, extinction and consolidation of motor
skills.

In order to learn and store information in internal models
of movement so to act as a predictive controller, the cerebellum
is thought to employ long-term synaptic plasticity: Long-Term
Depression (LTD) and Long-Term Potentiation (LTP). The plas-
ticity at the Parallel Fibers-Purkinje Cells (PF-PC) synapses has
classically been assumed to subserve this function (Marr, 1969).
However, multiple processes, with different learning rates, may
contribute to these mechanisms (Smith et al., 2006; Lee and
Schweighofer, 2009; Shadmehr et al., 2010) and PF-PC single
plasticity cannot account for the broad dynamic ranges and

Abbreviations: CF, Climbing Fiber; CR, Conditioned Response; CS, Conditioned
Stimulus; DCN, Deep Cerebellar Nucleus; EBCC, EyeBlink Classical Conditioning;
GR, Granular cell; HR, Head Rotation; IO, Inferior Olive cell; ISI, Inter-Stimuli
Interval; LTD, Long-Term Depression; LTP, Long-Term Potentiation; MF, Mossy
Fiber; PC, Purkinje Cell; PF, Parallel Fiber; RMS, Root Mean Square; US,
Unconditioned Stimulus; VOR, Vestibulo-Ocular Reflex.

multiple time scales of cerebellar adaptation. One hypothesis is
that the cerebellum learns basically on two time scales ascrib-
able to two anatomical sites: the cerebellar cortex operates as a
fast learning module while deeper structures operate as a slow
learning module where the motor skill is transferred and consoli-
dated into more persistent memory (Medina et al., 2001). Indeed,
the activity of the Deep Cerebellar Nuclei (DCN) can be modu-
lated and DCN spike times are strongly correlated with memory
acquisition (Zhang and Linden, 2006). However, there have been
few physiological studies on long-term plasticity in DCN and on
their roles in motor learning paradigms. Cerebellar cortical and
nuclear plasticities have been proposed to be involved and com-
plementary in controlling cerebellar learning in EyeBlink Classical
Conditioning (EBCC) (Bracha et al., 1998; Medina and Mauk,
2000; Medina et al., 2000) and in Vestibulo-Ocular Reflex (VOR)
(Burdess, 1996; Ito, 1998; Masuda and Amari, 2008). Indeed,
inactivation of cerebellar cortex (Attwell et al., 2001), cerebel-
lar nuclei (Attwell et al., 2002) or Inferior Olive (IO) (Welsh
and Harvey, 1998) all prevent acquisition skills. There are several
possible molecular and cellular mechanisms that could underlie
adaptation of the vestibulo-ocular reflex and eyeblink condition-
ing. Behavioral observations showed common and robust mech-
anisms between EBCC and VOR tasks: slow and fast complemen-
tary adaptation processes, spontaneous recovery of the original
response and faster relearning due to consolidation mechanisms.
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However, causal relationships between particular cellular pro-
cesses and individual components of a learned behavior have not
been demonstrated unequivocally (De Zeeuw and Yeo, 2005).

One complementary approach to the experimental and behav-
ioral one to better understand the mechanisms of the cerebellum
information processing is to make computational models of the
cerebellum network and to test them in paradigms as close as
possible to the neurophysiological ones. Different simplified cere-
bellar models based on the Adaptive Filter Model derived from the
Marr-Albus Motor Learning Theory have been developed (Marr,
1969; Albus, 1971; Tyrrell and Willshaw, 1992; Ito, 1997; Lepora
et al., 2010), in few studies also translated into spiking neu-
ral networks (Yamazaki and Tanaka, 2007; Yamazaki and Nagao,
2012), and tested in computational simulations of EBCC, VOR
and upper-limb tracking tasks. In these models, learning occurred
as long-term PF-PC single plasticity.

Very recently (Garrido et al., 2013), beside the PF-PC cortical
plasticity, the cerebellum model was endowed with biologically
plausible plastic mechanisms at two additional synaptic sites
of DCN: Mossy Fibers-DCN (MF-DCN) and PC-DCN (Hansel
et al., 2001; Gao et al., 2012). This 3-site cerebellar model, as a
general computational scheme, was tested in a tracking task only
in simulations. In-silico simulations are always a first important
test bench of new features of controllers but they can only par-
tially be used to show the real behavior of a computational model.
The literature has already discussed this point and interesting
works have been proposed to check the use of neural-inspired
control models acting into real-world conditions by being embed-
ded into a controller of a robot (Voegtlin and Verschure, 1999;
Hofstotter et al., 2002; McKinstry et al., 2006; Lenz et al., 2009;
Trhan, 2010; Batllori et al., 2011; Yamazaki and Igarashi, 2013).
Indeed, modeling the cerebellar structure and embedding it into
the control of a real robot immersed into real-world conditions
is a key approach to associate the detailed model of neuronal
connectivity and synaptic plasticity with behavioral functional-
ities. Experiments with real robots allow the exploration of the
robustness and generalization capability of the controlling model
(Verschure and Voegtlin, 1998). Specific experimental paradigms
have been already proposed in the literature to highlight spe-
cific features of the computational model used in the robotic
control, for example Yamazaki and coworkers (Yamazaki and
Igarashi, 2013) designed a ball intercept robotic task in order to
test the timing properties of a single-plasticity spiking cerebellar
controller.

In this context, we have tested into realistic sensorimotor tasks
the learning skills of the 3-site distributed plasticity cerebellar
model, embodied in a robot acting and sensing in real-time in
real environment (neurorobot). In order to focus our tests on the
learning properties of the cerebellar network model, the robot
has been acting in two experimental protocols of different nature,
selected to mimic typical cerebellum-mediated neurophysiolog-
ical paradigms: an associative Pavlovian task, as the EBCC, and
a VOR. Very often the models using cerebellar principles, more
or less detailed and realistic, have been designed specifically for
one single task (Van der Smagt, 2000; Day et al., 2006; Yamamoto
et al., 2007; Thompson and Steinmetz, 2009; Clopath et al., 2013),
while the real cerebellum is good at learning a wide variety of

tasks, going from stimuli associations to adaptive sensorimotor
transformations and coordination.

The Pavlovian associative task is learned along with repeated
presentation of paired stimuli, a Conditioned Stimulus (CS, like
a tone) followed by an Unconditioned Stimulus (US, like an
air-puff, eliciting the eye-blink reflex). The cerebellum learns to
produce a Conditioned Response (CR, like an eye-blink, antici-
pating the US onset) (Medina et al., 2000). The VOR produces
eye movements that stabilize images on the retina compensat-
ing head movements. The EBCC requires a fine timing control,
whereas the VOR requires a continuous timing and gain control
(Yamazaki and Nagao, 2012).

We have compared the performances of the 3-site distributed
plasticity model with the basic one that implements only the PF-
PC learning rule. Each task, repeated varying the provided stimuli
or the perturbation patterns, was tested and then re-tested after
extinction. The main goal is to seek the real-world behavioral
outcomes generated by the neural mechanisms modeled into the
cerebellar controller, in order to deepen the roles of the plasticity
sites and their interaction along multiple learning stages.

MATERIALS AND METHODS
NEUROROBOT
The robot was a Phantom Premium 1.0 (SensAble™), with 3
degrees of freedom, equipped with digital encoders and control-
lable by torque commands. It was integrated with an optical track-
ing system, a VICRA-Polaris (NDI™), acquiring marker-tools
at 20 Hz. The controller, ad-hoc developed in C++, exploited
the low-level access provided by the Haptic Device Application
Programming Interface, sending the torque signals to the joints by
servo loops (HDCALLBACKS) executed in high-priority threads
at 1 kHz. For the tracking device, the low-level libraries from
Image-Guided Surgery Toolkit (http://www.igstk.org/), based on
Request-Observer-patterns, were used to acquire the visual infor-
mation. The cerebellar adaptive module was embedded into the
C++ controller.

PROTOCOLS
The Pavlovian EBCC-like protocol was reproduced as a collision-
avoidance task in real-robot (Figures 1A–C). The robotic arm was
moving on a pre-defined straight trajectory (followed thanks to
joint torques computed through a Proportional-Derivative feed-
back controller, given the desired joint kinematics and the actual
joint kinematics). A fixed obstacle was placed along that path.
The US was a step lasting 200 ms; the rise front was triggered
through the tracking system, when the distance between obstacle-
vertex and robot end-effector underwent a pre-defined threshold
(US-threshold, collision risk). Thus, this threshold determined
the Inter-Stimuli-Interval (ISI). US-signal reached PCs through
Climbing Fibers (CFs). The CS on the MFs (passage of time from
trial onset) was decoded into the GRanular (GR) layer. In order
to reproduce the “delay EBCC,” i.e., the two stimuli on MF and
CF pathways co-terminated in each trial, the input from MFs was
made silent from the end of US till the end of the trial. Each trial
lasted 1 s.

The DCN response, anticipated with respect to the US-onset,
modulated the upcoming US-based signal, ranging between 0 and

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 24 | 2

http://www.igstk.org/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Casellato et al. Distributed cerebellar plasticity in real-robot

FIGURE 1 | Embodied cerebellar model and set-up. (A) Cerebellar model
embedded into the neurorobot, with EBCC-specific input and output signals.
The red circles represent the plasticity sites: straight line the PF-PC synapses;
dot line and dashed line the MF-DCN and PC-DCN synapses, respectively,
activated only within the 3-plasticity model. Arrows represent excitatory
connections, whereas dot-arrows inhibitory connections. The EBCC-like
Pavlovian task is reproduced into the robotic platform by defining the onset of
the US stimulus based on the distance between the moving robot
end-effector and the fixed obstacle placed along the trajectory (US-threshold),
detected by the optical tracker. CS, fed into the CF pathway, represents the
system time-state, decoded by the GR layer. CS and US coterminate (“delay
EBCC”). The DCN triggers the conditioned response (CR). (B) Human-like
EBCC task. (C) Robotic set-up reproducing the Pavlovian EBCC-like task. (D)

Cerebellar model with VOR-specific input and output signals. The red circles

represent the plasticity sites: straight line the PF-PC synapses; dot line and
dashed line the MF-DCN and PC-DCN synapses, respectively, activated only
within the 3-plasticity model. Arrows represent excitatory connections,
whereas dot-arrows inhibitory connections. The VOR is reproduced into the
robotic platform by using the second joint of the robotic arm as the head
(imposed rotation) and the third joint (determining the orientation of the
second link, on which the green laser is placed) as the eye. The disalignment
between the gaze direction (i.e., second link orientation) and the
environmental target to be looked at is computed through geometric
equations from the optical tracker recording. Head vestibular stimulus
represents the system time-state, decoded by the GR layer. The gaze error is
fed into the CF pathway, the DCN modulate the compensatory eye
movement. (E) Human-like VOR task. (F) Robotic set-up reproducing the VOR
task.

1, through an inhibitory connection from DCN to IO, i.e., in each
trial, IO = 1 − DCN(tUSonset). Stronger was the anticipated eye-
lid protecting the eyes from US, less powerful was the US-related
signal arriving on the PC from IO (Medina et al., 2000).

The CR generation, by thresholding the DCN activity
[DCN(t) ≥ 0.9], triggered a pre-programmed 15◦ triangular
increase of the desired angle for the second joint of the moving
robotic arm, so the obstacle was vertically overstepped.

The test was made up of two sessions (session1 and ses-
sion2). Each session consisted of 80 trials of acquisition (CS-US
paired presentation) directly followed by 20 trials of extinction
(CS-alone, with CS lasting 600 ms).

In order to validate the robustness of the embedded cerebel-
lar controller, different stimuli patterns, i.e., three US-thresholds,
were defined so as to generate three average ISIs within a physio-
logically effective range (Shibuki et al., 1996): US-th1 = 80 mm;
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US-th2 = 105 mm; US-th3 = 120 mm. For each US-threshold, 20
tests were carried out. DCN activity was analyzed; as the timing
nature of the protocol, we focused on the maximum DCN activity
achieved within each trial.

The VOR was reproduced by using the 2nd joint as the head,
on which a desired joint displacement was imposed, and the 3rd
joint as the eye motion driven only by the cerebellar module. The
set-up was arranged so that the two involved joints (2nd and 3rd)
moved on a horizontal plane (Figures 1D–F). The visual error,
thanks to the tracking system, was computed as the disalignment
angle between the actual gaze, i.e., the orientation of the second
link of the robot, and the desired one aligned with the fixed object
to be looked at (identified by a markers-tool). The normalized
value of this visual error was sent to the IO corresponding to
the actual error sign (IO+/IO−). Two PCs (one receiving IO+
and one receiving IO−) inhibited DCN+ and DCN− activity,
respectively. The net activity of DCNs was proportionally trans-
lated, through a fixed gain set to 0.065 Nm, into a net torque
on the 3rd joint at each time sample (Luque et al., 2011). The
neural controller architecture and computational principles were
designed as for the Pavlovian task, except that at the input stage
two IO subgroups coding the error directions (sign), and, accord-
ingly, at the output stage, two DCN subgroups coding the motor
command directions (sign) were included. It is biologically plau-
sible (Georgopoulos et al., 1986) and consistent with the different
nature of the two cerebellar paradigms: the stimuli-based discrete
EBCC and the continuous direction-dependent VOR. Unlikely
the EBCC-like task, no inhibitory connection between DCNs and
IOs was modeled, because the DCN activity itself, by changing the
outcome gaze angle, directly affected the gaze error signal coded
by the IOs.

The test was made up of two VOR sessions (session1 and ses-
sion2) with fixed target. Each VOR session consisted of 40 trials
of acquisition by imposing a pre-defined head rotation, directly
followed by 20 extinction trials (head turn null).

In order to validate the robustness of the embedded cerebellar
controller, different vestibular stimulus patterns, i.e., three Head
Rotation (HR) profiles, were set: HR1 = 25◦ in 2 s, HR2 = 30◦ in
2 s, HR3 = 35◦ in 2 s. For each HR, 15 tests were carried out.

In order to check the capability to rapidly face changes of the
stimulus, for each cerebellar controller, a second test was carried
out. It reproduced initially the same condition as in the VOR ses-
sion1 with HR1 = 25◦ in 2 s, but during the steady plateau of
the network outcome (at the 35th trial of acquisition), a gain-up
stimulus was provided: the head rotation was increased 1.5 times,
from 25◦ to 37.5◦, and imposed for other 15 trials. Thus, the test
was made up of 50 repetitions.

Gaze error and DCN activity were analyzed; since the protocol
required a continuous shape modulation of the motor response,
we focused on the Root Mean Square (RMS) of the net DCN
activity (taking into account the net activity, DCN+ and DCN−)
within each trial.

CEREBELLUM MODEL
In this work, we adapted the cerebellar model developed in
(Garrido et al., 2013). The model represents a theoretical abstrac-
tion of the laying physiological mechanisms, it is inspired by

the cerebellum neurophysiological mechanisms but the univocal
correspondences are not straightforward.

Neuronal signals traveling represent firing rates for the asso-
ciated neuron or population of neurons, so that all information
is assumed rate-coded. Shortly, MF activity, the “context” infor-
mation, is represented by a constant activity and the GR layer
circuit is capable of generating not-recurrent time-evolving states,
in each trial, thus univocally identifying the passage of time
(Yamazaki and Tanaka, 2007). This procedure formally corre-
sponds to a labeled-line coding scheme. One different state for
each time sample is generated through a sequential activation of
PFs within each trial. Hence, the number of PFs (axons of GRs)
depends on the movement duration.

The DCNs integrate the excitatory activity coming from MFs
and the inhibitory activity coming from PCs (1).

DCNi (t) = WMF-DCNi (t) − Puri (t) · WPCi-DCNi (t) i = 1, 2
(1)

Where DCNi (t) represents the activity of the DCN associated
with the agonist (i = 1, i.e., +) or antagonist (i = 2, i.e., −)
actuators, WMF-DCNi (t) is the synaptic strength of the MF-DCN
connections at the i-th actuator, and WPCi-DCNi (t) is the synaptic
strength of the PC-DCN connections at the i-th actuator. For the
Pavlovian task, only one actuator is contemplated (i = 1). Puri (t)
is the current activity coming from the associated PC (2).

Puri (t) = fi(PF(t)) i = 1, 2 (2)

Where Puri(t) represents the firing rate of the PCs associated with
the i-th actuator and fi associates each granular layer state (i.e.,
one active PF) with a particular output firing rate at the i-th PC.

The Purkinje cells receive error from CFs, coming from IOs,
and state information from GRs, and work as a state-error
correlator (3).

�WPFj-PCi (t − τ)

=
⎧⎨
⎩

1LTPmax

(εi(t) + 1)α
− 1LTDmax · εi (t) if PFj is active at t

0 otherwise
(3)

Where �WPFj-PCi (t) is the weight change between the j-th PF and
the i-th PC associated with the agonist actuator (i = 1) or with
the antagonist actuator (i = 2); j is the number of PFs, equal to
the time samples within each task repetition; εi (t) is the current
activity coming from the associated i-th CF, expressed from 0 to
1. 1LTPmax and 1LTDmax are the maximum LTP and LTD values
and α is the LTP decaying factor (set at 1000 in order to allow a
fast decrease of LTP and prevent early plasticity saturation). With
respect to the model in (Garrido et al., 2013), we introduced the
τ term, so modeling the physiological delay of the neural circuit,
which ranges from 50 to 150 ms (Gerwig et al., 2005); it means
that the weight update takes into account the PF activity pre-
ceding the error-related signal carried by CFs. We set τ equal to
100 ms.
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The weights at the DCN plastic sites evolve as the learning rules
in (4) and (5).

�WMF-DCNi (t) =
2LTPmax

(Puri (t) + 1)∝
−2 LTDmax

· Puri (t) i = 1, 2 (4)

Where �WMF-DCNi (t) represents the weight change between the
MF and the target DCN associated with the i-th actuator, 2LTPmax

and 2LTDmax are the maximum LTP and LTD values and α is the
LTP decaying factor (=1000).

�WPCi-DCNi (t) = 3LTPmax · Puri (t)α

·
(

1 − 1

(DCNi (t) + 1)∝
)

− 3LTDmax

· (1 − Puri (t)) i = 1, 2 (5)

Where �WPCi-DCNi (t) is the synaptic weight adjustment at the
PC-DCN connection reaching the DCN associated with the i-th
actuator, Puri (t) is the current activity coming from the asso-
ciated PC, DCNi (t) is the current DCN activity, 3LTPmax and
3LTDmax are the maximum LTP and LTD values and α is the LTP
decaying factor (=1000). All the weights were initialized to 1.

Previous findings suggest a concrete but speculative mecha-
nism for inducing LTP and LTD at MF-DCN synapses that is
consistent with Purkinje cell control of plasticity at these sites
(Llinás and Mühlethaler, 1988; Medina and Mauk, 1999; Ozgur
et al., 2006; Pugh and Raman, 2006; Zhang and Linden, 2006).
In particular, MF-DCN synapses may increase in strength when
coactive during the high levels of calcium likely to exist dur-
ing transient decreases in Purkinje cell activity and decrease in
strength when active during lower levels of calcium, as may occur
during strong inhibitory input from Purkinje cells.

The cerebellar controller was embedded into the whole con-
trol system, with input and output customized on the task
(Figures 1A,D).

The LTPmax and LTDmax of each plasticity site could be tuned.
In the 1st plasticity site (PF-PC), 1LTPmax has to be lower than
1LTDmax, otherwise LTP, constantly generated when a state-
related activity comes from GRs, could counterbalance and nullify
LTD effects. Moreover, to maintain the stability of the learning
process, LTPmax and LTDmax values of the other two plasticity
rules (2LTPmax,2LTDmax, 3LTPmax, and 3LTDmax) have to be lower
than those defined at the PF-PC synapses.

We have explored different LTP and LTD values, evaluating
their effect on the acquisition effectiveness and rate, on the late
acquisition stability and on the extinction effectiveness and rate.
We have tested a delay-EBCC task in computational simulations,
with an EBCC session made up of 80 trials of acquisition (CS-US
pairs) and 20 trials of extinction (CS-alone). The CS was provided
as a constant activity, activating one different PF each 1 ms, US as
a step signal whose amplitude was reduced from the maximum
(=1) depending on the ongoing DCN activity at the US onset
instant (as described above in the Protocols section). US lasted
200 ms and occurred after 200 ms from each trial onset (each trial
lasted 400 ms).

For each combination (1200) of 1LTPmax and 1LTDmax, we
performed one computational simulation in which the behavior
was controlled by the single-site model (WMF-DCN and WPC-DCN

fixed at 1). We established some significant instants during the
EBCC session, to evaluate the effects of the 1LTPmax and 1LTDmax

values on the learning process. In details, DCN activity at the 40th
trial was used as index of acquisition, since after 40 repetitions
the cerebellum should have learned the stimuli association and
achieved a steady maximum output activity. As index of acquisi-
tion stability, the DCN activity standard deviation from 40th to
80th trials was computed, and it was supposed to be minimized.
Finally, the DCN activity at the 100th trial provided us with an
index about the skill of “reverse learning” (extinction), which was
supposed to be a fast and effective process. Thus, we set 1LTPmax

and 1LTDmax as a compromise between maximum acquisition
level, minimum oscillations during the plateau in late acquisition,
and maximum extinction effectiveness. Among the acceptable
combinations, we hence set 1LTPmax = 0.1 and 1LTDmax = 0.15
(Figures 2A–C).

Further, we activated the other two plasticity sites into the con-
troller and we repeated the tests, exploring different LTPmax and
LTDmax values at MF-DCN and PC-DCN, imposing an analo-
gous dynamics to the two learning rules (2LTPmax = 3LTPmax

and 2LTDmax = 3LTDmax) (Garrido et al., 2013). We computed
the same 3 indexes on the DCN activity (value at the 40th
trial, standard deviation 40th–80th trials, and value at the 100th
trial). The goal was to maintain the same properties achieved
in the tests driven only by the PF-PC plasticity. Indeed, the
slower deep nuclear synapses should not significantly affect the
overall behavior during a single session started from a naïve
state, but rather during a re-testing phase. Among the accept-
able combinations, we hence set 2LTPmax = 3LTPmax = 2·10−3

and 2LTDmax = 3LTDmax = 3.5·10−6 (Figures 2D–F). Indeed, the
multi-rate learning modeling suggests that the role of the slower
nuclear dynamics should emerge in longer timeframes calling for
consolidation mechanisms, as the ones designed for the robot
described above (multi-session EBCC and VOR).

Therefore, afterwards the tuning of the model parameters by
simulations from which LTPmax and LTDmax parameters of all the
three sites were defined, we have investigated whether, in real-
robot multiple-session protocols, the 3-site distributed model
determined a different learning behavior and how these potential
differences were related to any interactions of the synaptic weight
changes at cortical and nuclear sites.

DATA ANALYSES
All tests were performed embedding the 1-plasticity cerebellum
model (PF-PC) and the 3-plasticity model (PF-PC, MF-DCN,
PC-DCN) into the robotic controllers.

For the Pavlovian task, the model performances were evaluated
by computing the average gradient of the maximum DCN activity
during acquisition trials (1st–40th trials) in session1 (�DCNs1)
and in session2 (�DCNs2) and by calculating the mean anticipa-
tion value of the DCN activity onset, generating CR, with respect
to the US onset (latency) along all the two-session trials.

For the VOR task, the model performances were evaluated
computing the average gradient of the RMS DCN activity during
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FIGURE 2 | Cerebellar model parameters: LTD and LTP. EBCC task (80
trials of acquisition + 20 trials of extinction) in computational simulations
in which LTDmax and LTPmax of the plasticity rules were varied, testing
1200 parameters combinations. First row reports the network
performance when the task was controlled by the 1-plasticity model and
varying 1LTDmax and 1LTPmax . (A) Maximum DCN output at the 40th trial
(achieved acquisition); (B) maximum DCN output at the 100th trial (late

extinction); (C) maximum DCN output standard deviation from 40th to
80th trials (late acquisition stability). Once fixed 1LTDmax and 1LTPmax , the
same performance parameters (D–F) were evaluated when the task was
controlled by the 3-plasticity model, varying the LTDmax and LTPmax of
the other two plasticity sites (2LTDmax , 2LTDmax , 3LTDmax , 3LTPmax ). The
yellow arrows and points highlight the position of the selected LTP and
LTD parameters.

acquisition trials (1st–10th trials) in session1 (�DCNs1) and in
session2 (�DCNs2).

The One-Way ANOVA test was used to check whether each
model showed a comparable performance across the different
experimental conditions of each task (3 levels of ISI and 3 levels
of HR).

For each parameter quantifying the learning performance, the
t-test for two independent populations was applied to highlight
any differences between 1-plasticity and 3-plasticity behaviors, for
each experimental condition separately (ISI1, ISI2, and ISI3; HR1,
HR2, and HR3).

In all tests, the level of statistical significance was preset to p <

0.01. Unless otherwise stated, all results are indicated as mean ±
standard deviation.

RESULTS
PAVLOVIAN TASK
The time-evolving states were decoded into the granular layer.
From granule cells, activity was transmitted to the PC and in
parallel excited the DCN. The US-related pattern reached the
Purkinje cell when US-threshold was detected. The Purkinje cell
in turn inhibited the DCN. At the beginning of the acquisi-
tion phase, the Purkinje cell was spontaneously active, supplying
tonic inhibition to the DCN (Figure 3A). After acquisition, PC
activity was decreased; summing up all the presynaptic (con-
stant or plastic) inputs to DCN, DCN neurons began to fire

strongly before the onset of the US as neurorobot acquired the CR
(Figure 3B). Then during extinction trials, PC activity was pro-
gressively re-increased; and DCN did not produce CR anymore
(Figure 3C).

In each condition (three different US thresholds), the ISI
came out not perfectly constant, both across trials of the same
test and across the 20 tests (ISI1 1-plast: 349 ± 16; ISI1 3-
plast: 350 ± 16; ISI2 1-plast: 478 ± 21; ISI2 3-plast: 493 ±
34; ISI3 1-plast: 524 ± 17; ISI3 3-plast: 516 ± 17 ms). This
variability was related to the noise due to the inertial com-
ponents of the robot and to the tracking system refresh. In
each condition, no statistical differences came out between the
resulting ISI which 1-plasticity and 3-plasticity models were
subjected to. Thus, the necessary prerequisite about the same
experimental conditions between the two cerebellar models was
verified, so allowing us to ascribe possible differences between
their behavioral outcomes to the different neural mechanism
functioning.

The One-Way ANOVA tests confirmed the robustness and
consistency of each cerebellar model behavior in the three exper-
imental conditions. Both for the 1-plasticity model and for the
3-plasticity model, ISI value did not affect the learning rates, nei-
ther the CR latency (overall mean CR latency 1-plast: 66 ± 19 ms;
overall mean CR latency 3-plast: 63 ± 23 ms). Only for the 3-
plasticity model in session1, the ISI factor resulted significant on
the �DCNs1 (F = 11.9; p = 0.00005).
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FIGURE 3 | Real-robot Pavlovian task. Three exemplificative trials of the session1 (80 trials of acquisition + 20 trials of extinction) of Pavlovian task carried
out by the neurorobot are described by displaying the provided CS and US, IO, PC and DCN activity. (A) 1st trial, (B) 80th trial, (C) 85th trial.

When comparing the two models in terms of
�DCNs1,�DCNs2, and CR latency for each ISI, a signifi-
cant difference came out only for the �DCNs2 in all the three ISIs
(Figure 4): in ISI1, t = −5.8; p = 9.3289e-07; in ISI2, t = −5.8;
p = 1.2288e-06; in ISI3, t = −4.6; p = 4.0573e-05. Hence, the
learning in the re-testing phase was significantly faster when the
neurorobot was controlled by the 3-plasticity model than by the
1-plasticity model (Figure 5A).

The modulation of each plastic connection embedded into the
cerebellar models represents the intrinsic mechanisms underly-
ing these observed behaviors. For each trial, the PF-PC synapses
that were activated without any correlated CF-signal reaching the
PC underwent LTP, whereas the PF-PC synapses activated at the
time-states of the movement when a signal arrived to the PC from
CF developed LTD. As the trial-by-trial variability, LTD and LTP
did not develop alike in fixed bundles of PF-PC connections; the
most of PFs decoded system time-states outside the US time-
frame; indeed, the US lasted 20% of the whole trial duration.
Therefore, these synapses maintained maximum values (satu-
rated LTP); the PFs always decoding system time-state during US
occurrence underwent an equal strong LTD; the few PFs at the US
time-window borders underwent different balance LTD/LTP, thus
they spread across the weight ranges (0–1) (Figures 5B–E).

The main phenomenon driving acquisition was the develop-
ment of LTD at the PF-PC synapses. In the 3-plasticity model,
in the meanwhile, with a slower rate, plasticity at the MF-DCN
synapse and at the PC–DCN synapse occurred (Medina et al.,
2000) (Figures 5F–I): the nuclear sites evolved taking charge of
a part of the activity generating output responses, which ini-
tially was entirely due to the cortical plasticity effects. In other
words, a partial transfer of output activity occurred from corti-
cal to nuclear plasticity sites. In session1, this slow transfer did
not change any overall learning performances. The network was

FIGURE 4 | Real-robot two-session Pavlovian task: models

comparison. The histogram reports the performances (�DCN) of the
1-plasticity and 3-plasticity models in the three EBCC conditions (ISI1, ISI2,
and ISI3) in both sessions (s1 and s2). Bars indicate the mean across the 20
tests and the relative standard deviation. ∗Corresponds to significant
statistical difference between the two cerebellar models (p < 0.01).

able to rapidly extinguish the stimuli association by fast PF-PC
LTP, but without canceling the slower nuclear plastic changes
which had occurred. At the first trials of the session2, the cere-
bellar synapses of the 3-plasticity model were in an effectively
different state compared to the synapses of the 1-plasticity model:
the distributed plasticity dynamics, able to store information, was
responsible for the higher learning rate in session 2.
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FIGURE 5 | Plasticity roles in real-robot Pavlovian task. (A) The
two-session Pavlovian task, with ISI2. The curves are the maximum DCN
output within each trial, averaged on the 20 tests, and the areas are the
standard deviations. Dark gray: 1-plasticity model; light gray: 3-plasticity
model. (B,C) For each model, histograms of the PF-PC weights at the end of
three trials (1st, 80th, and 85th), in one of the 20 tests. The arrows indicate
the percentages of saturated LTD at PF-PC synapses (weights = 0) at the
80th trial. For the 1-plasticity model, a considerable number of PF-PC

connections is saturated to zero, on the contrary for the 3-plasticity model
none of the connections is saturated. (D,E) For each model, PF-PC weights at
the end of each trial of the test. Here each of the 1000 PF-PC synapses
corresponds to one line (there are a lot of overlap, i.e., PF-bundles, as
explained in the Results). (F,G) For each model, MF-DCN weight at the end of
all trials of the test. The value is fixed for the 1-plasticity model. (H,I) For each
model, PC-DCN weight at the end of all trials of the test. The value is fixed for
the 1-plasticity model.

VOR TASK
The onset of the vestibular stimulus, i.e., the onset of MF activ-
ity, initiated the generation of the state coding within the GR
layer, and also provided the excitatory drive to DCN cells. The

decoding of the gaze error reached continuously the Purkinje
cells through the IOs. The Purkinje cells in turn inhibited the
DCNs. At the beginning of the acquisition phase, the Purkinje
cells were spontaneously active, supplying tonic inhibition to the
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FIGURE 6 | Real-robot VOR task. Three exemplificative trials of the session1 (40 trials of acquisition + 20 trial of extinction) of VOR task carried out by the
neurorobot are described by displaying the IO, PC, and DCN activity. (A) 1st trial, (B) 40th trial, (C) 45th trial.

DCNs (Figure 6A). After acquisition, PC+ activity was decreased.
Summing up all the presynaptic (constant or plastic) inputs to
DCN+, DCN+ neurons began to fire so as to continuously
counterbalance the head movement, minimizing the gaze error
(Figure 6B). Then during extinction trials, PC activity was pro-
gressively re-increased; and DCN+ decreased the output motor
commands actuating eye motion (Figure 6C).

In each condition (three different HRs), the maximum HR
came out not perfectly constant, both across trials of the same
test and across the 15 tests (HR1 1-plast: 24 ± 0.8; HR1 3-plast:
24.8 ± 2; HR2 1-plast: 29.2 ± 0.8; HR2 3-plast: 30 ± 1; HR3 1-
plast: 36.9 ± 0.7; HR3 3-plast: 36.2 ± 1.1). This variability was
due to the inertial components of the robot. In each condition,
no statistical difference came out between the resulting HR which
1-plasticity and 3-plasticity models were subjected to. Thus, as
for the EBCC task, the necessary prerequisite about the same
experimental conditions between the two cerebellar models was
verified, so allowing us to ascribe possible differences between
their behavioral outcomes to the different neural mechanism
functioning.

The One-Way ANOVA tests analyzed whether the experimen-
tal condition (3 levels of HR) affected the outcome behavior
for each cerebellar model. Both for the 1-plasticity model and
for the 3-plasticity model, HR value affected the two learning
rates (�DCNs1 1-plast: F = 63167, p = 0; �DCNs1 3-plast: F =
24433, p = 0; �DCNs2 1-plast: F = 261, p = 0; �DCNs2 3-plast:
F = 6150, p = 0). Higher was the head perturbation, faster was
the DCN activity modulation.

When comparing the two models in terms of �DCNs1 and
�DCNs2 for each HR, a significant difference came out only for
the �DCNs2 in all the three HRs (Figure 7): in HR1, t = −24.4;
p = 0; in HR2, t = −29; p = 0; in HR3, t = −132; p = 0. Hence,
the learning in the re-testing phase was significantly faster when
the neurorobot was controlled by the 3-plasticity model than by
the 1-plasticity model.

The DCN output of the 3-plasticity model showed an evo-
lution across sessions, while the DCN output of the 1-plasticity

FIGURE 7 | Real-robot two-session VOR task: models comparison. The
histogram reports the performances (�DCN) of the 1-plasticity and
3-plasticity models in the three VOR conditions (HR1, HR2, and HR3) in
both sessions (s1 and s2). Bars indicate the mean across the 15 tests and
the relative standard deviation. ∗Means significant statistical difference
between the two cerebellar models (p < 0.01).

model repeated exactly the same adaptation process regardless
any previous achieved acquisition (Figure 8A).

Since the functioning of the cerebellum as predictive controller
acting based on previous trials, during the extinction phases the
after-effects occurred for few repetitions: even if the head rotation
was canceled, the network output still produced eye compensa-
tion; this overcompensation led to a gaze error with opposite sign
(Figure 8B). Rapidly, the network learned to bring back the error
to zero level.

The modulation of each plastic connection embedded into the
cerebellar models represents the intrinsic mechanisms underlying
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FIGURE 8 | Plasticity roles in real-robot VOR task. (A) The two-session
VOR task, with HR1.The curves are the RMS DCN output within each trial,
averaged on the 15 tests, and the areas are the standard deviations. Dark
gray: 1-plasticity model; light gray: 3-plasticity model. (B) The corresponding
RMS gaze error within each trial, taking into account the error sign. (C,D) For
each model, histograms of the PF-PC+ weights at the end of three trials (1st,
40th, and 45th). in one of the 15 tests. The arrows indicate the percentages
of saturated LTD at PF-PC synapses (weights = 0) at the 40th trial. For the
1-plasticity model, a considerable number of PF-PC connections is saturated
to zero, on the contrary for the 3-plasticity model none of the connections is

saturated. (E,F) For each model, PF-PC+ weights at the end of all trials of the
test. Here each of the 2000 PF-PC synapses corresponds to one line (there
are a lot of overlap, i.e., PF-bundles, as explained in the Results). (G,H) For
each model, MF-DCN+ weight at the end of each trial of the test. The values
are fixed for the 1-plasticity model. (I,J) For each model, PC+-DCN+ weight
at the end of all trials of the test. The values are fixed for the 1-plasticity
model. For picture clarity, we report only the weights at the DCN+, which is
the only output cell involved during the acquisition phases, since the positive
sign of the gaze error (in extinction for few trials, during the after-effects,
DCN- is slightly involved).
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these observed behaviors. For each trial, the PF-PC synapses that
were activated without any correlated CF-signal reaching the PC
underwent LTP, whereas the PF-PC synapses activated at the time-
states of the movement when a signal arrived to the PC from
CF developed LTD. Sequentially all the 2000 PFs decoded sys-
tem time-state during head motion, therefore corresponding to
a not-null but not constant gaze error; they underwent a pro-
portional LTD, hence spreading across the weight range (0–1)
(Figures 8C–F). The PF-PC weight histograms (Figures 8C,D)
clearly showed that in late acquisition the same behavioral out-
comes, i.e., steady eye motion fully compensating head motion,
was achieved by different weight distributions between the two
models. Most of these weights in the 1-plasticity controller was
saturated at 0 level; whereas, in the 3-plasticity one, they were
more distributed around half value of their range. The main
phenomenon driving acquisition was the development of LTD
at the synapses PF-PC; however, in the 3-plasticity model, in
the meanwhile, with a slower rate, plasticity at the MF-DCN
synapse and at the PC–DCN synapse occurred (Medina et al.,
2000) (Figures 8G–J). Thus, in the same way as in the EBCC task,
a partial transfer of activity responsible for motor response gen-
eration occurred from cortical to nuclear plasticity sites. These
changes of weights at DCN sites led to a partial release of the
cortical synapses. The network was then able to decrease the
eye motion by fast PF-PC LTP, but without canceling the slower
nuclear plastic changes had occurred. Again the distributed plas-
ticity dynamics, able to store information, was responsible for the
higher learning rate in session2.

The memory transfer effect pointedly arose in the gain-up
VOR test (Figure 9). Indeed, the passage from cortical to nuclear
sites made the PF-PC synapses ready for further plasticity. In
this way, they were able to react to other additive perturbations,
suddenly presented to the system. In late acquisition, the per-
formances of the two models were comparable, but the PF-PC
synapses of the 1-plasticity controller were close to saturation.
When the gain-up stimulus was provided, the 1-plasticity model
exploited the residual cortical plasticity till complete saturation; it
did not lead to an accurate eye compensatory movement. Whilst,
the 3-plasticity model exploited the more persistent nuclear
changes and the more availability of plasticity at cortical level; this
efficient plasticity interaction led to an accurate recalibration of
the eye motion.

DISCUSSION
In this study, the developed cerebellar scheme, equipped with cor-
tical and nuclear plasticity mechanisms (Garrido et al., 2013),
has been transformed into a real-time controller of cerebellar-
mediated tasks in real-world, EBCC-like and VOR protocols. In
this way, it allowed us to challenge the realistic learning properties
of the model in uncertainty conditions, in which inputs repeata-
bility was not guaranteed along trials within each test and along
multiple tests. By varying stimuli patterns, control robustness
has been investigated. Through the designed protocols, we have
shed light on acquisition, extinction and consolidation mecha-
nisms, credited to the different active plasticity sites, and we have
tested the generalization capability of the modeled computational
mechanisms in learning both associative discrete responses and

continuously tuned motor responses. The cerebellar controller
equipped with cortical and nuclear plasticity mechanisms proved
superior to single-site plasticity in developing consolidation pro-
cess and memory transfer and in implementing adaptable gain
control facing varying operative ranges.

The model we have customized and embedded here in the
neurorobot was previously developed as a general computational
scheme and tested in perfectly repeatable in-silico simulations.
Moreover, the tracking task carried out by a simulated robotic
arm did not represent a cerebellum-based learning paradigm.

The model was built on the assumption that there are three
main cerebellar learning sites, one in the cerebellar cortex (PF-
PC) and two in the DCN (MF-DCN and PC-DCN), all generating
LTP and LTD with site-specific dynamics.

Recently, neurophysiological studies (Masuda and Amari,
2008) proposed that MF-DCN synapses or PC-DCN synapses are
plastic on a slow time scale and store permanent memory, whose
content is passed from the cerebellar cortex storing transient
memory.

Clear evidences from mouse mutants (De Zeeuw and Yeo,
2005) showed similarities in EBCC and VOR behaviors: post-
synaptic parallel fibers LTD is the main responsible for adapta-
tion; whereas postsynaptic parallel fibers LTP is responsible for
decreasing VOR gain and for driving EBCC extinction. Since
spontaneous recovery of the original response and faster relearn-
ing (“savings” effect) observed in human behaviors, they sug-
gested that other forms of plasticity may contribute when longer
time periods are available. One of the interesting candidates for
this mechanism is the firing rate modulation in the deep nuclei.
Their long-lasting changes in intrinsic excitability, which are rel-
atively difficult to reverse, make this form of plasticity well suited
for chronic motor learning and persistent memory.

The behavioral fall-outs of this model emerged in our tests. To
our knowledge, it is the first time an embodied distributed real-
istic cerebellar model, tested in cerebellum-mediated paradigms,
came across able to robustly reproduce human-like effective
learning properties in acquisition, extinction and re-acquisition,
dealing with different external and noisy stimuli in real-world.

In the Pavlovian task, the neurorobot expressed response lev-
els comparable to those found in human EBCC with similar
ISIs, where a stable behavior was achieved in about 30 trials
(Bracha et al., 2000; Hoffland et al., 2012; Monaco et al., 2014).
Concerning the VOR task, neurophysiological studies showed
how in a visual-vestibular training the cerebellum functioning led
to an image slip minimization around 0.2◦ (Kimpo et al., 2005).

The 3-site model revealed itself in the motor memory trans-
fer between cerebellar sites; in this way, the cerebellar model was
equipped with the intrinsic capability to optimize the learning on
multiple time-scales and to effectively adapt to dynamic ranges of
stimuli.

These outcomes are consistent with the hypothesis about the
coexistence of two processes proceeding at different rates in the
cerebellum-mediated learning and located in different cerebel-
lar sites, cerebellar cortex and deep cerebellar structures (Medina
et al., 2001; Smith et al., 2006). The fast process was made dom-
inant by large errors, while the slow process by small errors. The
existence of a fast rapidly reversible learning process emerged
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FIGURE 9 | Real-robot gain-up VOR task. (A) The gain-up VOR test,
with HR1 from 1st to 35th trials and then 150% of HR1 for the
following 15 trials. The curves report the RMS gaze error within each
trial, taking into account the error sign. Dark gray: 1-plasticity model;
light gray: 3-plasticity model. (B,C) For each model, PF-PC+ weights at
the end of all trials of the test. Here each of the 2000 PF-PC synapses

corresponds to one line. (D,E) For each model, MF-DCN+ weight at the
end of all trials of the test. The values are fixed for the 1-plasticity
model. (F,G) For each model, PC+-DCN+ weight at the end of all trials
of the test. The values are fixed for the 1-plasticity model. For picture
clarity, we report only the weights at the DCN+, which is the only
output cell involved in this acquisition test.

during the early acquisition and extinction phases. The existence
of a slower process emerged in late acquisition. When re-tested,
the neurorobot seemed to partially exploit previous learned skills;
indeed, the extinction phase of the first session did not reset all the
DCN plastic changes achieved in the acquisition training.

In summary, we have linked low-level mechanisms of the cere-
bellar circuit with high-level functions, by integrating a detailed
adaptive cerebellar controller into a neurorobot sensing and
operating in real-world. The embedded plasticity dynamics were
reflected in behavioral tasks: the fundamental aspects of cerebel-
lar function—prediction, learning, timing and memory—were
generated (D’Angelo et al., 2013).

As a further advance, the platform could be updated with
new neurophysiological properties, such as the IO-DCN excita-
tory connection, working on a much faster timescale than the
ones embedded in the present neural model (Luque et al., 2014).

Furthermore, the distributed plasticity model could be trans-
lated into a more realistic spike-timing computational scheme
(Casellato et al., 2014).

It is envisaged that improving the realism of the model will
allow us to make predictions about the nature of implicit com-
putations occurring in the cerebellar circuits; it could represent a
precious tool to simulate neural dysfunctions and thus to predict
behaviors, or viceversa to reproduce observed misbehaviors and
thus to predict underlying dysfunctions; the platform can be eas-
ily manipulated to generate and test any conditions to associate
neural features with explicit functions.
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