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The motor system generates time-varying commands to move our limbs and
body. Conventional descriptions of motor control and learning rely on dynamical
representations of our body’s state (forward and inverse models), and control policies
that must be integrated forward to generate feedforward time-varying commands; thus
these are representations across space, but not time. Here we examine a new approach
that directly represents both time-varying commands and the resulting state trajectories
with a function; a representation across space and time. Since the output of this function
includes time, it necessarily requires more parameters than a typical dynamical model. To
avoid the problems of local minima these extra parameters introduce, we exploit recent
advances in machine learning to build our function using a stacked autoencoder, or deep
network. With initial and target states as inputs, this deep network can be trained to
output an accurate temporal profile of the optimal command and state trajectory for a
point-to-point reach of a non-linear limb model, even when influenced by varying force
fields. In a manner that mirrors motor babble, the network can also teach itself to learn
through trial and error. Lastly, we demonstrate how this network can learn to optimize a
cost objective. This functional approach to motor control is a sharp departure from the
standard dynamical approach, and may offer new insights into the neural implementation
of motor control.

Keywords: optimal control, deep learning, neural networks, arm reaches, motor control, motor learning

Introduction

That standard framework for describing the motor system is dynamical. Forward and inverse
models along with a control policy represent the motor system at a specific instant in time; thus
they are representations across space, but not time. To generate feedforward commands and
estimated state trajectories these representations must be integrated forward in time (Figure 1A).
This dynamical approach is sensible given Newton’s Laws of motion and the standard descriptions
of optimality (e.g., Euler-Lagrange or Hamilton-Jacobi-Bellman equations). The easy analogies
between the motor system and robotics have long fueled synergies between these fields, further
strengthening the dominance of these dynamical concepts. Control theory, however, informs us
that there are alternatives to the dynamical description for controllers. The nervous system could
therefore rely on different representations, perhaps explicitly time-varying representations of
commands and trajectories.

The solution to an optimal control problem, an extremal trajectory, can be uniquely
specified by the same parameters that define the control problem; e.g., the objective func-
tion, initial conditions, terminal penalties, etc...These optimal trajectories can therefore
be represented with a function of time (Figure 1B). For example, with linear dynamics
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FIGURE 1 | (A) The standard description of motor control is dynamical and
must be integrated forward in time to generate commands and state
estimates. (B) An alternative is to represent the (integrated) solution for the
system. In this case the system is represented with an algebraic model that is
a function of the cost parameters, boundary conditions, etc...(X) and time.
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(C) In theory the output of this model can include time as well, rendering the
model an infinite dimensional trajectory function. While the standard
description can only represent the command (D) and state (E) at a specific
instant in time, a trajectory function represents the continuum of commands
and states as its output.

and quadratic costs, the optimal solution is the well-known LQR
solution, which in theory could be integrated and expressed as a
function of time. With even easier optimization problems such
as the minimum jerk trajectory, this has already been demon-
strated, and a point along the minimum jerk is described as a
function of time (Hogan, 1984; Hogan et al., 1987). In theory we
could express the solution as a function that maps the initial state,
final state and movement duration to the (infinite dimensional)
trajectory (Figure 1C). In general finding analytic expressions
for these trajectory functions is intractable. Approximating these
functions, however, may be relatively easy.

Recent advances in deep neural networks have appeal-
ing characteristics for approximating this optimal trajec-
tory function. Deep architectures excel at finding hidden,
low-dimensional features by discovering statistical regularities
in high-dimensional training data, and can do so in a relatively

unsupervised fashion (Hinton and Salakhutdinov, 2006; Ben-
gio et al, 2007; Vincent et al., 2008, 2010; Goodfellow et al.,
2009; Larochelle et al, 2009). In the context of our optimal
control function, we can treat extremal trajectories as data by
vectorizing both the optimal state and command (either by bin-
ning the data across time or by parameterizing the trajectories
with temporal bases). To approximate these optimal trajectory
functions, we have a deep network first obtain low-dimensional
features, and then learn a mapping between them and the
trajectories’ uniquely defining parameters. This one-to-many
function can be learned relatively easy through the unsuper-
vised methods of training stacked autoencoders, and can then be
refined.

Here we demonstrate that a deep network can accurately
approximate optimal trajectory functions for motor control. This
network maps a behavior’s defining variables, such as the initial
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and desired final state, to the optimal outputs: a complete vector-
ized profile of the state and command; thus providing the roles
of both a forward model and a controller. Using point-to-point
reaches for data, the network is trained to simultaneously rep-
resent optimal trajectories for freely moving reaches, and those
made in either a clockwise or counterclockwise curl field. We
then show that this network architecture can be boot-strapped,
and teach itself in a manner analogous to motor babble (Melt-
zoff and Moore, 1997; Dearden and Demiris, 2005; Saegusa et al.,
2009). The function learned this way, though not optimal, does
correctly move the limb through the desired starting and stop-
pinglocations. Finally, we demonstrate how the network can then
be trained to output optimal trajectories that minimize a cost
function. This functional approach to motor control is a break
from traditional dynamical approaches, and offers a new frame-
work for examining both computational and neural processes of
motor control.

Materials and Methods

Optimal Trajectory Functions

Here we reframe the conventional optimal control problem from
one of solving a set of dynamical constraints using rate equations,
to one of approximating a function. Consider a dynamical system
we wish to control defined by the following rate equations,

x=f(x,urt) (1)

where x € R” and u € R" are the state and command. The cost
function to be minimized is,

T
]=§0(x(f=T),xd,T)+/ Lx®),u(®),dt (2
0

where x; is the desired final state, T is the movement duration,
L is the instantaneous cost associated with being in state x and
using command, , and ¢ is the terminal penalty. The solution is
found by obtaining the optimal policy,

w0 =m(x, t) (3)

such that there is some corresponding state and command trajec-
tory {xo ®, u”(t)} with x (t = 0) = x, and t € [0, T] that min-
imizes J. Depending on the dynamics and the objective function,
these criteria may admit multiple optimal solutions. In this study,
however, we assume we can limit these solutions to one unique
pair. For example, with the limb we are only interested in solu-
tions that include counterclockwise rotations of the elbow (i.e.,
we ignore non-physiological solutions). Therefore, each control
problem we consider has a unique optimal trajectory.

Usually these optimal trajectories are characterized by nec-
essary and sufficient conditions for optimality, e.g., the Euler-
Lagrange equations, the Hamilton-Jacobi-Bellman equations or
the Pontryagin minimization principle (e.g., see Bryson and Ho,
1975; Stengel, 1994; Bertsekas, 1995). These conditions explic-
itly rely on the dynamical description of the system. However,
as stated above, the problem description as defined by Equations

(1), (2), along with the states x; and xp, are uniquely associated
with the optimal trajectory. In principle therefore, some func-
tion exists that maps these parameters to the optimal solutions
(Figures 1B,C),

{(p7 Lv T7 Xd, xo} — {xo (t) ’ uO (t)} (4)

Since we know that these solutions are parameterized by a small
number of variables, they must reside in a low-dimensional
manifold. Thus, we can employ standard methods to identify
this low-dimensional space and approximate the optimal control
functions.

Note that since time is continuous, the output of our opti-
mal control function is infinite dimensional (Figures 1D,E). We
can alleviate this difficulty by decomposing the state and com-
mand trajectories into a set of finite parameters (e.g., Fourier
series coefficients, or wavelet parameters). In this study we take a
straight-forward approach and directly discretize the trajectories
by sampling them evenly across time at N points,

¥ 0, ) - [x°,U0°]" (5)
X0 =[x (t), %% () + ..., ()]

U® = [u (t), 6 (82) , ., u®(tn)] "

where t; = (i—1)T/(n—1). With this “vectorized” representation
of the optimal trajectories, the output of our optimal function is
now (n + r) N-dimensional.

Turning our attention to the function inputs, we note that for
many behaviors, the objective function of Equation (2) is largely
invariant. That is, though the goals for various behaviors may
change in terms of what states the system is trying to visit (x;)
the functional form of the underlying costs, e.g., penalties on
metabolic energy, kinematics, kinetics, etc..., do not change. As
such we can assume the functions ¢ and L are constant, and
for our purposes implicit. For this exploratory study, we shall
further restrict our attention to movements with the same move-
ment duration, T. Finally, for some of our results we will include
reaches in a force field, for these results we append the input with
the variable, &, to encode the force field conditions: clockwise,
counterclockwise or not present. Thus, our optimal function is of
the form,

[x°, U] = Flxg, %0, €) (6)
or, using a short-hand notation,
y=F&) ?)

where Y is the output (the vectorized trajectory) and X is the
input. Thus, we have reframed the conventional optimal control
problem from one of solving a set of dynamical constraints using
rate equations, to one of approximating a function. To be clear,
by no means does this imply that this reframed problem has been
simplified. It is merely a different formalization of the same fun-
damental problem: finding the state and command trajectories
that minimize a cost (Equation 2).
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Network Approximation

Though the output of our optimal trajectory function approxima-
tor is high-dimensional, J € R®IN e know that it is exactly
a function of the low-dimensional variable, ¥ € Rk, where
k < N. Thus, our optimal trajectories reside in k-dimensional
manifold. Traditional linear methods such as principle compo-
nent analysis (PCA) will fail at accurately identifying a non-linear,
low-dimensional space. Deep neural networks can discover such
low-dimensional representations, and can do so in an unsuper-
vised manner. To approximate our optimal function, we con-
struct a network in two stages. First we learn a deep autoencoder
that finds a set of low-dimensional features that accurately char-
acterize our function’s outputs. Then we learn a shallow network
that maps from the function’s inputs to these low-dimensional
features.

With a training set of optimal trajectories, {Jii}’z |» @ series
of feedforward autoencoders are trained, then unrolled and
stacked (see Figure 2). The end result is a network that maps
from the full-dimensional output, to a series of increasingly
lower-dimensional representations, and then back up to a full-
dimensional approximation to the output (Figure 2A). This tech-
nique has been shown to learn good low-dimensional features
that accurately characterize data (Bengio et al., 2007; Vincent
et al., 2008, 2010; Goodfellow et al., 2009; Larochelle et al.,
2009). Using the stacked autoencoder, the optimal trajectories are
mapped down to the inner-most, lowest-dimensional feature set,
z. Then a shallow network is trained on the input-output pairs
{X , z"}:"=1 via supervised learning. In the final step, the shallow
network is coupled to the top-half of the stacked autoencoders
(Figure 2B). The final network will have many hidden layers,
which would normally make training susceptible to many poor
local minima. However, the two-stage training of unsupervised,
generative pretraining (for obtaining low-dimensional features)
and supervised training on a shallow network (for the input lay-
ers) should yield good network weights (in the sense of small
reconstruction error). Afterwards the network can be refined
through standard supervised learning (see below).

m

Simulations and Training Data

Reaches were simulated using a two-link arm model with four
states: should and elbow angles (6;,0,) and their velocities.
Realistic human limb link lengths and inertial parameters were
used (obtained from Berniker and Kording, 2008, 2011). The
force field was defined in terms of joint coordinates, T =

[0¢;; —c0] [9;,93]T where ¢ was 5 Ns/rad for the clockwise field,
and -5 Ns/rad for the counterclockwise field. Since we do not
consider inverted elbow angles, we can define the limb’s state in
terms of the endpoint and its velocity in Cartesian coordinates,

x = [xe, Ve Xe, ye] T The shoulder was defined as the origin (x, =
ye = 0). Only reaches within a rectangular workspace, [—0.25,
0.25] in the x-direction, and [0.15, 0.55] in the y-direction, were
considered.

Training data were optimal under Equation (2). The termi-
nal cost was the squared Euclidean error from the target,p =
1/2(x(T) — x7)T® (x (T) — x,), where ® = 100 and T = 1.0.
The instantaneous cost was the squared norm of the command,
L = 1/2u”Ru, where R = I. Initial positions for the limbs end-
point were sampled uniformly over the rectangular workspace.
The final desired position was obtained by choosing a point in
a random direction and distance (between 1 and 15cm) from
the initial position, such that it remained within the rectangu-
lar workspace. Initial and final desired velocities were always set
to zero. The resulting two-point boundary value Euler-Lagrange
equations were solved in Matlab to obtain a training set of
optimal trajectories {x"’(t), u’“(l‘)}z."= -

The corresponding unique identifiers for each reach were the
initial and final desired state, (x4, X,), as well as a flag for the
force field conditions £, making nine variables in total. Since all
reaches started and ended with zero velocity, the inputs were
reduced to a 5-element vector X', the initial and final desired
positions as well as the field flag. All inputs and outputs were
scaled to lie between zero and one to be consistent with the net-
works range of values. & encoded the force field condition with
one of three values, [0.05, 0.5, 0.95].

OO00000 =

FIGURE 2 | (A) A stacked autoencoder is trained on high-dimensional data,
{))' }m_ , finding a series of increasingly lower-dimensional features in the
data. (_B) A shallow network trains on the map from function inputs, X to

A
A B Y=[UX]
Y
A u(t/)
v
R u(t,)
w :
. :
u(t,)
x(t,)
x(t,)
input layer :
x(t,)
L 1
top-half of auto-encoder
low-dimensional features, z. This network is then coupled to the top-half of
the stacked autoencoder to construct a function from X, the boundary
conditions, to ) the discretized trajectory.
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Training the Optimal Trajectory Function
To train the network on optimal trajectories, 2000 random
reaches under each of the three force field conditions were
obtained, randomly assigning some for training (s = 5000), and
others for validation (1000). In addition, a set of 24 test reaches
were computed, for comparing the network’s results across dif-
ferent conditions and training paradigms. Each reach’s state and
command trajectory was evenly sampled such that it produced a
data vector, ) with (n + r)N = 606 elements (dt = 0.01). The
corresponding input for each reach was the 5-element vector A*.
Initial tests of the depth and number of nodes of the network
found that relatively good reconstruction could be obtained with
an autoencoder that mapped the 606-dimensional optimal tra-
jectories down to 100 and then five hidden features (and then
back up to 100, then 606 dimensions). However, to account for
inaccuracies in the shallow networks map from inputs to these
low-dimensional features, the size of the inner feature set, z,
was increased to 10 for the results shown here. Therefore, the
autoencoder was built with five layers. An additional two layers
were used to learn the map from function inputs X to the low
dimensional feature set, z.

The network nodes used sigmoidal activations, f (hf) =

1/(1 4+ exp(hf»)), where hg is the i node’s input in layer /, and
B = wWi=1A=1 4 B WL s the matrix of weights that con-
nects the previous layers activations, A'~! to layer /, and B! is a
vector of biases for the units in layer . The input to the network’s
first layer is defined as A® = X, and the output of the network is
Y. Using software written for this purpose along with third party
optimizing software (fmin), the network was trained until con-
vergence criteria were met; either 2000 iterations of optimizing,
or an error threshold was met.

Training on Self-generated Data

The self-trained network used the same architecture described
above, only now the input, X, was 4-dimensional since we did not
examine reaches in a force field. The initial training set consisted
of randomly generated reaches (i = 4000), made by issuing a
sum of sinusoids of small random amplitude torques. These small
commands to the limb resulted in reaches of relatively small dis-
placements. With these randomly generated commands multiple
reaches might start and stop at the same states but use very differ-
ent commands. Thus, this first training set cannot be accurately
learned with a function. However, by training on this data the
network learns a consistent set of commands and trajectories that
can best approximate the data in a functional form. After train-
ing, the network was used to generate a second set of training
reaches by issuing random inputs to the network. The resulting
set of self-generated reaches were of relatively larger displace-
ments, but again did not land on the desired target. This process
was repeated once more, producing training reaches that were
adequately close to their desired final state.

Optimizing the Trajectory Function

In a final exercise the network learned to optimize reaches after
being self-trained. To do this we adapted the network through
supervised training on the cost function (Equation 2). To do so

we must compute the appropriate derivatives:

8]_[8]8X+8]:|8U )

80— |aXaU ' aU] 30

where 6 is a vector of network weights. With our current archi-
tecture, we cannot compute dX/dU, since the network has not
learned this causal relationship, the forward dynamics of an
entire trajectory. Therefore, we alter the network so that the
output is now only the vectorized command, )V = U. Then a
new shallow, single hidden layer network trained on the vec-
torized forward dynamics, that is, a mapping from the vec-
torized commands and the initial state, [U, x(tl)], to X. Note
that this relationship is independent of whether or not the net-
work is trained, or the trajectories are optimal, it is merely the
input-output trajectories of the limb model. Using this forward
dynamics network the deep network was optimized using gradi-
ent descent in a series of iterative steps: train the deep network
using the current forward dynamics network, then train the for-
ward dynamics network on trajectories obtained using the deep
network.

An accurate and precise forward model was needed for the
gradient, 01X /9 U. However, the dynamics of the limb, under the
control of our network, are necessarily low-dimensional. There-
fore, the training data for learning this forward model would
be impoverished, and the corresponding gradient information
would be severely limited. To alleviate this complication, on each
round of training/optimizing a random 50 training commands
were obtained from the deep network. Random additive noise
was used to make 20 unique versions of each of these com-
mands (1000 random commands). These were combined with
the randomized commands of the previous two rounds of train-
ing for a total of 3000 command trajectories. These commands
and their accompanying state trajectories were then used to train
the forward dynamics network. On the subsequent round a new
50 training commands were obtained and the process repeated
(again using 3000 command-trajectory pairs).

Just as in the previous section, the deep network was trained
on self-generated data. Once trained, the deep network produced
reaches essentially identical to those displayed in the previous
section. Then the network was optimized as described above.
Training was halted after 300 rounds of optimizing. To overcome
some of the additional computational complexities accompany
this training, we down sampled the trajectories, increasing dt
from 0.01 to 0.02. This reduced the number of parameters and
sped up training and optimizing.

PCA Function

To serve as a point for comparison, a linear low-dimensional
function was created using a PCA decomposition of the train-
ing data. The first five principle components were used to
find a 5-dimensional feature vector, z, and then a linear fit
was obtained between these features and the 5-dimensional
input vector, X. Including more components in the feature
vector cannot improve performance since the input was only
5-dimensional.
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Results

We examined the ability of a deep network to represent a tra-
jectory function; that is, a function that outputs the entire state
and command trajectory for a movement. Using this network, we
present results on how it can approximate reaches after training
on optimal example data, train itself with self-generated data, and
finally, learn to make reaches that optimize a cost function.

A Point-to-point Optimal Trajectory Function

A deep network that approximates an optimal trajectory func-
tion was trained on point-to-point reaches moving freely through
space, in a clockwise curl field, or counterclockwise curl field
(defined through joint velocities, see Materials and Methods). We
quantify performance with RMS errors between the approximate
commands and states and their optimal counterparts. The state
and commands are scaled to lie between zero and one (to be com-
patible with the deep networks range of outputs), so 1.0 is the
maximum possible error. We complement these approximation
errors with the subsequent errors that arise when the network is
used as a controller. That is, small errors in the network’s out-
put, Y = [U, X], may ultimately produce large errors when using
this function’s command. Therefore, the predicted state may be
similar to the optimal state, yet the actual state obtained may be

wildly different from the optimal state trajectory. Therefore, we
also compute Euclidean errors between each reach’s target and the
reaches terminal location when using the approximated optimal
commands.

Since the dynamics of our system are non-linear, linear meth-
ods for representing low-dimensional features such as PCA will
contain unavoidable errors. To quantify these errors as well as
obtain a measure for comparison with our deep network, we
first approximated the optimal trajectory function using PCA.
The training error for this linear approximation was 0.037,
while the validation error was 0.039. A set of test reaches per-
formed with this PCA function approximation put these errors
in perspective. Errors in the counterclockwise, null and clock-
wise fields on these test reaches were 0.042, 0.009, and 0.044,
respectively (Figures 3A,B,C). As can be seen, the state esti-
mates did a poor job of capturing the variations in reach curva-
ture across force fields, and always estimated an approximately
straight reach (Figures 3A,B,C, gray dashed lines). The com-
mands too, were relatively poor (data not shown). The reaches
found when using these commands were far off target, especially
in the force fields, and further from optimal than the estimated
reaches (Figures 3A,B,C, blue lines). The average Euclidean error
between the actual reach and the target location was 6.941, 1.205,
and 6.941 cm, respectively. Including more components did not
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FIGURE 3 | Approximate optimal trajectory function test results. dashed lines display the endpoint error. Test reaches made in a
Displayed are the optimal reaches (black lines), estimated reaches (gray counter-clockwise curl field (A), a null field (B) and a clockwise curl field (C),
dashed lines) and the actual reaches resulting from the function’s outputted using PCA model. (D-F) The deep networks results under the same
command (blue reaches). All reaches start at the red circles and the red conditions.
Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2015 | Volume 9 | Article 32


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Berniker and Kording

Deep motor control

help, since the 5-dimensional input invariably constrained per-
formance. Therefore, even though our system’s dynamics are
low-dimensional, non-linear approaches such as our trajectory
function are needed to properly describe the ongoing dynamics.

Using the same data, a deep network was trained to approxi-
mate the optimal trajectory function (see Materials and Methods
for details). The training and validation error for the deep net-
work approximation were 0.004, an order of magnitude lower
than with PCA. The test reaches demonstrate obvious improve-
ments; errors in the counterclockwise, null and clockwise fields
were all 0.002. In contrast with PCA, the state estimates were
close to optimal (Figures 3D,E,F, gray dashed lines), and the
command errors were small enough that the resulting reaches
lied on top of both the estimates and the optimal trajectories
(blue lines). Here the average Euclidean errors between the actual
reaches and the target locations were much improved, 0.404,
0.347, and 0.305 cm, respectively. These results offer a proof of
concept that rather than use a dynamical representation for gen-
erating commands and state estimates, a function can directly
represent both control and state.

A Self-trained Point-to-point Trajectory Function

An interesting feature of using a trajectory function for control is
that the network can teach itself to estimate both state and com-
mand trajectories. In a manner analogous to the learning pro-
posed in motor babble (Meltzoff and Moore, 1997; Dearden and
Demiris, 2005; Saegusa et al., 2009), example reaches generated
by the untrained network, can be used to boot-strap the network.
In an untrained network, randomly generated inputs X (initial
and final states) will result in outputs, ), which can be used to
drive the limb. Since these outputs (commands and state esti-
mates) are untrained, using this command to drive the limb will
result in a state trajectory that differs from the network’s state esti-
mate. Nonetheless, these randomly generated reaches constitute a
data set to train on, by collating the commands and resulting state
trajectories ). The correct corresponding inputs can be obtained

by grouping the actual initial and final states that these random
reaches gave rise to, X'. Thus, an untrained network can generate
viable training data for itself to learn.

Using this idea, a network was self-trained to make point-to-
point reaches. Using the same architecture as above, this network
boot-strapped itself. The initial round of reaches were chosen
uniformly over the entire workspace, the resulting reaches were
of relatively small displacements (see Figure 4A). After train-
ing on these random reaches, however, the network was used to
generate a second set of training reaches. These reaches, having
already been trained, albeit on impoverished data, created rela-
tively larger reaches. This process was repeated again, and on the
third attempt, the training reaches were adequately close to their
desired final state (see Figure 4B).

After training on the 3rd round of data, both the training and
validation errors were 0.006. The networks commands were not
optimal under Equation (2). However, they successfully brought
the limb to the desired targets and the state estimates accu-
rately predicted the trajectories. This discrepancy between opti-
mality and these self-learned trajectories was apparent on test
reaches. Here, the commands generated by the network, based on
self-generated data, differed significantly from the optimal ones
(see Figure 4C). The resulting error from optimal was 0.030, an
order of magnitude larger than the validation error. Regardless
of this deviation from optimality, the function generated com-
mands that brought the limb to the correct target, and the average
Euclidean error was 0.357 cm (within the range of errors found
above when training on optimal data). Overall, these results
demonstrate that a trajectory function can teach itself to generate
commands and learn to estimate the resulting state trajectories.

Optimizing the Point-to-point Trajectory Function
We have shown that the deep network architecture can eas-
ily learn to approximate the optimal trajectory function when
provided with samples, and can also teach itself to represent
point-to-point reaching trajectories. In a final exercise, we

A Validation: 1st round B

Validation: 3rd round C

FIGURE 4 | (A) Examples from the initial round of training’s validation data,
wherein reaches were generated using random small amplitude sinusoidal
commands. These small torques resulted in small displacements. Displayed
are the self-generated training reaches (black lines), estimated reaches (gray
dashed lines) and the actual reaches resulting from the function’s outputted
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command (blue reaches). (B) Validation data on the third round of training
show that the reaches are very close to the desired target state. (C) Reaches
on the test data demonstrate the network has taught itself to reach to the
desired target, but does so with commands that are very different from what
is optimal (see right panel for examples).
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demonstrate how the network can also be optimized to produce
trajectories that minimize a given cost without being given the
appropriate training data.

Just as in the previous section, a deep network was trained
on self-generated data. Once trained, the deep network produced
reaches essentially identical to those displayed in the previ-
ous section. Then the network was optimized (see Materials
and Methods). Comparing the function’s trajectories on the test
reaches the error from optimality was 0.018 (half that from
above). As can be seen, the motor commands were far closer
to optimal relative to their previous, self-trained values (com-
pare Figure 4C with Figure 5). Additionally, the estimate of the
reaches is relatively accurate and largely coincides with the opti-
mal reaches (compare gray and blue lines). Throughout this opti-
mization process, the motor commands changed dramatically,
but always in such a way as to land the limb on target. The aver-
age Euclidean errors in the target locations were 0.339 cm, again
very similar to previous errors. This final exercise demonstrated
how a trajectory function built with a deep network can be opti-
mized to output commands and state estimates that minimize a
controller’s cost function.

Discussion

In the standard approach to motor control, state estimates and
motor commands are produced using dynamical models; repre-
sentations across space. Here we propose a new approach using
a function to output optimal trajectories, containing both state
estimates and commands for an entire reach; a representation
across both space and time. We have shown how recent advances
in training deep networks, in largely unsupervised ways, allow for
accurate approximations to this optimal function. The resulting
network can be trained to accurately represent optimal trajec-
tories, or teach itself with self-generated data. What’s more, the
network can be optimized for a new cost, outputting the entire
command and estimated state of an optimal reach.

Optimized
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FIGURE 5 | Reaches to the test targets after being optimized. Displayed
are the optimal reaches (black lines), estimated reaches (gray dashed lines)
and the actual reaches resulting from the function’s outputted command (blue
reaches). After being optimized, the commands are much closer to what is
optimal (see right panel for examples).

The trajectory function approach has some obvious weak-
nesses. Using a deep network requires a large number of parame-
ters, and in turn a lot of training data for successful learning. Sim-
ilarly, simultaneously representing states and commands across
time also increases the number of parameters and required train-
ing data. For our example two-link limb this data was easily
obtained, but in other contexts, e.g., high-dimensional systems
where computing optimal trajectories is computationally inten-
sive, this may be impractical. Yet, without a formal method for
approximating the analytical solutions to these optimal control
functions, using network approximations such as these may be
the second best option.

With regard to the nervous system, simulating large data sets
for training may be neither feasible, nor necessary. The ner-
vous system has at its disposal a very good means of gener-
ating large data sets of motor information, its own body. A
long-standing hypothesis regarding the early stages of motor
learning is that seemingly random motor commands and their
consequences, termed motor babble, may be used to train-up
the motor system. While this idea has been useful in framing
motor learning for both biological and robotic systems (Melt-
zoff and Moore, 1997; Dearden and Demiris, 2005; Saegusa et al.,
2009), it only facilitates the learning of a forward model (by
relating inputs to outputs). It is not obvious how such ran-
dom commands can be used to train a control policy. In the
approach we present, any command and state trajectory pair
are a valid training sample. This fact allows the trajectory func-
tion to boot-strap itself in a manner consistent with motor
babbling.

Another potential weakness is the fact that our trajectory func-
tion produces command and state trajectories over a fixed length
of time. Being that the dynamics of the limb are non-linear, the
network’s outputs cannot be scaled in time to produce accu-
rate movements of longer or shorter durations. Fortunately it is
easy to propose potential solutions to this difficulty. For exam-
ple, movement duration could be included as an input to the
trajectory function, and the same training procedures could be
implemented without change. Alternatively, rather than repre-
senting commands and states across discretized time, basis func-
tions could be used, whose width could be varied as a function of
the movement time.

No doubt other possibilities exist to improve upon the dis-
cretized representation of time. However, this “bug” may in fact
be a feature. For example, if the function’s output modulated
temporal bases, then the motor system would reflect these tempo-
ral regularities in it's commands (d’Avella et al., 2003). Similarly,
submovements, the apparent building blocks of human move-
ments, may share some features with our trajectory function’s
temporal properties (Miall et al., 1993; Doeringer and Hogan,
1998; Krebs et al., 1999; Fishbach et al., 2007). The existence of
submovements implies reaches are generated with a sequence of
finite duration commands. It is interesting to speculate how this
might be the result of a trajectory function not unlike the one
we propose here, constructing motor commands with a series
of finite-duration signals. Future work can examine the con-
nections between using a trajectory function and the ensuing
submovements.
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The trajectory function approach offers multiple benefits too.
As noted above, the architecture can generate its own train-
ing data. Since the network directly represents an entire trajec-
tory, examining global features of reaches, such as curvature,
velocity profiles, and motor effort are relatively easy. Addition-
ally, although we have implemented a feedforward network in
this preliminary examination, future work could implement the
same trajectory function with a probabilistic network, e.g., a deep
Boltzman machine (Hinton et al., 2006; Salakhutdinov and Hin-
ton, 2009). With such a representation, the entire function is
bidirectional, and can act as both a forward and inverse model
simultaneously. What's more, unlike an inverse dynamical model,
an inverse trajectory function could be used to find the entire
command trajectory for an arbitrary state trajectory (e.g., the
command necessary to reach around an obstacle).

Being that our functional approach is a sharp departure from
the conventional dynamical approach, we end by speculating on
how it could be neurally implemented and what potential insight
it may offer. In the conventional approach, neurons encode the
dynamics of the motor system, in which case neural activity rep-
resents the instantaneous state or command of a reach. Thus, this
is a centralized representation of commands and state, encoding
their temporal changes through time-varying neural activity. In
contrast, with the approach we present many groups of neurons
are used to encode the temporal profile of states and commands
at distinct points in time. To drive the motor system this informa-
tion must be conveyed in a serial fashion. This could be achieved
by chaining the networK’s outputs into an ordered sequence of
activity. Thus, our functional approach is a spatially distributed
representation, encoding time-varying signals through changes
in the spatial location of neural activity.

Despite a long history of electrophysiological studies, it is
not clear which of these two approaches best explains the evi-
dence. While there is a lot of evidence to support the conven-
tional approach it is largely based on aggregate neural activity
(Shidara et al., 1993; Gomi et al., 1998; Kobayashi et al., 1998;
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