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Competition improves robustness
against loss of information
Arash Kermani Kolankeh, Michael Teichmann and Fred H. Hamker *

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

A substantial number of works have aimed at modeling the receptive field properties

of the primary visual cortex (V1). Their evaluation criterion is usually the similarity of

the model response properties to the recorded responses from biological organisms.

However, as several algorithms were able to demonstrate some degree of similarity to

biological data based on the existing criteria, we focus on the robustness against loss of

information in the form of occlusions as an additional constraint for better understanding

the algorithmic level of early vision in the brain. We try to investigate the influence of

competition mechanisms on the robustness. Therefore, we compared four methods

employing different competition mechanisms, namely, independent component analysis,

non-negative matrix factorization with sparseness constraint, predictive coding/biased

competition, and a Hebbian neural network with lateral inhibitory connections. Each of

those methods is known to be capable of developing receptive fields comparable to

those of V1 simple-cells. Since measuring the robustness of methods having simple-cell

like receptive fields against occlusion is difficult, we measure the robustness using the

classification accuracy on the MNIST hand written digit dataset. For this we trained all

methods on the training set of the MNIST hand written digits dataset and tested them on

a MNIST test set with different levels of occlusions. We observe that methods which

employ competitive mechanisms have higher robustness against loss of information.

Also the kind of the competition mechanisms plays an important role in robustness.

Global feedback inhibition as employed in predictive coding/biased competition has an

advantage compared to local lateral inhibition learned by an anti-Hebb rule.

Keywords: competition, lateral inhibition, Hebbian learning, independent component analysis, non-negativematrix

factorization, predictive coding/biased competition, occlusion, information loss

1. Introduction

Several different learning approaches have been developed to model early vision, particularly
at the level of V1 (Olshausen and Field, 1996; Bell and Sejnowski, 1997; Hoyer and Hyväri-
nen, 2000; Falconbridge et al., 2006; Rehn and Sommer, 2007; Wiltschut and Hamker, 2009;
Spratling, 2010; Zylberberg et al., 2011). In many of the works, the proposed characteris-
tics of the visual system have been considered as optimization objectives and thus as cri-
teria for measuring the efficiency of coding. Several kinds of optimization objectives, like
sparseness of activity (Olshausen and Field, 1996; Hoyer, 2004) or independence (Bell and
Sejnowski, 1997; van Hateren and van der Schaaf, 1998) have been used for this purpose.
One major criterion for evaluation of those models is their ability to develop oriented, band-
pass receptive fields and the similarity of the distribution of receptive fields to observed ones
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in the macaque (Ringach, 2002). Although the match to biolog-
ical data can be considered as one important criterion, further
criteria are required to evaluate different approaches.

The visual system has the remarkable capability of robust-
ness, or invariance, against different kinds of variances like, shift,
rotation, scaling, occlusion, etc. of objects. This invariance is
likely gradually achieved over different hierarchical levels, but
robustness can be explained also in the form of information
coding on the level of a single layer. This means, also units
like V1 simple-cells show robustness against typical deforma-
tions of their preferred stimuli. In this work we have focused
on the robustness under loss of information in the form of
occlusion. Since typical forms of perturbations locally effect-
ing V1-cells can be different lightning conditions—like reflec-
tions or flares; unclear media like soiled glasses, windows,
heated air; or covered objects like the view through a fence—
we define occlusion here as the random removal of visual
information.

To investigate the role of different interactions, in fact
competition, we compare four methods implementing differ-
ent competition and learning strategies: Fast independent com-
ponent analysis (FastICA) (Hyvärinen and Oja, 1997; Hoyer
and Hyvärinen, 2000), non-negative matrix factorization with
sparseness constraint (NMFSC) (Hoyer, 2004), predictive cod-
ing/biased competition (PC/BC) (Spratling, 2010), and a Heb-
bian neural network (further called HNN) with lateral inhibition
based on Teichmann et al. (2012). Each method is capable
of learning V1 simple-cell like receptive fields from natural
images. FastICA was chosen as a method which tries to find
new representations of data with minimal dependency between
components without employing any kind of competition in the
neural dynamics, but it enforces independent components via
the learning rule. NMFSC uses a top-down, subtractive inhibi-
tion of the inputs to compute the outputs. NMFSC also keeps
the output activity sparse on a desired, predefined level leading to
unspecific competitive dynamics. PC/BC (Spratling, 2010) tries
to find components minimizing the reconstruction error by a
global error minimization employing inhibitory feedback con-
nections. All of the above algorithms minimize a reconstruction
error. While ICA minimizes a substractive reconstruction error,
NMFSC (Hoyer, 2004) and PC/BC (Spratling, 2010) use divi-
sive updating rules for the weight matrix that are derived from
minimizing the Kullback-Leibler divergence (Lee and Seung,
1999). HNN uses Hebbian learning to learn the feedforward
weights and anti-Hebbian learning to learn lateral inhibitory
connections. The units compete via these lateral connections
and suppress competing neurons locally based on the learned
relations.

To evaluate the different algorithms trained all methods on
the train set of the MNIST hand written digit dataset and mea-
sured their recognition accuracy on the occluded MNIST test set.
The recognition accuracy was measured by feeding the activity
patterns to a linear classifier. Here, the interesting aspect of each
methodwas not its best accuracy in recognizing the classes, but its
robustness in recognizing objects when the input was distorted,
that is the change of the performance dependent on the level of
occlusion.

2. Materials and Methods

2.1. Dataset and Preprocessing
We use the MNIST handwritten digit dataset1 to evaluate all
methods. The dataset consists of 60,000 training images and
10,000 test images. All are centered, size normalized (28 × 28
pixel), and have black (i.e., zero) background. We downscale the
images to 12 × 12 using the MATLAB (2013a) function imre-
size() by the factor of 0.40 with default parameters (i.e., bicu-
bic interpolation). This matches the original configuration of the
HNN input for learning V1 like receptive fields (Wiltschut and
Hamker, 2009). In order to simulate the function of the early
visual system up to the Lateral Geniculate Nucleus (LGN), which
transfers signals from the eyes to V1, we whitened the images
using the same method as in Olshausen and Field (1997). The
whitened image contains positive and negative values. The pos-
itive part and the absolute values of the negative part of each
whitened image were reshaped to vectors and concatenated to
form a 288-dimensional input vector. The positive part resembles
the on-center receptive fields of the Lateral Geniculate Nucleus
(LGN) cells and the negative part the off-center receptive fields
(Wiltschut and Hamker, 2009).

We used a partially occluded test set to study the effect of
loss of information on classification: the original non-occluded of
MNIST and different occluded versions of it. A test set is formed
by applying a particular occlusion level on all images in the origi-
nal MNIST test set. That is, in each version, the level of occlusion
was the same for all digits, although the position of the occluded
pixels was generated randomly for each digit. The occluded test
sets had an amount of 5–60%, in steps of 5%, occluded pix-
els. Only digit pixel and no background pixels were occluded.
Occlusions were produced by randomly setting non-zero pixel
values to zero before whitening an image (Figure 1). Since we are
testing on all test sets we will further use the term “test set” to
denote all of these test images. No occlusion was applied to the
train set.

2.2. Models and Training
In this section we will give a short introduction in the main prin-
ciples and the training of the used methods. To facilitate compar-
ison all methods are using 288 units. For our simulations we used
software provided by the respective authors.

2.2.1. Fast Independent Component Analysis
In fast independent component analysis (FastICA; Hyvärinen
and Oja, 1997), the goal is finding statistically independent com-
ponents of the data by maximizing neg-entropy. Neg-entropy is
a measure of non-gaussianity and non-gaussianity is in direct
relation with independence; the more non-Gaussian the activ-
ity distributions, the more independent are the components. The
problem can be stated as

x = Vy

or

y =Wx

1http://yann.lecun.com/exdb/mnist/

Frontiers in Computational Neuroscience | www.frontiersin.org 2 March 2015 | Volume 9 | Article 35

http://yann.lecun.com/exdb/mnist/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kermani Kolankeh et al. Competition improves classification under occlusion

where V is the mixing matrix and W its inverse, x is the input
vector and y is the vector of sources or components which should
be independent. ICA, as a generative method, tries to generate
the inputs as a sum of components y weighted by the weights of
the mixing matrix V . In FastICA matrices V and W are found
in an optimization process which maximizes neg-entropy of the
activities.

AfterW was determined on the (non-occluded) MNIST train
set, we used W to calculate the output on the occluded test set
by calculating yo = Wxo, where xo stands for the occluded input
and yo for the corresponding output activities. Thus, the FastICA
method has no competitive mechanism effecting the output, its
just applying a linear transformation matrix on the input.

2.2.2. Non-Negative Matrix Factorization with

Sparseness Constraint
In non-negative matrix factorization with sparseness constraint
(NMFSC; Hoyer, 2004), the goal is to factorize the matrix of the
input data in non-negative components and non-negative source
matrices, imposing more biological plausibility in comparison
to FastICA, as neuron responses are non-negative. NMFSC
approaches the matrix of components V to satisfy X ≈ V ⊗ Y .
Where Y is the matrix of output vectors and X the matrix of cor-
responding input vectors.Y andV are calculated while approach-
ing the objective of reducing the difference between the input X
and its reconstruction V ⊗ Y :

V ← V ⊗ (XYT) ⊘ (VYYT) (1)

FIGURE 1 | An example of the input digits under 0-95% occlusions.

Where ⊗ means element-wise multiplication and ⊘ element-
wise division. One could say that the term (XYT) ⊘ (VYYT)
is actually the modulated input which is used to update V . In
some literature it is interpreted as a divisive form of feedback
inhibition (Kompass, 2007; Spratling et al., 2009). This method,
introduced by Lee and Seung (1999), tries to minimize the differ-
ence between the distributions of the input and its reconstruction
based on Kullback-Leibler divergence.

In some other works this process is done by adding the sub-
tractive difference between the input and its reconstruction to
V . One could call both subtractive different and the divisive
modulated input the inhibited input which is used for learning
(Spratling et al., 2009).

The advantage of NMFSC to pure non-negative matrix factor-
ization (NMF; Lee and Seung, 1999) is that the sparseness of the
computed activities Y can be set to a desired level. An increase in
the sparseness shifts the code from global to more local features
(Hoyer, 2004). However, NMFSC deviates from a multiplicative
update of the output Y and uses a subtractive one

Y ← Y − µVT(VY − X)

Thus, the nodes compete with each other using a top-down, sub-
tractive inhibition of their input. In order to obtain the desired
level of sparseness a projection step is applied by keeping V fixed
and looking for the closest Y which could both optimally cause
to low reconstruction error and satisfy the sparseness constraint
(for details see Hoyer, 2004, pp. 1462–1463). NMFSC also allows
to control the sparseness of V , but this feature is not used by us.

To obtain the best classification accuracy, we tested four dif-
ferent sparseness levels (0, meaning no constraint; 0.75; 0.85;
and 0.95). We found that 0.85 sparseness gives the best results

FIGURE 2 | Effect of different sparseness levels on the robustness of

NMFSC, using the occluded MNIST test set. A sparseness of 0.85 shows

the best robustness. Very high or no sparseness reduces the performance.
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(Figure 2). The same sparseness level was found by Hoyer (2004)
as the best level to learn Gabor-like filters from natural images.
Hoyer defines the sparseness level as the relation of the L1 norm
to the L2 norm. Where a sparseness of zero denotes the densest
output vector, this is when all outputs are equally active, and of
one denotes the sparsest vector, when just one output is active.
For equation and an illustration of different degrees of sparseness
please see (Hoyer, 2004, pp. 1460–1461). After we have trained
NMFSC on the train set, we used V to calculate the output on
the occluded test set. For this, we kept the obtained V fixed and
ran the optimization process for Y , approaching the predefined
sparseness level forY while trying to reduce the reconstruct error.

2.2.3. Predictive Coding/Biased Competition
In predictive coding/biased competition (PC/BC; Spratling,
2010), like in the two other generative models, the goal is finding
components so that the output can resemble the input with min-
imal error. This method uses divisive input modulation (DIM),
introduced in Spratling et al. (2009), which is in turn based on
NMF. The modifications, in comparison to NMF, are mainly two.
First, it is on-line, while NMF is a batch method. Second, in con-
trast to NMF which uses the component weight matrix both for
computing the output and reconstructing the input, DIM con-
siders two sets of weight matrices; feedforward for producing
the output and feedback for producing the reconstruction of the
input. The two weight matrices differ just in the form of normal-
ization, whichmakes themethodmore powerful thanNMF in the
case of overlap and occlusion (Spratling et al., 2009). In PC/BC,
the inputs are inhibited by being divided by their reconstruction.
This is done explicitly in the units called error units. The error
units basically do the same job as the term (XYT) ⊘ (WYYT) in
(Equation 1) in NMF. Their activity is described as following:

e = x⊘ (ǫ1 + VTy)

where x is the input vector, y is the output vector, V is the feed-
back weight matrix, and ǫ1 is a small value to avoid division by
zero. The inhibited input from the error units is used for both
producing the output and updating the weights. Thus, PC/BC
uses in both cases a multiplicative updating, whereas NMFSC
uses a subtractive one for the output.

To calculate the output the inhibited input is used:

y← (ǫ2 + y) ⊗ We

where ǫ2 is a random small number which prevents the output
from being zero,W is the feedforward weight matrix and e is the
activity vector of the error units. Based on the output activities y
and the error units e the weights are adopted as following:

W ←W ⊗ {(1+ βy)[eT − 1]}

where β is the learning rate. If the input and its reconstruction
are equal, the error will be equal to unity and, thus, the weights
will not change.

The input inhibition of PC/BC affects, besides the weight
development, the output. Strong units suppressing weaker ones
by removing their representation from the input. This is done in

several iteration of updating the error units by the received recon-
struction of the output units. This iterative process leads to a low
reconstruction error and provides the competitive mechanism of
PC/BC.

We trained PC/BC on 100,000 randomly, and potentially
repeatedly, chosen digits from the 60,000 images of the MNIST
train set and saved the weights for later calculating the outputs
on the test set. Therefore, each image of the test set was presented
for 200 iterations to the final network to achieve convergence of
the outputs.

2.2.4. The Hebbian Neural Network
Finally, we use a Hebbian neural network (HNN), employing the
well accepted mechanisms of rate based threshold linear neurons
and Hebbian learning. A set of neurons in one layer receive feed-
forward input and lateral inhibitory connections being the source
of competition between the neurons. The connection strengths
are learned using a Hebbian learning rule for the feedforward
connections and an anti-Hebbian one for the lateral connec-
tions (Földiák, 1990; Wiltschut and Hamker, 2009; Teichmann
et al., 2012). For simulation, we use a slightly modified version
of the one previously published by Teichmann et al. (2012). To
learn the feedforward weights, the model employs a set of differ-
ent mechanisms like covariance learning with Oja normalization
(Oja, 1982), regulated by an activity dependent homeostatic term
(Teichmann et al., 2012). It uses calcium traces of the neuron
activity instead of activities for learning. However, we use a fast
trace so the model works similar to an activity based model (see
Appendix for further model details).

Since Teichmann et al. (2012) demonstrated the model to
learn V1 complex-cell properties we verified that the model used
here, if trained on natural images, learns simple-cell receptive
fields (Figure 3) to fulfill our main criteria for model selection.

In this kind of network, inhibitory lateral connections are the
source of competition between units. During the learning process
the lateral weights develop proportional to the correlated firing
between units, leading to strong inhibition between units that are
often coactive. Hence, units in the HNN tend to reduce coactivity
in the training phase and thus build a sparse representation of the
input. Consequently, each unit uses the stored knowledge in the
lateral weights to suppress potentially competing units.

We trained the network on 200,000 randomly chosen digits
from the train set. During training each image is been presented
to the network for 100 time steps (ms) to allow for a convergence
of the dynamics. After learning, we keep the weights fixed and use
this network to obtain the responses on the images of the test set.

2.3. Classification
As a criterion for robustness, we considered the accuracy of a
classifier on the top of each method. The idea behind was that the
classifier would indicate by its performance drop to classify the
digits if some information is lost. Thus, a method with a more
stable representation should have less accuracy decrease under
increasing levels of occlusion. We have decided to use a simple
linear classifier as it is assumed that also the neural processing in
the brain should facilitate linear classification (DiCarlo and Cox,
2007). To measure the accuracy of classification we use Linear
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FIGURE 3 | Gabor-like receptive fields learned from natural images by

the Hebbian neural network.

Discriminant Analysis (LDA) on the output of the methods on
the test set. That is, we used the MATLAB (2013a) function clas-
sify() with default parameters (linear discriminant function). The
classifier is trained using the output of the respective method on
the train set.

2.4. Visualization of Weights and Receptive Fields
Obviously, if a method is able to learn a superior representation
of the data, it will have a better robustness to the other ones.
We visualize the weight matrices of all methods to get an insight
into how the data are processed. If the methods share a simi-
lar character in their weight organization it can be assumed that
this feedforward part of the processing shares similarities. Hence,
the differences in the robustness of the methods have to come
from the competitive mechanisms. Further, we can look at the
receptive field shapes2 of the units, as the competition is typically
not changing their overall shapes, indeed the inhibitory effects
between units are considered.

Hence, we used two approaches for visualizing the receptive
fields. One was representing the weight matrix of a unit as gray-
scale images. As the weight matrices correspond to the on-center
and off-center inputs, we subtract this two parts from each other
(Wiltschut and Hamker, 2009). The strength of each of these
weights was shown as the intensity of a pixel in the image, where
white denotes the maximumweight, gray denotes zero, and black
the minimum weight. As an alternative, to visualize the recep-
tive fields, we used reverse correlation. In order to obtain the
optimal stimulus of a unit, we weighted images containing 90

2Receptive fields are here defined as a map of regions in the image where a unit is

excited or inhibited if a stimulus is there (cf. Hubel and Wiesel, 1962).

random dots in front of black (zero) background with their cor-
responding outputs from a single unit. The average of the result
was shown as the receptive field. This way we could observe to
which input parts each unit is sensitive, regarding the compe-
tition between the units. In other words the resulting matrices
visualize the correlation between the input and output values of
each unit.

3. Results

3.1. Learned Receptive Fields
In order to verify if the models represent the input data in a
comparable way, we visualize the weight vectors and receptive
fields of 100 units for each model (cf. Section 2.4). To visual-
ize the weight vectors of the Hebbian neural network (HNN),
we have used the feedforward weight matrices showing the driv-
ing stimulus of the neurons (Figure 4A). For FastICA, we visu-
alize the mixing matrix V (Figure 4C). The V matrix of basis
vectors is visualized for NMFSC (Figure 4E). In PC/BC, we
show the feedforward matrices (Figure 4G). For each method we
also show the receptive fields estimated by reverse correlation
(Figures 4B,D,F,H), being not much different from the visual-
ization of the weight matrices. All methods develop receptive
fields with holistic forms of digits. Indeed, in NMFSC not all units
show digit like shapes which may result from the chosen level of
sparseness as mentioned in the methods.

3.2. Classification Accuracy Under Occlusion
To investigate the differences in robustness to increasing levels
of occlusions in the input, we have measured the classification
accuracy of all methods and the raw data on the test set. We
repeated the experiments 10 times with each algorithm under
different starting conditions, i.e., randomly initialized weights.
We do not show the error bars as they are zero for FastICA
and NMFSC as they are deterministic and have been low for
PC/BC and the HNN. We observed (Figure 5) that FastICA does
not improve the classification accuracy to that of the raw data.
NMFSC causes a super-linear decrease of classification accuracy
with respect to the linear increase of occlusion. PC/BC shows
the highest robustness against occlusion. The robustness of the
HNN is higher than NMFSC and lower than PC/BC. The meth-
ods having more “advanced” competitive mechanisms perform
better under increasing occlusions.

To further investigate the influence of the competitive mecha-
nisms we turn them off for PC/BC and the HNN. This is, setting
the lateral inhibitory connections to zero for the HNN, and using
only the first iteration step of PC/BC. The training of the classifier
is repeated for these modifiedmodels. Both HNN and PC/BCwill
cause a very low performance even worse than the raw data when
their competitive mechanisms are not used (Figure 6). Meaning
that the competitivemechanism has a substantial influence on the
accuracy under occlusion and the pure feedforward processing is
not enough have robust recognition results.

3.3. Effect of Occlusion on Activity Pattern
It is obvious that the activity pattern as a function of the input
changes by increasing the occlusion in the input. The question is
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FIGURE 4 | Visualization of the feedforward weights and the receptive

fields of 100 units, after training. Off-weights where subtracted from

on-weights and each plot is scaled so that white denotes the maximum value

and black the minimum. (A) The feedforward weight matrices of the HNN

and (B) its reverse correlation. (C) The component matrices of FastICA and

(D) its reverse correlation. (E) The component matrices of NMFSC and (F) its

reverse correlation. (G) The feedforward weights of PC/BC and (H) its

reverse correlation.
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FIGURE 5 | Classification accuracy on the output of FastICA, NMFSC,

HNN, and PC/BC, using the occluded MNIST test set. Methods using

competitive mechanisms show better robustness.

FIGURE 6 | Robustness of the HNN and PC/BC with and without

inhibition, using the occluded MNIST test set. Without the inhibitory

connections the models show a sharp drop in performance against loss of

information (occlusion).

how stable the activity patterns of a method are when the occlu-
sion in the input is increased. This is basically the same question
as how much the classification accuracy is robust under loss of
information. In Figures 7–10 the activity patterns corresponding
to three random inputs under 0, 20, and 40% occlusion are

illustrated. As one can see in NMFSC, HNN, and PC/BC the
activity patterns corresponding to non-occluded input and low
occluded (20%) are comparable. In FastICA, though, the activ-
ity patterns are not easily comparable as ICA by nature produces
very dense activity patterns. The activity pattern of FastICA on
the (non-occluded) train set have a mean sparseness (Hoyer,
2004) of 0.41, which is, in comparison with NMFSC with 0.89,
HNN with 0.80, and PC/BC with 0.89 sparseness, quite dense.
However, in all methods the activity pattern loses its original form
when occlusion is increased.

To measure how stable the activity patterns of a method are,
for different levels of occlusion, we used the cosine of the angle
between the non-occluded and the occluded activity vector. We
calculate the cosine on the test set with 20 and 40% occlusion
(Table 1) and found that methods showing a more robust recog-
nition accuracy also having a lesser turn in their activity vector.
Exceptionally, the HNN shows a more stable code than PC/BC
based on this measure.

3.4. Selective Inhibition in the Hebbian Neural
Network
To investigate the selectivity of inhibition in the HNN, we study
the relation between the strength of the lateral connections and
the similarity of the feedforward weights of a neuron to its lat-
erally connected neurons by visualizing the feedforward weights
of the laterally connected neurons sorted by the strength of the
outgoing lateral connections. Therefore, we randomly select 10
neurons (left side) and plot the weights of the laterally connected
neuron (Figure 11). As one can see, the shape of the feedfor-
ward weights of neurons being strongly inhibited are more simi-
lar to the weights of the inhibiting neuron than the ones which
are lesser inhibited. This is, neurons have the strongest inhi-
bition to neurons representing similar digits, mostly from the
same class, followed by other classes sharing many similarities.
Being expected as the strength of the inhibition is relative to the
correlation of the neurons.

4. Discussion

We observed that the competitive mechanisms in the considered
methods, FastICA, NMFSC, PC/BC, and HNN, have direct effect
on their robustness under loss of information. Results showed
that all methods have developed receptive fields similar to digit
shapes and so the methods should be comparable. Apparently,
this similarity itself cannot be used as a criterion for robust-
ness against loss of information (occlusion). We observe that
the receptive fields of FastICA are more similar to digits than
the most of NMFSC, although, NMFSC shows a better accuracy
under occlusion. However, without using its competition mecha-
nism it behaves worser than FastICA. Further, HNN and PC/BC
have the most clear receptive fields and the highest performances,
indeed, without the competitive mechanism their accuracy drops
lower than FastICA and NMFSC. Also the recognition accura-
cies of PC/BC and HNN with and without competition can not
be explained by differences in the receptive field shapes. Without
competition HNN behaves slightly better than PC/BC, whereas
with competition PC/BC shows better accuracy. This means, the
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FIGURE 7 | Three examples (row) how the activity pattern vary, under 0, 20, and 40% of occlusion (column) in FastICA.

FIGURE 8 | Three examples (row) how the activity pattern varies, under 0, 20, and 40% of occlusion (column) in NMFSC.

receptive field quality alone does not cause the observed higher
robustness.

Without occlusions no method shows a strong superiority
in the accuracy, indeed, they show clear differences when the

input is distorted. Some models are more stable when the input
is occluded. This stability is in line with the results of the clas-
sification accuracy. While the HNN shows the least change in
the cosine between its population responses with and without
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FIGURE 9 | Three examples (row) how the activity pattern varies, under 0, 20, and 40% of occlusion (column) in HNN.

FIGURE 10 | Three examples (row) how the activity pattern varies, under 0, 20, and 40% of occlusion (column) in PC/BC.

occlusion, its classification accuracy is a bit weaker than the
one of PC/BC for larger occlusions. The two dominant methods
in this study, the HNN and PC/BC, employ different mecha-
nisms for competition. These mechanisms help the systems to

selectively inhibit the output of other units or respectively their
input. In order to observe how much competition enhances
robustness under occlusion, we have evaluated the classification
performance when the competitive mechanisms were turned
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FIGURE 11 | Selective inhibition in the HNN. On the left side the

feedforward weights of 10 randomly chosen neurons are illustrated. Right of

each neuron, the weights of 10 neurons receiving inhibition from this neuron

are plotted, sorted from left to right by descending lateral weight strength

(inhibition). The illustration shows that neurons having more similar feedforward

weights are more inhibited than neurons having less similar weights.

TABLE 1 | Cosine between non-occluded and occluded activity patterns,

calculated on the test set with having particular occlusion levels.

20% Occlusion 40% Occlusion

FastICA 0.65 0.46

NMFSC 0.71 0.61

PC/BC 0.78 0.61

HNN 0.87 0.76

A cosine of 1 denotes an equal direction and 0 denotes an orthogonal one. The stability

of the activity patterns conform the results for the recognition accuracy, except the HNN

shows a higher stability.

off. When the mechanisms are off, PC/BC and the HNN show
a very low performance in the robustness to occlusions, as
NMFSC without using the sparseness constraint. So obviously,
the feedforward processing is not enough to obtain a suffi-
ciently differentiated output and it can be assumed that com-
petition is playing an essential role in the robustness of these
systems.

We also observed that methods benefiting from a competi-
tive mechanism are superior to FastICA, having no competitive
mechanism on the output computation. FastICA linearly trans-
fers the input space into a new space with least dependent com-
ponents. When facing an image, FastICA produces a dense set
of activities to describe the image in the new space. NMFSC
without sparseness constraint acts as FastICA. However, when a

reasonable level of sparseness is set for the activities of NMFSC
it outperforms FastICA. The reason is that the sparseness con-
straint omits the appearance of redundant information to some
extent. Indeed, a too sparse representation can remove some
useful information and resulting in reduced accuracy. How-
ever, NMFSC acts weaker than the Hebbian neural network and
PC/BC which may depend on the subtractive updating rule for
output competition. Moreover, the optimal sparseness level is
practically impossible, since a priori knowledge about the num-
ber features for an optimal representation is needed (Spratling,
2006). Also having this knowledge does not have to lead to an
optimal result as different classes often need different amounts of
features.

Among the three generative models FastICA, NMFSC, and
PC/BC, PC/BC has been the superior model in this experiment. It
uses amultiplicative updating rule to calculate the output activity.
It finds the best matching units and removes their representations
from the input of the other units, producing a sparse output while
approaching a minimal reconstruction error. This online error
minimization is realized by iteratively updating the error units
representing the local elements of the reconstruction error and
driving the output units. The HNN also has a competitive mech-
anism according to which the best matching units suppress other
ones. In contrast to PC/BC, which tries to minimize the recon-
struction error, the Hebbian Neural Network, as a whole, does
not approach any explicit objective. It only exploits the knowl-
edge from the training phase about the coactivity of units in
order to suppress them. Thus, stronger units suppress potentially
confusing weaker ones. That is, in HNN each unit is competing
with other units based on its learned, local inhibitory weights,
whereas PC/BC is actively using its distributed representation of
the reconstruction error to minimize a global error signal. This
may be the reason for the slight advantage of PC/BC against HNN
for larger occlusions.

We conclude, that in order to achieve high robustness against
loss of information in object recognition, one should focus on
improving the competitive mechanism. Competition between
units seems to play an important role in preventing the system
from producing redundant activities. The experiments give also
evidence that the cortical mechanisms of competition, as lateral
inhibition, are the source of its robust recognition performance,
even on single layer level. Similar effects to our V1 based eval-
uation can be found in deeper models of the visual cortex ven-
tral stream, where even inhibitory lateral connections play an
important role in robustness to occlusions (O’Reilly et al., 2013).
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Appendix

Computing Neural Activity in the HNN
As in Teichmann et al. (2012), the membrane potential mj of a
neuron j is calculated as the sum of each neuron’s pre-synaptic

input values r
Input
i weighted by the corresponding synaptic

strengths wij. The resulting sum was decreased by the amount
of inhibition from other layer neurons rk, weighted by the corre-
sponding synaptic strengths of the lateral connections ckj (Equa-
tionA1) and a non-linearity function f (EquationA2). In contrast
to Teichmann et al. (2012), we add an additional decay term r̄j
which mimic the intrinsic adaption of the firing threshold (Tur-
rigiano and Nelson, 2004) based on the temporal activity of the
neuron (Equation A3). The resulting activation rj of a neuron j is
calculated using the top half rectified membrane potential (mj)

+.
Further, we apply a saturation term for highmembrane potentials
to avoid unrealistic high activations (Equation A4).

The change of the activity is described by

τm
∂mj

∂t
=

∑

i

wijr
Input
i −

∑

k,k /= j

f
(

ckjrk
)

− r̄j − mj (A1)

with τm = 10 and the non-linearity function

f (x) = dnl · log

(

1+ x

1 − x

)

(A2)

and the temporal activity

τr̄
∂ r̄j

∂t
= rj − r̄j (A3)

with τr̄ = 10000 and the transfer function

rj =

{

0.5+ 1

1+e
−3.5(mj−1)

ifmj > 1

(mj)
+ else

(A4)

Changes in Neural Learning of the HNN
As in Teichmann et al. (2012), we use Oja’s constraint (Oja, 1982)
for normalizing the length of the weight vector, preventing an
infinite increase of weights. In contrast to Oja, each neuron can
have an individual weight vector length. Differently to our pre-
vious work, we calculate the factor α, determining the length, so
that its change is based only on the squared membrane poten-
tial minus a fixed average membrane potential β = 1

288 . The
value β is defined as 1 divided by amount of neurons in the layer
(Equation A5).

τα

∂αj

∂t
= m2

j − β (A5)

Since the learning rule was originally proposed for learning com-
plex cells, the learning is based on calcium traces, following the
activity of a neuron, to allow exploiting the temporal structure
of the input. As this is not needed for learning simple cells or
handwritten digits, we are using here a short time constant of
τCa = 10 for the calcium trace. The time constant is chosen that
short to turn off the influence of previous stimuli on the learn-
ing result. Besides, we have shown in Teichmann et al. (2012)
that using this time constant in a setup for learning complex cells,
causes a huge amount of the cells with simple cell properties. All
other parameters in this model are chosen as in Teichmann et al.
(2012).
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