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How the credit assignment problems
in motor control could be solved
after the cerebellum predicts
increases in error
Sergio O. Verduzco-Flores * and Randall C. O’Reilly

Computational Cognitive Neuroscience Laboratory, Department of Psychology and Neuroscience, University of Colorado

Boulder, Boulder, CO, USA

We present a cerebellar architecture with two main characteristics. The first one is that

complex spikes respond to increases in sensory errors. The second one is that cerebellar

modules associate particular contexts where errors have increased in the past with

corrective commands that stop the increase in error. We analyze our architecture formally

and computationally for the case of reaching in a 3D environment. In the case of motor

control, we show that there are synergies of this architecture with the Equilibrium-Point

hypothesis, leading to novel ways to solve the motor error and distal learning problems.

In particular, the presence of desired equilibrium lengths for muscles provides a way to

know when the error is increasing, and which corrections to apply. In the context of

Threshold Control Theory and Perceptual Control Theory we show how to extend our

model so it implements anticipative corrections in cascade control systems that span

from muscle contractions to cognitive operations.

Keywords: cerebellum, reaching, equilibrium point, motor learning, complex spikes

1. Introduction

The anatomy of the cerebellum presents a set of well established and striking facts (Eccles et al.,
1967; Ito, 2006), which have inspired a variety of functional theories over the years. The cerebel-
lum receives two main input sources, the mossy fibers and the climbing fibers. The mossy fibers
convey a vast amount of afferent and efferent information, and synapse onto granule cells, Golgi
cells, and neurons of the deep cerebellar nuclei. Granule cells exist in very large numbers, and
could be considered the input layer of the cerebellum; they send axons that bifurcate in the cere-
bellar cortex, called parallel fibers, innervating Purkinje cells and molecular layer interneurons.
Purkinje cells have intricate dendritic arbors with about 150,000 parallel fiber connections. On
the other hand, each Purkinje cell receives a single climbing fiber that can provide thousands
of synapses. Activation of a climbing fiber reliably causes a sequence of tightly coupled calcium
spikes, known as a complex spike. In contrast, simple spikes are the action potentials tonically
produced by Purkinje cells, modulated by parallel fiber inputs and feedforward inhibition from
molecular layer interneurons. The sole output from the cerebellar cortex is constituted by the
Purkinje cell axons, which send inhibitory projections to the deep cerebellar nuclei and to the
vestibulum. Cells in the deep cerebellar nuclei can send projections to diverse targets, such as
the brainstem, the thalamus, the spinal cord, and the inferior olivary nucleus. The inferior olivary
nucleus is the origin of climbing fibers, which are the axons of electrotonically-coupled olivary cells
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that experience subthreshold oscillations in their membrane
potential.

There is a prevailing view that the cerebellum is organized
into modular circuits that perform similar computations. Sagit-
tal regions of Purkinje cells called microzones receive climbing
fibers from a cluster of coupled olivary neurons, and tend to
be activated by the same functional stimuli. Purkinje cells in a
microzone project to the same group of cells in the cerebellar
nuclei, which in turn send inhibitory projections to the olivary
neurons that innervate the microzone. A microzone together
with its associated cerebellar nuclear cells is called a microcom-
plex, which together with its associated olivary cells constitutes
an olivo-cerebellar module.

In one of the first and most influential theories about cere-
bellar function, developed by a succession of researchers (Marr,
1969; Albus, 1971; Ito et al., 1982), the convergence of mossy
fibers (which carry sensory and motor signals into the cerebel-
lum) onto Purkinje cells supports pattern recognition in a man-
ner similar to a perceptron. This pattern recognition capacity is
used to improve motor control, and theMarr-Albus-Ito hypothe-
sis states that the othermajor cerebellar input, the climbing fibers,
provide a training signal that, thanks to conjunctive LTD on the
parallel fiber synapses into Purkinje cells, allows for the right pat-
terns to be selected. Conjuctive LTD (Long-Term Depression)
reduces the strength of parallel fiber synapses when they happen
to be active at the same time as climbing fiber inputs. Within this
general framework, a persistent challenge comes in determining
what the right patterns are, and how they are used to improve
motor control.

One common trend for cerebellar models of motor control is
to assume that the cerebellum is involved in providing anticipa-
tive corrections to performance errors (Manto et al., 2012), and
that this is done by forming internal models of the controlled
objects (Wolpert98,Ebner13). Forward models take as inputs a
command and a current state, returning the consequences of that
command, often in the form of a predicted state. Inverse models
take as their input a desired state and a current state, return-
ing the commands required to reach the desired state. Adaptive
learning in the cerebellum is often assumed to involve using
error signals to learn these types of internal models. It should
be noted that some computational elements (such as adaptive fil-
ters), which could be implemented by cerebellar microzones, can
in principle learn to implement either a forward or an inverse
model depending on its input/output connections and on the
nature of its error signal (Porrill et al., 2013).

The error signal required by a forward model is a sensory
error, which consists of the difference between the desired sen-
sory state (e.g., a hand trajectory) and the perceived sensory state.
In contrast, inverse models require a motor error signal that indi-
cates the difference between a given command and the command
that would have produced the desired outcome. Figures 1A,B
shows two well known proposed architectures that allow the
cerebellum to use forward and inverse models to reduce per-
formance errors, respectively called the recurrent architecture,
and feedback error learning. A recent review (Ito, 2013) exam-
ined the signal contents of climbing fibers for different cerebellar
circuits, and found that both sensory and motor errors might

be present, bringing the possibility of having both forward and
inverse models in the cerebellum.

Inverse models in the cerebellum present some difficulties.
The first one is known as the motor error problem, and consists
on the requirement that the climbing fibers carry an unobserv-
able motor error rather than the observed sensory error signal.
This creates difficulties when applying them to the control of
complex plants (Porrill et al., 2013). A second difficulty is the evi-
dence that simple spikes in Purkinje cells are consistent with a
forward model, but probably not with an inverse model (Ebner
and Pasalar, 2008). Although climbing fiber may carry informa-
tion about motor errors, most studies seem to find correlations
with sensory signals and sensory errors (e.g., Ghelarducci et al.,
1975; Stone and Lisberger, 1986; Ekerot et al., 1991; Yanagihara
and Udo, 1994; Kitazawa et al., 1998; Simpson et al., 2002).

There are two other problems that must be addressed by cere-
bellar models that form internal models, whether forward or
inverse (Porrill and Dean, 2007). The distal error problem hap-
pens when we use output errors (such as sensory signals) to train
the internal parameters of a neural network. Backpropagation is
a common—although biologically implausible—way to deal with
this problem. In reaching, the distal error problem can be con-
ceived in terms of knowing which muscles to stimulate if you
want the hand to move in a certain direction. The nature of
the distal error problem is the same one as that of the motor
error problem, since they both are credit assignment problems.
After an error is made, the credit assignment problem consists
in knowing which control signals contributed to the error, and
which ones can reduce it. The redundancy problem happens
when a set of commands lead to the same outcome, leading to
incorrect generalizations when that set is non convex. One com-
mon setting where the redundancy problem arises is in reaching.
The human arm, including the shoulder and elbow joints has
5◦ of freedom (without considering shoulder translation), allow-
ing many joint configurations that place the hand in the same
location.

The recurrent architecture of Figure 1A, and the feedback
error learning scheme of Figure 1B are shown here because they
present two different ways of addressing the motor error and
redundancy problems. The recurrent architecture is trained with
sensory error, so the motor error problem is not an issue; more-
over, this architecture receives motor commands as its input,
so it doesn’t have to solve the redundancy problem. Feedback
error learning approximates the motor error by using the out-
put of a feedback controller. The feedback controller thus acts as
a transformation from sensory error into motor error. If the feed-
back controller can properly handle redundancy, then so will the
inverse model that it trains.

In this paper we propose a new cerebellar architecture that
successfully addresses the motor error problem, the distal learn-
ing problem, and the redundancy problem. This architecture is
specified at an abstract level, and consists of descriptions of the
inputs and outputs to cerebellar modules, the content of climb-
ing fiber signals, and the nature of the computations performed
by the cerebellar microzone.

In our architecture, the role of the cerebellum is to provide
anticipative corrections to the commands issued by a central
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FIGURE 1 | (A) The recurrent architecture (Porrill and Dean, 2007) uses a

forward model as the adaptive element in a controller. This forward model

learns to predict the response of the controlled object to the motor

commands, using an error that considers the difference between the

predicted trajectory and the realized trajectory. Notice that the elements

inside the dashed rectangle constitute an adaptive inverse model of the

controlled object. Red lines indicate signals used for training of the

forward model. Based on Figure 1A of Ito (2013). (B) Use of an inverse

model to improve the performance of a feedback controller using the

feedback error learning scheme of Kawato and Gomi (1992). The output

of the feedback controller is used to approximate the error in the motor

command, so the inverse model can be trained. The red line indicates

the learning signal. (C) A forward model proposed in this paper is used

to improve the performance of a central controller. The forward model

associates a context consisting of a variety of sensory and motor signals

(black arrows entering from the left) with a command produced by the

controller (black arrow entering from below). The context will be

associated with future controller commands whenever the sensory error

increases, indicated by the red line. Notice that while the forward model

in (A) predicts the response of the controlled object, the forward model in

(C) predicts the response of the central controller. In the Section 3,

model 1 corresponds to this architecture.

controller, and we explore 4 variations on how to associate a pre-
dicted increase in error with the correctivemotor commands. For
example, in the first version of our architecture (called model
1 in the Section 3), shown in Figure 1C, these corrections are

learned by associating the sensory/motor context shortly before
an error with the corrective response issued by the central con-
troller shortly afterwards. We thus propose that the cerebellar
inputs carried by mossy fiber signals consist of all sensory and
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motor signals that can be used to predict a future state. The cere-
bellar output could be a predicted set of motor commands similar
to a correction issued by the central controller in the past. The
climbing fiber activity rises in response to an increase of an error
measure over time, not to instantaneous error values. Cerebellar
microzones act to predict an increase in error, and this predic-
tion is then associated with a correction. For example, in our first
variation of the architecture (model 1), particular sensory/motor
contexts are associated with a response by the central controller
happening shortly after an increase in the climbing fiber activity.
This is consistent withmanymodels based on theMarr-Albus-Ito
framework. If a bank of filters (presumably arising from compu-
tations in the granule cell layer) are placed in the inputs, then this
associator becomes functionally similar to adaptive filter mod-
els commonly found in cerebellum literature (Fujita, 1982; Dean
and Porrill, 2008). Those models usually assume that mossy fiber
inputs correlated with climbing fiber activity cause a decrease in
the firing rate of Purkinje cells because of conjunctive LTD, lead-
ing to an increase in firing rate at the cerebellar or vestibular
nuclei. This could be conceived as associating a particular pat-
tern of mossy fiber inputs with a response in cerebellar nuclei,
with the input filters giving the system the ability to recognize
certain temporal patterns.

We explore the ideas of our cerebellar architecture by imple-
menting it in computational and mathematical models of reach-
ing in 3D space. We chose this task because it presents challenges
that should be addressed by cerebellar models, namely distal
learning, redundancy, and timing. There is a tendency for studies
of the cerebellum in motor control to model problems where the
error signal is 1-dimensional, thus hiding the difficulties of distal
learning and redundancy. For example, the distance between the
hand and the target is a 3-dimensional error, but it can be decom-
posed into 1-dimensional errors (left-right, up-down, forward-
backward). In a different example, for 2D reaching with a planar
arm joint-angle errors can be used, so the error signal already
implies what the right correction is. In the present study we try to
break away from this tendency.

In the context of reaching, the idea that the cerebellum
could function by anticipatively applying the same corrections
as the central controller raises valid concerns about stability. We
address these concerns by showing that if the central controller
acts like a force always pointing at the target, and whose magni-
tude depends only in the distance between the hand and the tar-
get, then an idealized implementation of our cerebellar architec-
ture will necessarily reduce the energy of the system, resulting in
smaller amplitude for the oscillations, and less angular momen-
tum. The idealized implementation of the architecture thus yields
sufficient conditions for its successful application. This result is
presented in the Supplementary Material.

In addition to our mathematical model, we implemented four
computational models of a 3D reaching task embodying simple
variations of our proposed architecture. The central controller
in the four models uses an extension of the Equilibrium-point
hypothesis (Feldman and Levin, 2009), described in the Section
2. The presence of equilibrium points permits ways of address-
ing the motor error problem different than using stored copies
of efferent commands from the central controller, and ways of

detecting errors different than visually monitoring the distance
between the hand and the target. Our four models thus explore
variations of the architecture, in which either the learning sig-
nal or the corrections are generated using proprioceptive signals
from muscles. For these models the controlled plant is a 4 DOF
arm actuated by 11 Hill-type muscles. The cerebellar module
associates contexts, represented by radial basis functions in the
space of afferent and motor signals with corrective motor com-
mands. These associations between contexts andmotor responses
happen whenever a learning signal is received, which happens
when there is an increase of the error.

As mentioned above, we use two types of errors in our com-
putational models. The first type of error is the distance between
the hand and the target, which proves to be sufficient to obtain
predictive corrections. By virtue of using the equilibrium-point
hypothesis in the central controller we can alternatively use a sec-
ond type of error signal generated for individual muscles that
extend when they should be contracting. This allows the cere-
bellum to perform anticipative corrections in a complex multidi-
mensional task like reaching using learning signals that arise from
1-dimensional systems. This learning mechanism can trivially be
extended to serial cascades of feedback control systems, such as
those posited by Perceptual Control Theory (Powers, 1973, 2005)
and Threshold Control Theory (Feldman and Levin, 2009; Latash
et al., 2010), allowing the cerebellum to perform corrections at
various levels of a hierarchical organization spanning from indi-
vidual muscle contractions to complex cognitive operations. We
elaborate on this in the Discussion.

2. Materials and Methods

2.1. Physical Simulation of the Arm
In order to test the principles of our cerebellar model in 3D reach-
ing tasks we created a detailed mechanical simulation of a human
arm. Our arm model contains a shoulder joint with 3◦ of rota-
tional freedom, and an elbow joint with one degree of rotational
freedom. Inertia tensors for the arm, forearm, and hand were cre-
ated assuming a cylindrical geometry with size and mass typical
of human subjects. The actuators consist of 11 composite mus-
cles that represent the main muscle groups of the human arm
(Figure 2). Some of these muscles wrap around “bending lines,”
which are used to model the curved shape of real muscles as they
wrap around bones and other tissue. The force that each muscle
produces in response to a stimulus comes from a Hill-type model
used previously with equilibrium point controllers (Gribble et al.,
1998). The mechanical simulation was implemented in SimMe-
chanics, which is part of the Matlab/Simulink software pack-
age (http://www.mathworks.com/), release 2012b. Source code is
available from the first author upon request.

The coordinate for the targets used in our test reaches are
shown in Table 1.

2.2. Central Controller
The central controller we use to perform reaching is a modified
version of Threshold Control Theory (TCT, Feldman and Levin,
2009). TCT is an extension of a biological control scheme known
as the Equilibrium Point (EP) hypothesis. The lambda version
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FIGURE 2 | Geometry of the arm model. Blue lines represent the upper

arm and forearm, with the small black sphere representing the shoulder. Red

lines represent muscles. Cyan lines are bending lines. The colored spheres

(with color representing their position along the Z axis) show the location of the

targets used in the reaching simulations. The coordinates of these targets are

in Table 1.

TABLE 1 | Coordinates used for the targets in the test reaches.

X [cm] Y [cm] Z [cm]

Target 1 −10 20 −30

Target 2 −10 20 −10

Target 3 −10 30 −30

Target 4 −10 30 −20

Target 5 30 20 −30

Target 6 30 20 −10

Target 7 20 40 −20

Target 8 30 30 −10

The origin is at the shoulder. The X axis points to the right, the Y axis to the front, and the
Z axis upwards.

of the EP hypothesis states that the control signals used in the
spinal cord to drive skeletal muscles consist of a group of mus-
cle lengths known lambda values. When the length of a muscle
exceeds its lambda value it contracts, so that a set of lambda values
will lead the body (or in our case, the arm) to acquire an equi-
librium position. The muscle lengths at the equilibrium position
may or may not be equal to their lambda values. Also, notice that
given a set of lambda values there is a unique position that the
limb will acquire, because the viscoelastic properties of the mus-
cles will lead the joint to adopt the configuration minimizing its
potential energy. In this paper the control signals arriving at the
spinal cord to specify threshold lengths for muscle activation are
called target lengths.

Considering that the velocity of a muscle’s extension-
contraction is represented in spindle afferents (Lennerstrand,
1968; Lennerstrand and Thoden, 1968; Dimitriou and Edin, 2008,
2010), the argument made for lengths in the EP hypothesis could
be modified to hypothesize threshold velocities being the con-
trol signals at the spinal cord level, and threshold lengths being

used at a higher level, modulating the threshold velocities. Such
a two level control system is inspired by the hierarchical organi-
zation found in TCT and in Perceptual Control Theory (Pow-
ers, 1973, 2005), and is capable of stabilizing oscillations with
far more success than pure proportional control. In general, it
is hard to stabilize movement without velocity information, so
this factor has been introduced in equilibrium-point controllers
(de Lussanet et al., 2002; Lan et al., 2011). As in TCT, we assume
that the forces are generated at the level of the spinal cord, simi-
larly to the stretch reflex, and we assume a proprioceptive delay of
25ms.

The way our controller guides reaching starts by mapping the
Cartesian coordinates of a target into the muscle lengths that the
arm would have with the hand located at those coordinates. In
order to make this mapping one-to-one we assume that the upper
arm performs no rotation. The difference between the current
muscle length and the target muscle length will produce a mus-
cle stimulation, modulated by the contraction velocity (details
in next subsection). The blocks labeled “inverse kinematics” and
“feedback controller” in Figure 3 represent the computations of
the central controller being described.

2.2.1. Equations for the Central Controller
The central controller performs two tasks in order to reach for a
target. The first task is, given the coordinates of the target, to pro-
duce the muscle lengths that would result from the hand being at
those coordinates. The second task is to contract the muscles so
that those target lengths are reached.

The first task (inverse kinematics) requires to map 3D desired
hand coordinates into an arm configuration. The spatial config-
uration of the arm that leads to hand location is specified by 3
Euler angles α, β, γ at the shoulder joint, and the elbow angle
δ. Our shoulder Euler angles correspond to intrinsic ZXZ rota-
tions. In order to create a bijective relation between the 3D hand
coordinates and the four arm angles we set γ = 0.

For a given target hand position we calculate the angles
α, β, γ, δ corresponding to it. Using these angles we calculate
the coordinates of the muscle insertion points, from which their
lengths can be readily produced. When the muscle wraps around
a bending line we first calculate the point of intersection between
the muscle and the bending line. The muscle length in this
case comes from the sum of the distances between the muscle
insertion points and the point of intersection with the bending
line.

The formulas used to calculate the angles α, β, γ, δ given hand
coordinates (x,y,z) and the shoulder at the origin are:

α = sin−1

(

−x
√

x2 + y2

)

, (1)

β = cos−1

(

−z
√

x2 + y2 + z2

)

− cos−1

(

x2 + y2 + z2 + L2arm − L2
farm

2(x2 + y2 + z2)Larm

)

, (2)

γ = 0, (3)
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FIGURE 3 | Block diagram corresponding to the computational

implementation of our architecture in Matlab when using visual

errors. λi is the target length for muscle i. eli and evi are respectively

the length and velocity errors for the i-th muscle. ci is the cerebellar

correction applied to muscle i. fi is the force vector applied on the

insertion points of muscle i as a result of its contraction. li and vi are the

length and contraction velocity of muscle i. When these signals come

directly from the arm dynamics simulation they are not delayed. qs is a

quaternion specifying the orientation of the upper arm. θe is the angle of

elbow flexion. e is the distance between the hand and the target. [ė]+ is

the positive part of the derivative of e. li, vi,qs, q̇s, θe, θ̇e are subject to a

proprioceptive delay of 25ms, whereas e and ė are subject to a visual

delay of 150ms. The blocks inside the red and green dashed lines are

used for the 4 models in the paper. The elements inside the red dashed

square comprise the central controller in Figures 5, 7, 9, 11. The blocks

surrounded by the green dashed lines constitute the muscle, environment,

and parietal cortex blocks in Figures 5, 7, 9, 11. Implementation of the

blocks is described in the Section 2.

δ = π − cos−1

(

L2arm + L2
farm

− (x2 + y2 + z2)

2LarmLfarm

)

. (4)

Where Larm and Lfarm are the lengths of the upper arm and fore-
arm respectively. If we have the coordinates of a humerus muscle
insertion point (as a column vector) at the resting position, then
we can find the coordinates of that insertion point at the position
specified by α, β, γ using the following rotation matrix:

R =















c(α)c(γ )− s(α)
c(β)s(γ )

−c(α)s(γ )− s(α)
c(β)c(γ )

s(α)s(β)

s(α)c(γ )+ c(α)
c(β)s(γ )

−s(α)s(γ )+ c(α)
c(β)c(γ )

−c(α)s(β)

s(β)s(γ ) s(β)c(γ ) c(β)















(5)

where c(·)= cos(·), s(·)= sin(·).
The coordinates of insertion points on the forearm at the

pose determined by α, β, γ, δ are obtained by first performing
the elbow (δ) rotation of the coordinates in the resting posi-
tion, and then performing the shoulder rotation (α, β, γ ). Muscle
lengths come from the distance between their insertion points,
or between their insertion points and their intersection with the
bending line. Details on how to determine whether a muscle
intersects a bending line can be found in the function piece5.m,
included with the source code. This function also obtains the
point of intersection, which is the point along the bending line
that minimizes the muscle length.

Once we have found target equilibrium lengths for the mus-
cles, we must contract them until they adopt those lengths.
To control the muscles we use a simple serial cascade control
scheme. The length error el of a muscle is the difference between

its current length l and its equilibrium length λ. The velocity error
ev is the difference between the current contraction velocity v
(negative when the muscle contracts), and the length error el:

el = gl(l− λ), ev = gv(v+ el). (6)

The constants gl, gv are gain factors. For all simulations gl =
2, gv = 1. The input to the muscles is the positive part of the
velocity error. This creates a force that tends to contract the mus-
cle whenever its length exceeds the equilibrium length, but this
force is reduced according to the contraction speed. At steady
state the muscle lengths may or may not match the equilibrium
lengths, depending on the forces acting on the arm. To promote
stability the output of the central controller went through a low-
pass filter before being applied to the muscles. Also, to avoid
being stuck in equilibria away from the target, a small integral
component was added, proportional to the time integral of the
central controller’s output.

2.3. Cerebellar Model
The cerebellar model provides motor commands whenever an
“error-prone area” of state space is entered. Each error-prone area
consists of a point in state space (its center, or feature vector), and
a kernel radius. To each error-prone area there also corresponds
a “correction vector,” specifying which muscles are activated and
which are inhibited when the error-prone area is entered. At each
iteration of the simulation the distance between the currently per-
ceived point in state space and the center of each error-prone area
is obtained, and each correction vector will be applied depend-
ing on this distance, modulated by its kernel radius. The kernels
used can be exponential or piecewise linear. The action of the
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cerebellar model is represented in Figure 3 by the block labelled
“stored corrections.”

Learning in the model requires an error signal, which could be
visual (such as the one that may be generated in posterior parietal
cortex Desmurget et al., 1999), or could arise from muscle affer-
ents. Block diagrams corresponding to the model with the visual
andmuscle error signals are in Figures 5, 7, 9, 11. The visual error
signal arrives with a delay of 150ms. Each time the error increases
its magnitude (its derivative becomes positive) this increases the
probability of complex spikes; for each IO cell, this probability
also depends on the current phase of its subthreshold oscillation
(see next subsection). Complex spikes generate a new error-prone
area. The feature vector associated with this area is the state of the
system a short time span before the error increased; usually this
time span will be half the time it takes for the error derivative to
go back to zero, plus an amount of time comparable to the per-
ceptual delay. For as long as the error derivative is positive, at
each iteration we will record the efferent signals produced by the
central controller, and when the derivative stops being positive
we will obtain the average of all the recorded efferent signals. The
correction is obtained from this average. The muscles are driven
by the velocity errors, so these are the efferent signals collected
during correction period. All the kernel radii were equal, so they
have no change associated with learning.

Notice that if the error derivative remains positive, more com-
plex spikes will be generated as different olivary nucleus cells
reach the peak of their subthreshold oscillations. Thus, we have
two gain mechanisms for a correction: one comes from the mag-
nitude of the error derivative, whichwill promote a large response
(and synchronous activity) of complex spikes; the second comes
from the amount of time that the error derivative remains posi-
tive, since more inferior olivary nucleus cells reaching the peak of
their subthreshold oscillations while this derivative is positive will
mean a larger number of complex spikes, creating error-prone
areas along the trajectory of the arm. Performance-wise, it is ben-
eficial to have a sequence of error-prone areas rather than a single
one, since the appropriate correction to apply will change as the
arm moves.

When the new feature vector is too close to a previously stored
one, or when we have already stored too many feature vectors,
then the new feature vector will become “fused” with the stored
feature vector closest to it. When two areas fuse they are both
replaced by a new area whose feature vector is somewhere along
the line joining the feature vectors of its parent areas, and likewise
for its correction vectors.

2.3.1. Algorithm for the Cerebellum Simulations
We will describe the part of the computational model that deals
with the functions of a microcomplex (the file CBloop11c.m of
the source code). To simplify the exposition, we do not consider
the case when the maximum number of “feature vectors” have
been already stored.

The input to the microcomplex model has components that
represent error, and afferent/efferent signals. The error compo-
nent consists of the distance between the hand and the target
(the visual error), and its derivative (from which complex spikes
are generated). The afferent information includes a quaternion

describing the shoulder joint position, the derivative of this
quaternion, an angle describing the elbow position, and this
angle’s derivative. The efferent input is themuscle input described
in Section 2.2.1 (consisting of 11 velocity errors), and in addition,
the desired shoulder position (expressed as a quaternion), and
the desired elbow angle. The error and its derivative arrive with a
visual delay of 150ms. The rest of the information arrives with a
proprioceptive delay of 25ms.

The output of the microcomplex consists of 11 additional
signals that will be added to the muscle inputs.

The algorithm’s pseudocode is presented next. An unhandled
spike is a complex spike whose “context,” consisting of the affer-
ent/efferent signals and the error briefly before the spike, has not
been stored as a “feature vector.” A “feature vector” is a context
associated with a motor correction.

At each step of the simulation:

1: Generate complex spikes using the error derivative
2:

if there are unhandled spikes then
if If the error derivative is no longer positive, and the time
since the spike doesn’t exceed 250ms then
2.1.1: Store the context corresponding to the unhandled
spike as a new feature vector
2.1.2: Store the motor correction associated with the new
feature vector

end if

end if

3: For each feature vector, calculate its distance to the cur-
rent context, and add its motor correction to the output as a
function of that distance

In step 2.1.1, the stored feature vector consists of the context
as it was τv − τp + t−tcs

2 milliseconds before the complex spike,
with τv being the visual delay, τp the proprioceptive delay, t the
current time, and tcs the time when the complex spike arrived.

In step 2.1.2, the motor correction that gets stored is the
average motor input from (tcs − τv + τp) to (t − τv + τp).

The output that the microcomplex provides at each simula-
tion step is obtained using radial basis functions. The distance
between the current context and each feature vector is calcu-
lated, and those distances are normalized. The contribution of
each feature vector to the output is its corrective motor action
scaled by an exponential kernel using that normalized distance.
Let f (i) be the i-th feature vector, and w(i) its associated correc-
tion. Let v denote the vector with the current context informa-
tion. We first obtain a distance vector D, whose components are:
D(i)= ‖f (i)−v‖2.

The distance vector is normalized as DN = (
√
MF/‖D‖)D,

where MF is the maximum number of feature vectors allowed.
The contribution of feature i to the output is F(i)= w(i)eγDN (i),
with γ specifying the kernel radius.

2.4. Inferior Olivary Module
The process of generating complex spikes when using the visual
error is explained next. By “complex spike” wemean a signal indi-
cating that a correction should be stored. There are N inferior
olivary nucleus cells, from which N3 are assumed to oscillate at
3Hz, and N7 are assumed to oscillate at 7Hz. The phases of both
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cell subpopulations are uniformly distributed so as to occupy
the whole range [0, 2π] in the equation below. Let φ(i) denote
the phase of cell i, and α(i) denote its angular frequency. The
probability to spike at time t for cell i is calculated as:

PiCS(t)= p
cos[α(i)(t − φ(i))]+ 1

(1+ e(5−E))(1+ e(30− 15[E′]+))
(7)

Where p is a constant parameter, E is the visual error, and [E′]+

is the positive part of its derivative. At each step of the simulation
a random number between 0 and 1 is generated for each cell. If
that number is smaller than PiCS, and the cell i has not spiked in
the last 200ms, then a complex spike is generated.

Complex spikes are less likely to be generated when the error is
small. When the hand is close to the target it is likely that it oscil-
lates around it. Generating cerebellar corrections in this situation
could be counterproductive, as the angle between the hand and
the target changes rapidly, and so do the required corrections.
In our idealized cerebellum (see Supplemenatry Material) there
are conditions ensuring that no corrections are created when the
angle between the hand and the target has changed too much.
Since there is no obvious biological way to measure the angle
between the hand and the target, we just avoid generating correc-
tions when the hand is close to the target. Another mechanism
present in our computational simulations to deal with this prob-
lem is that no corrections are stored if the time between the com-
plex spike and the time when the error stops increasing is more
than 250ms.

Generating complex spikes when using the proprioceptive
error follows a simpler procedure. For each muscle three condi-
tions must be satisfied for a “complex spike” to be generated: (1)
its length l is increasing, (2) l is longer than it’s target value λ, and
(3) no complex spikes have been generated for that muscle in the
last 200ms. A variation described in the Section 3 adds a fourth
condition: (4) the visual error must be increasing (E′ > 0).

2.5. Generating Corrective Muscle Activity
In this paper there are three different methods to determine the
corrective motor commands that become associated with points
of state space where the error increases.

The first method, in model 1 of the Section 3, is used with
visual errors. The corrective commmand consists of the aver-
age efferent commands produced from the point when the error
started to increase until the error stopped increasing (points 3
and 5 in Figure 4A).

The second method, in models 2 and 3, is used with propri-
oceptive errors. If a complex spike is generated for a muscle, the
corrective command is simply a slight contraction of that same
muscle.

The third method is used with visual errors, and is applied in
model 4. The corrective command for muscle i will be propor-
tional to the product ci = [< li > −λi]

+[l̇i]+, where li is the
length of muscle i, < li > is the average of that length through
a brief period before the error stopped increasing (e.g., a brief
period between points 3 and 5 in Figure 4A, λi is the target length
for muscle i, l̇i is the derivative of the length, and [·]+ returns the
positive part (and zero otherwise).

FIGURE 4 | Correcting reaching errors. (A) Schematic trajectory of the

hand as it reaches for target T in 2 dimensions. Seven points of the trajectory

are illustrated, corresponding to seven important points in time with different

afferent/efferent contexts. 1. Initial position of the hand. 2. The context at this

point will be associated with the correction. 3. The error begins to increase. 4.

Complex spikes reach the cerebellar cortex in response to the error increase.

5. The error is no longer increasing. 6. The context at point 2 becomes

associated with a correction, which could consist of the mean efferent activity

(roughly) between points 3 and 5. 7. Final hand position. (B) After the

correction in (A) is learned, and the same reach is attempted, the trajectory will

be modified upon approaching point 2, with the correction being applied

anticipatively (blue line). Notice that a different trajectory (red line) that passes

through the spatial location of point 2 may not elicit the correction learned in

(A). This is because the correction is applied when its associated context is

near to the current context (which is a point in state space); those contexts

contain velocities, efferent activity, and target location in addition to the arm’s

spatial configuration.

3. Results

3.1. Implementing the Architecture in a Reaching
Task
We hypothesize that the role of the cerebellum in motor con-
trol is to associate afferent and efferent contexts with movement
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corrections; in the case of reaching the controller involves the
cortex, basal ganglia, brainstem, and spinal cord. The role of the
central controller is to reduce error, and we begin by assum-
ing that the role of the cerebellum is to anticipatively apply the
corrections of the central controller. (model 1 below). How this
could happen for the case of reaching is described in Figure 4.
Before an incorrect motion is made (moving the hand away from
the target), the mossy fibers reaching the granule layer have affer-
ent and efferent information that could predict when this error
will occur. When the error does increase during a reach, this is
indicated by complex spikes, while the central motor controller
is acting to correct the error. The cerebellum associates the affer-
ent and efferent information of granule cells shortly before the
increase in error with the motor actions required to correct it,
using climbing fiber activity as the training signal. The correc-
tive motor actions can be those that the central motor controller
produces in order to stop the error from increasing, which come
shortly after the onset of error increase; thus the cerebellum
doesn’t have to obtain those actions itself, it canmerely remember
what the central controller did. This idea is related to Fujita’s feed-
forward associative learning model (Fujita, 2005). Other ways to
obtain the corrective motor actions are described in the models
below.

As mentioned in the Introduction, we created mathematical
and computational models implementing these ideas. The math-
ematical model and the results of its analysis are described in
the Discussion. The full mathematical treatment is in the Sup-
plementary Material. The elements of the computational models
are described in the Section 2. In the remainder of the Results
we present the outcome of simulations using four computational
models with basic variations of our cerebellar architecture. All
these computational models use the same central controller and
the same arm and muscle models.

The physical simulation of the arm used for this study used
no friction at the joints. The muscles had limited viscoelastic
properties and the control signals had low gain. Under these con-
ditions, the arm under the action of the central controller alone
tended to place its distal end at the target slowly (in around 1.5 s)
and with some oscillations, even in the absence of gravity forces.
Introducing a 25ms proprioceptive delay resulted in larger oscil-
lations, and the hand no longer reached the target with arbitrary
accuracy, but would instead oscillate around it in a non periodic
fashion. Moreover, certain positions of the target would cause the
arm to become unstable, leading to chaotic flailing.

To test that the cerebellar corrections could gradually reduce
the error as learning progressed through successive reaches, we
selected 8 target locations and simulated 8 successive reaches
to each target. From these 8 targets one of them (target 2)
produced instability of the arm when no cerebellar corrections
were applied. The same 8 targets were used for the four mod-
els presented here. Figure 2 presents a visualization of the arm’s
geometry, and of the 8 targets.

3.2. Simulation Results
3.2.1. Model 1: Visual Errors, Efferent Copies to

Generate Corrections
We first considered the case when complex spikes were generated
when the distance between the hand and the target increased,
according to Equation (7). The corrective muscle commands
were proportional to the average of the efferent commands pro-
duced between the onset of error increase and the time when
the error no longer increased (the period between points 3 and
5 in Figure 4). Figure 5 presents a block diagram indicating the
signals and modules involved in this model.

Figure 6A shows the evolution through time of the distance
between the hand and the target in the 1st, 4th, and 8th reaches

FIGURE 5 | Computational model with the visual error signal, and a

corrective command that is obtained from the efferent commands

produced by the central controller (model 1 in the text). This is the

same model depicted in Figure 3, but at a slightly higher level of description.

The error (assumed here to be obtained in parietal cortex) consists of the

distance between the hand and the target, and increases of this error cause

the forward model to associate the context with a correction. The learning

signal, produced when the error increases, is denoted by the red line. The

forward model corresponds to the stored corrections in Figure 3, and the

environment corresponds to the arm dynamics simulation.
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FIGURE 6 | Results for Model 1. (A) Distance between hand and target

through 4 s of simulation time for the first, fourth, and eighth reaches to target 7.

The cerebellar system was trained using the distance between the hand and

the target as the error, and the target had coordinates X = 20 cm,Y = 40 cm,

Z = −20 cm. The dashed line, labeled “No Cb,” shows the error when the arm

was actuated by the central controller exclusively. Notice how the first reach

(red line) is slower, and oscillates away from the target after approaching it. This

is significantly improved on the eighth reach (blue line). (B) Integral of the

distance between the hand and the target during the 4 s of simulation for the 8

successive reaches. Each bar corresponds to the value obtained from averaging

this performance measure across the 8 targets. The bars were normalized by

dividing between the value for the first reach. For each bar its standard error

measure (S.D./
√
8) is shown using the red lines at its upper edge.

toward a representative target. To measure the success of a reach
we obtained the time integral of the distance between hand and
target through the 4 s of simulation for each reach. Smaller val-
ues of this performance measure indicate a faster, more accurate
reach. Figure 6B shows our performance measure for each of the
8 successive reaches, averaged over the 8 targets.

Figure 6 shows that on average the performance increases
through successive reaches. The error may not decrease mono-
tonically, however, since the correction learned in the last trial
may put the system in a new region of state space where new
errors can arise within the time of the simulation. Eventually,
however, the hand comes close to monotonically approaching the
target. The instability present in the second target dissappeared
on the second reach (not shown).

Although this model improves the performance of the reach,
it can’t be considered biologically plausible unless we understand
how the outputs at the deep cerebellear nucleus could become

associated with the corrections they presumably apply. Basically,
the problem is that if all microcomplexes receive the same learn-
ing signal (increase in visual error), then all the DCN populations
will learn the same response, and the arm would express all possi-
ble corrections upon entering an error-prone area of state space.
In the Discussion we elaborate on this. In the rest of the Section 3
we present 3 alternativemodels were the corrections to be applied
are not learned from efferent copies of the commands to the arm,
but from proprioceptive signals.

3.2.2. Model 2: Proprioceptive Errors, Individual

Muscle Corrective Signals
Using the equilibrium point hypothesis in the central controller
has the distinct advantage that we know the lengths at which the
muscle stops contracting (called target lengths in this paper). A
simple way to detect errors could be to monitor when a muscle
is longer than its target length, but is nevertheless elongating. A
simple way to correct that error is to contract that muscle a bit
more. The multidimensional task of applying corrections dur-
ing 3D reaching is thus reduced to a group of one dimensional
tasks corresponding to individual muscle groups. Figure 7 shows
a block diagram implementing these ideas as done in our second
model.

Figure 8 shows the results of using a model where the errors
are detected and corrected at the level of individual composite
muscles, as just described. It can be observed that improvement
is slower than in the case of the previous model. For example, the
instability of the second target only dissappeared during the sixth
reach (not shown). In our simulations of model 2 the cerebellar
corrections could lead to instability unless we use small kernel
radii and small amplitude for the corrections. A possible reason
for this is that our central controller does not specify an optimal
temporal sequence of muscle contractions, but instead specifies a
static set of target lengths. The trajectory of muscle lengths that
leads the hand in a straight line toward the target may not have
those lengths monotonically approaching the target lengths. On
the other hand, our system generates an error signal whenever
that approach is non monotonic. This inconsistency is the price
of using one-dimensional signals to approach an error that arises
from the nonlinear interaction of several independent variables.
The next model uses a simple approach to try to overcome this
problem.

3.2.3. Model 3: Proprioceptive Errors With Visual

Error Constraint, Individual Muscle Corrective Signals
In the previous model the gain of the corrections and their area
of application in state space had to remain small because there
can be some inconsistency between the error signals from indi-
vidual muscles and the visual error. A muscle continuing to elon-
gate past its target value does not imply that contracting it will
bring the hand closer to the target. A simple way to address this
is to add the necessary condition that if a correction is to be
stored, the visual error should be increasing. Corrective signals
will thus arise when the muscle is elongating beyond its target
length, and the hand is getting away from the target. In this way,
even if the muscle lengths are getting away from their target val-
ues, no corrections will be stored when the hand is approaching
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FIGURE 7 | Model with the proprioceptive error signal, and a corrective

command that is simply a contraction of the muscle that produced the

error signal (model 2 in the text). The error is the muscle length l minus the

target length λ. This target length comes from the central controller. When

l − λ is positive, increases of this error in a particular context will cause the

pattern recognizer to apply an anticipative contraction when that context

arises. The pattern recognizer corresponds to the block of stored corrections

in Figure 3, and the increase detector corresponds to the IO module.

FIGURE 8 | Results for Model 2. The cerebellar system was trained using an

error signal produced when muscles became larger than their target value.

(A,B) Refer to Figure 6 for interpretation.

the target monotonically. Figure 9 shows how the architecture
of model 2 is augmented with visual errors in order to produce
model 3.

Figure 10 shows the results of using a such a model. Using the
additional constraint permits larger gains in the corrections and
larger kernel radii than those used in model 2. This is reflected

by a larger increase in performance. This increase, however, is
still not as good as that seen in model 1. The visual error is
what we really want to reduce, and there is a limit to how
much this can be done when the error signals are triggered at
the level of muscles, as the visual error and the proprioceptive
error are not entirely equivalent. This is addressed by the next
model.

3.2.4. Model 4: Visual Errors, Proprioceptive

Corrective Signals
As discussed above, visual errors are the most appropriate to
improve performance, so in this model we use them, just as
in model 1. Unlike model 1, we don’t use the commands from
the central controller in order to create the corrections. We
must then find a way to solve the distal error problem without
the central controller. A way to do this is to create corrections
similar to the signals that indicated error increase in models 2
and 3.

Model 4 generates error signals (complex spikes) when the
hand is getting away from the target according to Equation (7),
just like model 1. Figure 11A shows the signals and modules
implied by model 4. For each muscle, the correction associated
with an error signal is proportional to two factors: how much
longer the muscle is than its target value, and how fast its length is
increasing (Figure 11B). The block that associates contexts with
predicted increases in error (labeled “ERROR INCREASE PRE-
DICTOR”) is identified with the cerebellum, while the “COR-
RECTION GENERATION” module is identified with muscle
afferents and spinal cord neurons. We assume that the predic-
tions of error increase from the cerebellum become associated
with the corrections generated at the level of the spinal cord. This
is elaborated in the Discussion.

Figure 12 shows the performance of model 4. It can be seen
that the error reduction is comparable to that of model 1, but
using a novel solution to the motor error problem based on the
assumption that the muscle is controlled through an equilibrium
length.
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FIGURE 9 | Model with the proprioceptive error signal, a visual error

constraint, and a corrective command that is simply a contraction of

the muscle that produced the error signal (model 3 in the text). Notice

that this is similar to the model in Figure 7, but we have an additional

learning signal entering the pattern recognizer. This additional signal ensures

that corrections are stored only when the visual error is increasing.

FIGURE 10 | Results for Model 3. The cerebellar system was trained using

an error signal produced when muscles became larger than their target value,

with the additional constraint that the error (distance between hand and target)

had to be increasing. (A,B) Refer to Figure 6 for interpretation.

4. Discussion

As research on the cerebellum continues, it becomes increas-
ingly clear that although cerebellar microzones have a uniform

architecture, the role they play in various systems can be different
depending on their input and output connections. For example,
cerebellar microzones could implement either forward or inverse
models (Popa et al., 2012; Ito, 2013; Porrill et al., 2013). Cere-
bellar architectures such as feedback-error learning (Kawato and
Gomi, 1992, Figure 1B) and the recurrent architecture (Porrill
and Dean, 2007, Figure 1A) specify the connectivity of cerebel-
lar microzones, and the computational role they would therefore
play.

We have presented an architecture in which the cerebellum
reduces errors associated with climbing fiber activity when that
activity arises from the increase in some error measure. Instead of
assuming that complex spikes encode themagnitude of some per-
formance error, we have assumed that they are generated when
the derivative of the error becomes positive. This leads to a sparse
code that generates a forward model for anticipative corrections.
This forward model exists only in locations of state space where
the error is prone to increase, and predicts a corrective command,
not the output of the controlled object. Very importantly, the
identity of the error signal does not need to imply the dimension
along which the correction should be made. Although we have
assumed that the central controller uses closed-loop feedback,
this is not necessary for our first model. Our architecture has the
potential to explain the presence of predictive and feedback per-
formance errors in Purkinje cell simple spikes (Popa et al., 2012,
2013), the correlation of complex spikes with both sensory and
motor events (Ito, 2013), the sparsity of complex spikes, and as
discussed below, the role of the cerebellum in nonmotor opera-
tions (Ito, 2008; Buckner, 2013; Koziol et al., 2014; Popa et al.,
2014). A possible way to discard our architecture in a particular
system is when errors that are not increasing or changing elicit
a sustained complex spike response. By “errors,” we refer not
only to performance errors, but in general to signals that merit
a behavioral response, such as an unexpected perturbation, or a
potentially nociceptive stimulus.
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FIGURE 11 | Model with visual errors and proprioceptive error signals

(model 4 in the text). (A) The visual error signal used by this model is the

same one as in model 1, but unlike model 1, the correction associated with

an error is not a copy of a command from the central controller. In this case,

the correction is generated from proprioceptive information (muscle length

and contraction velocity) in the block labeled as “CORRECTION

GENERATION” (expanded in B). This correction is to be applied when the

error is predicted to increase. In the block labeled “ASSOCIATION” a signal

predicting the onset of error increase becomes associated with the

correction, so that when the increase in error is predicted the correction is

applied. (B) The computations performed in the “CORRECTION

GENERATION” block of (A). For each muscle, its length l and contraction

velocity l̇ are received, along with a target length λ. The correction consists of

the product between the positive parts of l − λ and l̇.

We have explored our architecture in the context of reaching
in 3D space. In addition to the mathematical treatment described
below, we showed that the equilibrium point hypothesis gives
our architecture the ability to solve the motor error problem in a
novel way, using proprioceptive muscle signals (models 2,3, and
4). The success of model 4 suggests that we can predict errors
using visual signals, and generate corrections using propriocep-
tive signals. It is clear that we can provide predictive control with-
out the need to predict the kinematic or dynamic state variables of
the controlled plant. Moreover, a signal which very loosely repre-
sented the positive part of the error derivative is sufficient to train
our predictive controller. The type of corrections that our model
cerebellum provides tend to avoid episodes where the hand gets
away from the target; this is important when using a controller
based on the lambda model of the equilibrium-point hypothesis
(Feldman and Levin, 2009). A controller that only specifies a set
of target muscle lengths (and not a trajectory of such lengths)may
produce reaches by simultaneously contracting all the muscles
whose lengths are longer than their desired lengths. This, in gen-
eral, will not result in a straight-line reach. What the cerebellar
controller does is to modify the activity of antagonist muscles at

different points of the trajectory so that the hand monotonically
approaches its target, producing a reach that is closer to a straight
line.

All four models in this paper avoid or solve the redundancy
problem. In Section 2.5 three ways of generating corrective motor
commands were described. When the corrective output is gener-
ated from an efferent copy of the central controller (model 1),
the redundancy problem is avoided, as it is assummed that this
is handled by the central controller (the recurrent architecture
avoids the redundancy problem in a similar manner). For the
two other ways of generating corrective commands (in models
2,3,4), the redundancy problem is solved as soon as equilibrium
lengths are given. Notice that equilibrium lengths determine the
final position of the arm uniquely, as the viscoelastic properties of
muscles lead the arm toward a configuration of minimal potential
energy.

4.1. The Mathematical Model
In our mathematical model the hand is considered to be a point
mass, and the central controller applies a force applied to this
mass, always pointing to the origin, which is considered to be
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FIGURE 12 | Results for Model 4. The cerebellar system was trained using

the same error signal as in model 1 (Figure 6), but the corrective commands

were produced from muscle proprioceptive signals. (A,B) Refer to Figure 6 for

interpretation.

target. This constitutes a central force system, and as in the case
of planetery motion under gravity forces it will tend to produce
elliptical trajectories around the origin.

We modelled the “cerebellum” as a system that would apply
impulsive forces to the point mass whenever particular regions
of state space were entered, and proceeded to prove that such a
cerebellum will continue to reduce the angular momentum in
the trajectory until it either gets close enough to the target, or
until it becomes circular. Circular trajectories do not ellicit cere-
bellar corrections because the error signal (distance between the
hand and the target) does not increase. This is a shortcoming of
generating learning signals only when the error increases.

The crucial part of this mathematical treatment is specifying
when cerebellar corrections will be created, and for each cere-
bellar correction what will be the impulse vector associated with
it. The cerebellar controller is characterized by three numbers:
a speed threshold, a distance threshold, and a gain. A cerebellar
correction is created whenever two conditions are met: the error
begins increasing faster than the speed threshold, and it grows
beyond the distance threshold.

The impulse associated with a correction is obtained by inte-
grating the central controller’s force, from the timewhen the error
began to increase, until a stop time is reached; this is then multi-
plied by the gain. Specifying the integration stop time correctly is
very important, and in our model we obtain it as the largest time

when three conditions are all satisfied, namely: (1) the error is
still increasing faster than the speed threshold, (2) the mass hasn’t
rotated around the origin more than π/2 radians, (3) the correc-
tive impulse is not strong enough to reverse the radial velocity
of the point mass. The first condition ensures that we only inte-
grate forces that are contributing to stopping the error increase.
The third condition exists so the corrective impulse is not strong
enough to reverse the velocity of the mass, potentially bringing
instability.

The second condition for the stop time ensures that the
impulse vector roughly points in the opposite direction of the
error’s velocity vector. This condition is akin to the strictly pos-
itive real (SPR) condition of adaptive filter models (Porrill et al.,
2013). The SPR condition states that the error signal used to train
the filter should not have a phase shift of more than 90◦ at any
frequency with respect to the actual error signal. In other words,
the SPR condition states that the used error signal should be pos-
itively correlated to the error, whereas our second condition for
the integration stop time states that the corrective signal should
be negatively correlated with the increase in error. In the next
subsection the subthreshold oscillation of inferior olivary nucleus
cells is linked to the second condition for the integration stop
time.

The mathematical treatment of our model points to several
potential shortcomings implied in the three conditions for the
integration stop time. These shortcomings are only strengthened
by the fact that the arm does not exactly act as a central force on
the hand. The ability of the cerebellar corrections to generalize
properly to points in a ball surrounding an original correction
point depends on how much the angle between the error’s veloc-
ity and the corrective impulse change inside that ball. The arm
exerting forces that don’t point toward the target could reduce its
negative correlation with the error velocity. This is a reason why
the computational simulations in this paper (particularly model
1) are an important validation of our mathematical ideas.

4.2. The Contents of Climbing Fiber Activity
What the climbing fibers (CF) encode is still a contentious issue,
and different assumptions lead to different models of cerebellar
function. One set of assumptions is that the CF activity encodes
performance errors involving the neuronal circuits of the PCs
receiving those CFs. CF activity has indeed been found to be
related to performance errors and unpredicted perturbations
(Stone and Lisberger, 1986; Yanagihara and Udo, 1994; Bloedel
and Bracha, 1998; Kitazawa et al., 1998), but it also has been
found to correlate with both sensory andmotor events, so that the
nature of what is being encoded remains controversial (Bloedel
and Bracha, 1998; Anastasio, 2001; Llinas, 2011).

We have assumed that complex spikes signal an increase in
error, like the distance between the hand and a target, or the
distance between the hand and its intended point in the trajec-
tory. This is different from assuming that complex spikes perform
a low-frequency encoding of the error (Kitazawa et al., 1998;
Schweighofer et al., 2004; Kitazawa and Wolpert, 2005) because
our onset signal doesn’t track the error’s magnitude, it is only
related to the positive part of the error’s derivative. Moreover,
this climbing fiber signal does not require high firing rates, and
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the magnitude of the error correction could be obtained through
several mechanisms such as cumulative learning through time,
graded complex spikes (Najafi and Medina, 2013; Yang and Lis-
berger, 2014), or complex spike synchrony. In practice, for our
models 1 and 4 we assume that the inferior olivary nucleus pro-
duces the output specified by Equation (7) of the Section 2. For
models 2 and 3 the signal provided by the inferior olivary is sim-
ilar in nature (an increase in error), but the error comes from
muscle lenghts (model 2), or from a combination of muscle
lengths and visual error (model 3). Details are in the Materials
and Methods.

A noteworthy aspect of our computational simulations when
using visual errors (models 1 and 4) is that we included an infe-
rior olivary module that considered a number of units with sub-
threshold oscillations. This was done because such a module con-
fers specific advantages in our architecture. Our second condition
for the integration stop time in the mathematical model is more
likely to be satisfied when the integration stop time is short. This
means that instead of having a single large correction associated
with an error prone area, it may be better to have several smaller
corrections along the trajectory of the arm in state space during
episodes of error increase. Our computational model of the infe-
rior olivary module uses the subthreshold oscillations of IO cells
as a mechanism to generate sequences of complex spikes during
episodes of error increase, instead of having all IO cells firing
simultaneously when there is an increase in error. The increase
in error stimulates all IO cells targeting a microcomplex, but only
those near the peak of their subthreshold oscillation will respond.
As long as the error continues to increase, the IO cells nearing the
peak of their oscillations will tend to activate.

To precisely convey the timing of increase onsets and to
encourage stability it is important to have a wide range of phases
in the subthreshold oscillations of inferior olivary cells (Jacobson
et al., 2009), which largely depends on the coupling strength of
olivary gap junctions (Long et al., 2002). The complex desynchro-
nized spiking mode (Schweighofer et al., 1999) has a wide range
of phases, as assumed in our simulations. We model the subthre-
hold oscillations of the IO cells so that the probability to spike
for each cell depends on both the strength of the input signal and
the phase of the subthreshold oscillation. Larger increases in the
error produce stronger input signals to the inferior olivary, which
are reflected by a larger number of neurons responding; thus,
for any short time interval, the magnitude of the error increase
is reflected by the number of inferior olivary cells spiking in
synchrony. The inhibitory feedback from the cerebellar nuclear
cells, in addition to functioning as a negative feedback system to
control simple spike discharges (Bengtsson and Hesslow, 2006),
could also help to avoid large clusters of synchronized inferior oli-
vary cells, so as to maintain the complex desynchronized spiking
mode.

4.3. From DCN Activity to Behavioral Responses
If the group of Deep Cerebellar Nucleus (DCN) cells in one
microcomplex stimulate only one muscle (or a set of agonists
muscles), it is easy to see how in models 2 and 3 the right error
signals for a given microcomplex come from the muscles affected
by their DCN cells. In this case cerebellar modules can work as

1-dimensional systems, with an adaptive filter system as the one
in Fujita (1982) or Chapeau-Blondeau and Chauvet (1991) being
sufficient to perform the corrections. In our simulations, how-
ever, the increase in performance in models 2 and 3 was smaller
than that in models 1 and 4, which used visual errors. This, we
concluded, was the cost of using 1-dimensional errors to correct
an error that is multidimensional (the distance between the hand
and the target).

On the other hand, models 1 and 4 present a difficulty when
considering why the activity of a given DCN cell activates the
right muscles for a correction. As mentioned before, in models
1 and 4 there is only one learning signal (visual error increase),
which would be the same for all microcomplexes. This implies
that all microcomplexes would learn the same response, and
entering an error-prone region of state space would elicit the
responses associated with all DCN cells. Models 1 and 4 specify
what the corrective command is, so conceptually the distal error
and redundancy problems are solved, but it is worthwhile to think
of how this corrective command could become associated with
the DCN activity in the nervous system. We assume that Purk-
inje cells learn to predict the error increase, and we assume that
the corresponding correction could be either an incoming effer-
ence copy (model 1), or a proprioceptive signal (model 4). How
does the response of Purkinje cells leads to the correction being
executed?

One approach to answer this question is to assume that the
DCN cells can activate the effectors, and that the association
between prediction and corrections happens in the mossy fiber to
DCN synapses using the Purkinje cell inhibition both as a gating
mechanism and as a learning signal. Alternatively, the association
between the error prediction and the correction could happen
outside the cerebellum. We elaborate on this below.

In the case of model 4, the identity of the right correction is
produced at the level of the spinal cord using the equilibrium
lengths from the central controller. In the case of model 1 the
corrections are motor commands, so they will also be available
at the spinal cord. A parsimonious hypothesis is thus that DCN
activity becomes associated with corrections in the spinal cord
through temporally asymmetric Hebbian learning. This hypoth-
esis thus leads to a model where a group of microcomplexes that
produces the same outputs (because they use the same learn-
ing signal), but each microcomplex targets different effectors. An
equivalent model is a single micromplex that targets many dif-
ferent effectors, but its connection with each effector can learn
independently. In either case the output of a microcomplex is
associated with a response only when it happens shortly before
the region of the spinal cord it innervates becomes active. There
are thus two conditions to create a correction: the context is asso-
ciated with an error (reflected by the DCN activity), and the effec-
tor is associated with the correction (reflected by the spinal cord
activity shortly thereafter).

It has been shown that perceived errors are sufficient to pro-
duce adaptation in reaching movements, so that executing the
corrective motion is not necessary for improving performance
(Kitazawa et al., 1995; Tseng et al., 2007). In its present form,
our model 4 may not be sufficient to explain these experimen-
tal results. On the other hand, as in Fujita (2005), movement

Frontiers in Computational Neuroscience | www.frontiersin.org 15 March 2015 | Volume 9 | Article 39

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Verduzco-Flores and O’Reilly Credit assignment after error prediction

execution is not necessary to train our first model, as long as
shortly after producing an error a copy of the subsequent effer-
ent command reaches the cerebellum, even if that command is
suppressed. In the hypothesis of the previous paragraph, how-
ever, the motor command reaches the spinal cord, so depending
on the particulars of the temporally asymmetric Hebbian learning
suppressing the command could interfere with learning.

We can mention another hypothesis of how DCN activity
(that only signals the need for a correction, but not the correc-
tion) becomes associated with muscle activations. The hypothe-
sis is that the DCN together with the brainstem and the spinal
cord could act like a multilayer perceptron that associates the
activity of DCN nuclei with muscle activations that reduce the
error. Corrective commands like those of models 1 and 4 permit
the creation of training signals. Although this hypothesis offers
great computational flexibility, it is very speculative, with many
possible variations, so we don’t elaborate upon it.

A prediction arising from this discussion is that when using
visually generated errors the plasticity at the level of the brain-
stem and the spinal cord may be essential for ensuring that the
cerebellar corrections achieve their intended effect, at least dur-
ing the development period and for the control multiple-jointed
limbs. Some models assume that plasticity in the cerebellum is
distributed between the cerebellar cortex and the deep cerebel-
lar nuclei (Raymond et al., 1996; Garrido et al., 2013). We posit
one further memory site outside of the cerebellum, responsible
for adjusting the effect of its outputs. The outputs of cerebel-
lar cortex could both modulate and act as a learning signal for
the vestibulum/cerebellar nuclei, while in turn the output from
the cerebellar nuclei couldmodulate and train the response in the
brainstem/spinal cord.

4.4. Comparison with Other Models
A model that is related to the model 1 in this paper was pre-
sented by Fujita (2005). In this model, associative learning is used
to link motor commands with the subsequent corrections per-
formed by a high-level controller. Fujita assumed that if a high-
level motor center unit made a projection to a microcomplex,
then the nuclear cells of that microcomplex and the motor center
unit would encode the same information. We have no high-level
motor center units in our model; instead we have searched for
ways to specifically solve the distal error problem. Another dif-
ference with our model is that the context we associate with a
correction may contain afferent information (e.g., Ghelarducci
et al., 1975; Holtzman et al., 2006; Casabona et al., 2010), and
allows for the possibility that the same motor command may
require different corrections under different circumstances.

Feedback-error learning (Kawato and Gomi, 1992) is a very
influential model, whose main idea (as illustrated in Figure 1B)
is to use the output of a feedback controller as the learning sig-
nal for an inverse model. Some of its difficulties were mentioned
in the Introduction, including the motor error problem. Consid-
ering that a feedback controller acts like a linear transformation
from sensory to motor coordinates, the error signal we use in
models 1 and 4 (Figures 5, 11) is similar to the error signal in
motor coordinates presented in Kawato and Gomi (1992) in that
it can arise due to error rising in a feedback control system, but

using sensory coordinates. These sensory coordinates, being part
of the control loop, are linearly related to the motor coordinates,
as the feedback controller is usually a linear transformation from
sensory to motor coordinates. This is consistent with the fact that
both sensory and motor information is present in complex spikes
(Kobayashi et al., 1998; Winkelman and Frens, 2006).

The learning signal in the recurrent architecture (Porrill and
Dean, 2007) shown in Figure 1A is of a different kind, as it is
related not directly to the control performance, but to the predic-
tion errors in a forward model. The forward model in Figure 1A

is predicting the response of the controlled object, whereas the
forward model in Figure 1C is predicting the response of the
central controller. It should be noted that cerebellar outputs not
only target brainstem and spinal cord neurons, but also thala-
mic nuclei that convey their signals to the cerebral cortex. In this
sense the cerebellar outputs could conceivably be added to both
the input and output signals of a central controller, and how those
outputs are used depend on the target structure and its plasticity
mechanisms. It is thus possible that architectures where the cere-
bellar output is directed at the input of a brainstem controller—
such as the recurrent architecture—could coexist with architec-
tures where the output is added to the motor commands, such as
the architecture in this paper.

An advantage of the models in this paper with respect to the
recurrent architecture is that it is clear how to deal with dynamic
control of 3D reaching using a multidimensional error signal
(distance between hand and target). An assumption of the recur-
rent architecture is that the motor commands have enough infor-
mation to determine the appropriate correction if a sensory error
(complex spikes) arises, but this may not always be the case. For
example, in the case of kinematics, the motor command com-
pletely determines the arm configuration, so the recurrent archi-
tecture is a good choice (Porrill and Dean, 2007). On the other
hand, in the case of 3-dimensional arm dynamics the arm could
be in any configuration after the motor command, depending on
its current position and momenta. A cerebellar module receiv-
ing only muscle stimulations as its input may not have enough
information to decide whether to participate in a correction when
the hand gets away from the target. It would thus be beneficial to
investigate how the basic recurrent architecture could improve 3-
dimensional reaching when the error signals don’t have a clear
correlation with the motor commands. The elegant and con-
cise structure of the basic recurrent architecture does not need
any structures outside of the cerebellar cortex in order to asso-
ciate errors with corrections (unlike the models in this paper),
so it would be interesting to find the range of problems it can
solve.

Notice that the architecture in Figure 1C, by virtue of being
a forward model that uses sensory errors together with a feed-
back controller is compatible with simple spikes encoding sen-
sory errors with both a lead (the future corrections associated
with contexts) and a lag with the opposite modulation (the sen-
sory error and its associated context is an input to Purkinje cells)
(Popa et al., 2012, 2013, 2014). It is not clear whether this would
be the case in the recurrent architecture of Figure 1A, since the
input and output of the forward model (motor commands and
predicted trajectories, respectively) may or may not be associated
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FIGURE 13 | Olivo-cerebellar modules used to anticipatively adjust

threshold values in a cascade control scheme. The difference

between a received threshold value and a value perceived from the

environment is transmitted to the olivo-cerebellar module. Increases in this

difference cause the olivo-cerebellar module (OC-MODULE) to associate

the perceived context at the time of the increase with an anticipative

correction. The effect of this correction could be additive, or it could

modify a gain on the signal at the GAIN block. Notice that the difference

between a threshold value and a perceived value could set the threshold

of more than one control loop.

with sensory errors (sensory errors would be directly associated
with complex spikes).

There are some recent models that specifically address the role
of the cerebellum in reaching tasks, but for the most part they are
not concerned with the distal error and redundancy problems.
Some examples are presented next.

In Carrillo et al. (2008) a relatively realistic cerebellar spik-
ing network was implemented for real-time control of a 2 DOF
robot arm. The arm used open-loop control based on calculating
a minimum-jerk trajectory that was transformed into a trajectory
in joint angle coordinates, from which crude torque commands
were generated. The cerebellumwas capable of reducing the error
by providing corrective torques. The redundancy problem does
not arise in this context because their 2 DOF arm moves in a
plane, and the elbow joint does not reach negative angles. Also,
the distal error problem is not addressed since the error of their
4 microzones, each corresponding to a muscle, is provided by the
Inferior Olivary (IO) input based on the difference between the
desired and actual trajectories. Because of the low IO firing rates,
a probabilistic encoding has to be used in order to communicate
this error.

Garrido et al. (2013) used a cerebellar inverse model to imple-
ment adaptable gain control for a simulated robot arm with
3 DOF performing a smooth pursuit task. Their model used
plasticity at 3 synaptic sites to produce corrective torques at
states that correlated with errors. To represent states Garrido
et al. used a granule cell layer model that generated sequences
of binary vectors in discrete time when presented with a fixed
mossy fibre pattern. The activity at Purkinje cells and DCN cells
were represented with scalar values. To solve the distal error
and redundancy problems this model is provided with desired
trajectories in intrinsic coordinates. The difference between
desired and actual trajectories is used to calculate errors in each
joint by an IO module, which represents this error as a scalar
value.

In another model (Casellato et al., 2014) a spiking cerebel-
lar network was used to implement adaptive control in a real
robot. Their model implemented Pavlovian conditioning, as well
as adaptation in the vestibulo-ocular reflex, and in perturbed

reaching. The redundancy problem and the distal error problem
are not addressed, since their model only controls 1-dimensional
responses.

4.5. Hierarchical Control
An interesting aspect of our architecture comes from its appli-
cation to hierarchical models such as Threshold Control The-
ory (TCT) (Feldman and Levin, 2009; Latash et al., 2010), and
Perceptual Control Theory (PCT) (Powers, 1973, 2005). Briefly,
TCT posits that movement control begins by setting a thresh-
old value for muscle lengths. Muscle contraction happens in
response to the muscle length exceeding this threshold. For a
given set of threshold values, interaction with the environment
brings the organism to an equilibrium position; the organism
needs to learn the threshold values that result in desired equi-
librium positions. To solve redundancy problems with minimal
action, this paradigm can be extended hierarchically. For exam-
ple, if there is a neuron that responds montonically to the aper-
ture of the elbow angle, a controller can set a threshold value
for that neuron (the neuron responds only when the elbow angle
goes beyond the threshold). The elbow angle neuron can in turn
set the threshold lengths of the biceps and triceps brachii mus-
cles so that the its threshold value can in fact control the elbow
angle. At a higher level, there could be neurons that respond to
the arm configuration, and affect the threshold levels for neurons
responding to shoulder, elbow, and wrist angles. Each hierarchi-
cal level works as a feedback control system whose set point is
specified by the level above. In this paradigm, known as cascade
control, each level isolates the levels above from disturbances (as
long as the lower levels are on a faster timescale than the higher
levels), and redundancies are resolved automatically. PCT shares
some of the same ideas as TCT. In PCT the organism seeks to
control its perceptions (instead of TCT’s equilibrium positions),
and this is achieved through a cascade control scheme, going
from individual muscles to advanced cognitive operations. PCT
also proposes a mechanism allowing such a hierarchy of control
systems to arise.

Despite their advantages, TCT and PCT rely on feedback con-
trol, which can encounter problems in the presence of time delays
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and low gains. The cerebellar architecture presented in this paper,
based on predicting the increase in error, is well suited to improve
the performance of TCT or PCT models. The ideas presented in
this paper offer several options to do this. Perhaps the simplest
one is to generate an error signal whenever a threshold value is
being exceeded (Figure 13), similarly to our model 2. The emis-
sion of this error signal can be conditioned on the error increas-
ing on a higher level, similarly to our model 3. Or similarly to our
model 4, the error signal can have its origin on a level high in the
hierarcy, but the corrective signals can be generated at the lower
levels using their own threshold values. This consitutes a hypoth-
esis of how the cerebellum could function to improve motor
and cognitive operations using repetitions of the same modular
circuit.
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