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Predictive coding appears to be one of the fundamental working principles of brain

processing. Amongst other aspects, brains often predict the sensory consequences

of their own actions. Predictive coding resembles Kalman filtering, where incoming

sensory information is filtered to produce prediction errors for subsequent adaptation

and learning. However, to generate prediction errors given motor commands, a suitable

temporal forward model is required to generate predictions. While in engineering

applications, it is usually assumed that this forward model is known, the brain has to

learn it. When filtering sensory input and learning from the residual signal in parallel,

a fundamental problem arises: the system can enter a delusional loop when filtering

the sensory information using an overly trusted forward model. In this case, learning

stalls before accurate convergence because uncertainty about the forward model is

not properly accommodated. We present a Bayes-optimal solution to this generic and

pernicious problem for the case of linear forward models, which we call Predictive

Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and

learns the forward model simultaneously. We show that PIAF is formally related to Kalman

filtering and to the Recursive Least Squares linear approximation method, but combines

these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the

delusional loop is precluded and that the learning of the forward model is more than

10-times faster when compared to a naive combination of Kalman filtering and Recursive

Least Squares.

Keywords: predictive coding, Bayesian information processing, Kalman filtering, recursive least squares, illusions,

forward model

1. Introduction

There is wide agreement that a major function of the brain is to generate predictions about future
events based on observations made in the past. This predictive coding principle is now consid-
ered by many as the universal guiding principle in explaining the majority of brain activities (Rao
and Ballard, 1999; Friston, 2003; König and Krüger, 2006; Kilner et al., 2007; Bar, 2009). Friston
et al. (2006) expands this framework under a free-energy principle, which can also explain action
selection by considering the (desired) effects of actions on the sensory inputs (cf. also Friston, 2010).
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Indeed, the free-energy principle entails the Kalman filter and
many other learning, adaptation, and inference schemes under
appropriate forward or generative models (Friston, 2009, 2010).
In this paper, we derive a Bayes-optimal scheme for learning a
predictive, forward velocity (kinematics) model and simultane-
ously using this model to filter sensory information. The result-
ing scheme effectively combines predictive encoding with the
learning of a forward model by carefully separating system state
estimates from the encoding of the forward model.

A large portion of the variability that we encounter in our
sensory inputs can be directly attributed to our motor activities
(movements of the parts of the body, self propulsion, saccades,
uttered sounds, etc.). The existence of neural pathways that send
efference copies of motor commands back to sensory areas and
other regions has been confirmed in primates but also in many
species with much simpler nervous systems. Helmholtz (1925)
coined the term corollary discharge for this feedback loop relaying
motor outputs from motor areas to other brain regions (cf. also
Sperry, 1950 and a recent review by Crapse and Sommer, 2008).
Corollary discharge represents the physiological basis for the
reafference principle of vonHolst andMittelstaedt (1950), stating
that self-induced effects on sensory inputs are suppressed and do
not lead to the same level of surprise or arousal as exafferent stim-
ulation. This has been interpreted by Blakemore et al. (2000) for
the curious fact that we are not able to tickle ourselves. Failures of
the efference copy mechanism have been proposed as a basis for
some schizophrenic symptoms (Pynn and DeSouza, 2013). It has
been argued whether the stability of the visual percept—despite
the perpetual movements of the eye balls—relies on efference
copies (Sommer and Wurtz, 2006), or if other mechanism play
the crucial role (Bridgeman, 2007).

The suppression of sensory information related to one’s own
motor actions has great similarity to the way in which noise
is suppressed in Kalman filtering—a technique developed by
Kalman (1960), which has an enormous range of technical appli-
cations. The basic approach of Kalman filtering is to interpolate
between the new measurement and predictions of the new state
based on its estimate in the previous time step. The mixing coef-
ficient (Kalman gain) is adapted online and represents a balance
between confidence in the prediction and the precision (or reli-
ability) of new information. Assumptions about the nature of
sensory noise allow to optimally determine the mixing coefficient
using Bayesian information fusion. It has been demonstrated
in several contexts that the brain can perform Bayes-optimal
fusion of information sources with different precision (Ernst and
Banks, 2002; Körding andWolpert, 2004). It can be assumed that
(amongst other uses) the information of corollary discharges is
employed to optimize the information gain supplied by sensory
feedback (in terms of a Kalman gain).

However, unlike in engineered systems, in biological systems
the relationship between motor commands and their sensory
consequences is not known a priori. The brain has to learn and
continuously adapt this mapping. This mapping from motor
commands to state changes is called forward velocity kinematics.
In general, forward velocity kinematics can take the form of a
highly non-linear but nevertheless smooth function, which may
be approximated adequately by locally linear maps. Learning the

kinematics thus amounts to a regression task within each local
approximator.

It can be proven (under mild assumptions) that the opti-
mal linear unbiased regression estimator is given by the least
squares approach that dates back to Gauss (1821). An online, iter-
ative version called recursive least squares (RLS) was developed
by Plackett (1950). It might thus appear that a straightforward
combination of RLS with Kalman filtering could easily solve the
problem of learning the forward model, while filtering sensory
input. Our previous work (Kneissler et al., 2012, 2014) has shown
that the combination can indeed accelerate learning when com-
pared with RLS-learning given unfiltered sensory information.
To perform optimal Bayesian information fusion, the precision
of the predicted state (relative to sensory information) has to be
estimated. This estimate, however, is influenced by the filtering
implicit in the previous time steps. If the sensory signal was too
strongly filtered by the prediction, an overly strong confidence
in the predictions can develop. As a result, the system falls into
a delusional state due to unduly high self-confidence: ultimately,
in this case, the system will completely ignore all new incoming
information.

The contribution of this paper is to provide a rigorous (Bayes
optimal) mathematical basis for learning a linear motor-sensor
relationship and simultaneously using the learned model for fil-
tering noisy sensory information. Formally, our method becomes
equivalent to a joint Kalman filter (Goodwin and Sin, 1984), in
which both states and the forward model are learned and tracked
simultaneously by a global Kalman filter; thereby solving a dual
estimation problem. In contrast to previous applications of this
approach, however, we derive separate, interacting update equa-
tions for both state estimation and the forward model, thus mak-
ing their interaction explicit. We empirically confirm that the
ensuing Predictive Inference and Adaptive Filtering (PIAF) does
not fall into self-delusion and speeds-up learning of the forward
model more than 10-fold, when compared to naive RLS learning
combined with Kalman filtering.

In Section 2, we provide a mathematical formulation of the
problem, outline the derivation of the solution (details are given
in the Supplementary Material) and present the resulting update
equations. In Section 3 we mathematically detail the relation
of PIAF to a joint generalization of Kalman filtering and RLS.
Finally, in Section 4 we present experimental results comparing
PIAF with several other possible model combinations, confirm-
ing robust, fast, and accurate learning. A discussion of implica-
tions and future work conclude the paper.

2. Methods

Our formulation assumes the presence of a body or system with
particular, unobservable system states zn at a certain iteration
point in time n (see Table 1 for an overview of mathemati-
cal symbols). The body state can be inferred by sensors, which
provide noisy sensory measurements xn. Formally, each of the
measurements relates to the system state by

xn = zn + ǫs,n, (1)
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TABLE 1 | Mathematical symbols used.

zn System state at time step n (scalar)

xn Sensor measurement at time step n (scalar)

q̇n Motor command at time step n (vector)

w Linear model mapping motor commands to state change (vector)

σs Standard deviation of sensor noise (scalar)

σp Standard deviation of process noise (scalar)

µz Mean of state estimate (scalar)

µw Mean of control parameter estimate (vector)

6zz Variance of state estimate (scalar)

6ww Covariance of control parameter estimate (matrix)

6zw Covariance between state and control parameter estimate (vector)

where ǫs,n ∼ N
(

0, σ 2
s

)

is Gaussian sensory noise with zero
mean and sensory noise variance of inverse precision, σ 2

s . Clearly,
the smaller this variance is, the more precise information each
measurement reveals about the true system state.

We further model body or system control by iterative motor
commands. Formally, we assume that at each point n in time a
motor command q̇n is executed, causing a noisy change of the
system state that is linearly related to the motor command by

zn = zn−1 + q̇Tnw + ǫp,n. (2)

In the above, the motor command q̇n is a Dq-dimensional vector,
and its effect on the system state is modulated by the unknown
control parameter w of the same size. Additionally, zero-mean

Gaussian process noise ǫp,n ∼ N

(

0, σ 2
p

)

with variance σ 2
p per-

turbs the state transition. This noise captures imperfections in the
motor command execution, as well as possible deviations from
linearity.

Overall, this results in the complete system model (Figure 1)

z0 ∼ N
(

µz,0|0, 6zz,0|0

)

, (3)

w ∼ N
(

µw,0|0,6ww,0|0

)

, (4)

zn|zn−1, q̇n,w ∼ N

(

zn−1 + q̇Tnw, σ 2
p

)

, (5)

xn|zn ∼ N
(

zn, σ
2
s

)

, (6)

where µz,0|0, 6zz,0|0, µw,0|0, and 6ww,0|0 are prior parameters
and the control command q̇n as well as the sensory signal xn are
the observables at each iteration. In terms of notation, ··,n|n−1

denotes the prediction prior after having measured x1:n−1 and
having applied motor commands q̇1:n, but before measuring
xn. Once this xn is measured, the posterior parameters change
to ··,n|n.

Technically, the problem of estimating or learning the param-
eters of a forward model, while estimating states is a dual esti-
mation problem—estimating both, the system states zn as well
as the forward model parameters w. Crucially, the (Bayes) opti-
mal state estimates need to accommodate uncertainty about
the parameters and vice versa. This means one has to treat
the dual estimation problem using a single model inversion—
such that conditional dependencies between estimates of states
and parameters are properly accommodated. Heuristically, this

FIGURE 1 | Directed acyclic graph (e.g., Bishop, 2006) of our system

model. Empty and filled circles represent unobserved and observed random

variables, respectively, and arrows indicate dependencies between them. As

can be seen, the unobserved system state sequence z0, z1, z2, . . . depends

on both the observed sequence of motor commands q̇1, q̇2, . . . , and the

unobserved control parameters w. The sensory measurements, x1, x2, . . . ,

only depend on the corresponding system state.

means that the precision (inverse variance) assigned to state pre-
diction errors has to incorporate uncertainty about the parame-
ters (and vice versa). In what follows, we will illustrate how the
optimum precision (implicit in the Kalman gain that is applied to
prediction errors) can be augmented to accommodate this uncer-
tainty. We show that a rigorous mathematical treatment of the
dual estimation problem using Bayesian inference leads to a sta-
ble learning and filtering algorithm, using the forward model
knowledge to filter sensory information and concurrently using
the resulting residual for optimizing the forward model online.

The optimal way to identify the control parameters w and,
simultaneously, the sequence of system states, z1, z2, . . . , corre-
sponds to updating the joint posterior belief p

(

zn,w|x1:n, q̇1:n
)

over both quantities with every applied motor command q̇n and
measurement xn, where we have used the shorthand notation
x1:n = {x1, . . . xn} and q̇1:n =

{

q̇1, . . . , q̇n
}

. According to the
assumption of the Markov property and due to the linear Gaus-
sian structure of our system model, this posterior will be jointly
Gaussian, such that we can parameterize it by

p

((

z
w

)

| . . .

)

= N

((

µz

µw

)

,

(

6zz 6zw

6T
zw 6ww

))

. (7)

In the above, µz and 6zz is the mean and variance of our belief
about the system state z, and µw and 6ww the mean vector and
covariance of our belief about the control parameters w. Further-
more,6zw is aDq-element row vector that denotes the covariance
between z andw. It essentially captures the belief about how these
two quantities are related.

Note that generally one could apply a global Kalman filter to
jointly track z and w, leading to what is known as a joint Kalman
filter over an augmented state space (Goodwin and Sin, 1984).
However, this would obfuscate the interaction between simul-
taneously tracking the system’s state and inferring its forward
model parameters. For this reason, we derive the update equa-
tions for the posterior over z and w separately, thus making their
interactions explicit (and enforcing our a-priori beliefs that the
true forward model parameters do not change with time).
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In the following, we describe how the posterior parameter
estimates change once a motor command q̇n is applied and we
measure xn. As in the standard Kalman filter, this change is
decomposed into a prediction step, which relates to the prediction
of zn based on our belief about zn−1 and the applied motor com-
mand q̇n, and an update step, which updates this prediction in the
light of the measured xn. Moreover, an additional update step is
necessary to infer the new forward model parameter w estimates.

2.1. Adaptive Filtering: Prediction Step
Before the prediction step, we assume to have measured x1:n−1

after applying motor commands q̇1:n−1. At this point, we have
formed a posterior belief p

(

zn−1,w|µn−1|n−1,6n−1|n−1

)

that
decomposes into zn−1 and w-related components as in Equa-
tion (7). The prediction step describes how the posterior param-
eters change in the light of applying a motor command q̇n, which
leads to a transition in the system state from zn−1 to zn, but before
measuring the new system state via xn.

Computing the requisite first and second-order moments of z
after the transition step (see Supplementary Material) results in
the following computation of the updated prior belief about zn:

µz,n|n−1 = µz,n−1|n−1 + q̇Tnµw,n−1|n−1, (8)

6zz,n|n−1 = 6zz,n−1|n−1 + σ 2
p + q̇Tn6ww,n−1|n−1q̇n

+ 26zw,n−1|n−1q̇n. (9)

As can be seen, the mean parameter is updated in line with
the system state transition model, Equation (2). The variance
(inverse precision) parameter accommodates the process noise
ǫp,n through σ 2

p and, through the remaining terms, our uncer-
tainty about the control parameters w and how it relates to the
uncertainty about the system state zn. Due to the uncertainty in
the control model and the process noise, the prior prediction of
zn will always be less precise than the posterior belief about zn−1.

Moreover, a change in the state zn changes how w and zn are
correlated, which is taken into account by

6zw,n|n−1 = 6zw,n−1|n−1 + q̇T6ww,n−1|n−1. (10)

This completes the adaptive filtering parameter updates for the
prediction step.

2.2. Adaptive Filtering: Update Step
In the update step, we gain information about the prior predicted
system state zn by measuring xn. By Bayes’ rule (see Supple-
mentary Material), this leads the parameters describing the belief
about zn to be updated by

µz,n|n = µz,n|n−1 +
6zz,n|n−1

σ 2
s + 6zz,n|n−1

(xn − µz,n|n−1), (11)

6zz,n|n =
σ 2
s 6zz,n|n−1

σ 2
s + 6zz,n|n−1

. (12)

In the above, the mean parameter is corrected by the prediction
error xn−µz,n|n−1 in proportion to how our previous uncertainty
6zz,n|n−1 relates to the predictive uncertainty σ 2

s + 6zz,n|n−1

about xn. Thus, the belief update accounts for deviations from
our predictions that could arise from a combination of our uncer-
tainty about the control parameters w and the process noise ǫp,n.
This update is guaranteed to increase our certainty about zn,
which is reflected in a6zz,n|n that is guaranteed to be smaller than
6zz,n|n−1 before having observed xn. Note that the ratio of vari-
ances in Equations (11, 12) corresponds to the Kalman gain and
represents a Bayes optimal estimate of how much weight should
be afforded the (state) prediction errors.

In parallel, the covariance of our belief about w is updated and
the mapping is re-scaled by:

6zw,n|n =
σ 2
s

σ 2
s + 6zz,n|n−1

6zw,n|n−1, (13)

to reflect the additional information provided by xn. Thus, the
a-posteriori state expectations µz,n|n and covariances 6zz,n|n and
6zw,n|n are determined.

2.3. Predictive Inference: Prediction and Update
Step
Predictive inference adjusts the forward model control parame-
ters w.

Applying a motor command reveals nothing about the control
parameters w and its parameters remain unchanged,

µw,n|n−1 = µw,n−1|n−1, 6ww,n|n−1 = 6ww,n−1|n−1. (14)

The control parameter priors are thus equal to the previous
posteriors.

The measured state information xn, on the other hand, pro-
vides information about the control parameters w, leading to the
following parameter updates:

µw,n|n = µw,n|n−1 +
6T

zw,n|n−1

σ 2
s + 6zz,n|n−1

(xn − µz,n|n−1), (15)

6ww,n|n = 6ww,n|n−1 −
1

σ 2
s + 6zz,n|n−1

6T
zw,n|n−16zw,n|n−1.

(16)

Its expectation is, as the mean estimate associated with zn, modu-
lated by the prediction error xn − µz,n|n−1. This prediction error
is mapped into a prediction error aboutw bymultiplying it by (an
appropriately re-scaled) 6zw,n|n−1, which is our current, prior
best guess for how zn and w depend on each other. Thus, mean
and variance estimates of the control parameters are updated,
taking into account the residual between the measurement and
the prior state estimate (xn − µz,n|n−1), the certainty in the mea-
surement σ 2

s , the prior certainty in the state estimate 6zz,n|n−1,
and the prior covariance estimate between state estimate and
control parameters 6zw,n|n−1.

If one examines (Equations 11, 12, 15, 16) one can see a
formal similarity, which suggests that both states and param-
eters are being updated in a formally equivalent fashion. In
fact, one approach to parameter estimation in the context of
Kalman filtering is to treat the parameters as auxiliary states that
have no dynamics. In other words, one treats the parameters
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as hidden states that have constant (time invariant) values.
Goodwin and Sin (1984) exploit this in their joint Kalman
filter technique. However, as intimated above, this approach
obscures the different nature of the system’s state and forward
model parameters, while our approach clearly separates the two.
Technically, this separation can be interpreted as an extended
form of mean field approximation that matches both mean
and variance of the posterior probability distribution over the
states and forward model parameters. As the exact posterior
is Gaussian, matching these two moments causes this approx-
imation to perfectly coincide with the exact solution. How-
ever, the interpretation of this solution might guide approaches
to handle non-linear rather than linear relations between con-
trol and state changes. This may be especially important if we
consider the scheme in this paper as a metaphor for neuronal
processing.

2.4. Illustration of Information Flow
To clarify the interaction between adaptive filtering and pre-
dictive inference further, the Bayesian graph in Figure 2 shows
the paths along which the information estimates and certainties
influence each other.

In the prediction step of the adaptive filtering component,
information is transferred from µw to µz and along 6ww →

6zw → 6zz . In the update step of the adaptive filtering com-
ponent, this information flow is reversed: the issued control sig-
nal q̇ leads to updates of the variance estimate 6zz , the covari-
ance 6zw, and the state estimate µz in the adaptive filtering
component.

Moreover, in the predictive inference component, the residual
(xn − µz,n|n−1) leads to updates of the control parameter means
µw as well as the covariance estimate 6ww.

FIGURE 2 | Influence of variables on each other in prediction step

(dotted arrows) and update step (solid arrows).

3. Relation to Kalman Filter and RLS

The method described above describes how to track the state
while simultaneously inferring the control parameters in a Bayes
optimal sense. In this section, we show how our approach relates
to uncoupled (naive) Kalman filtering for state tracking and RLS
for parameter inference.

3.1. Relation to Kalman Filter
We can relate the above to the Kalman filter by assuming
that the control parameters w are known rather than inferred
(Figure 3A). Then, the only parameters to be updated are µz

and 6zz .
In this case, the prediction step is given by (see Supplementary

Material)

µz,n|n−1 = µz,n−1,n−1 + q̇Tnw, (17)

6zz,n|n−1 = 6zz,n−1|n−1 + σ 2
p . (18)

The only different to the prediction step of our model, Equa-
tions (8, 9), is thatw now replaces Equation (17)µw and6zz does
not include the uncertainty about w in its update.

The update step for zn is found by Bayes’ rule (see Supplemen-
tary Material), resulting in

µz,n|n = µz,n|n−1 +
6zz,n|n−1

σ 2
s + 6zz,n|n−1

(xn − µz,n|n−1), (19)

6zz,n|n =
σ 2
s 6zz,n|n−1

σ 2
s + 6zz,n|n−1

(20)

Thus, the update step for µz and 6zz remains unchanged (cf.
Equations 11, 12), showing that the main difference to the
full model is the lack of considering the uncertainty in the
estimate of w.

3.2. Relation to Recursive Least Squares
As was shown elsewhere, RLS is a special case of the Kalman
filter with a stationary state (e.g., Murphy, 2012). It does not con-
sider sequential dependencies between successive system states
(compare Figures 1, 3B). RLS is very suitable for estimating w

by transforming the transition model, zn = zn−1 + q̇Tnw + ǫp

(Equation 2) into żn = zn − zn−1 = q̇Tnw + ǫp, in which the dif-
ferent ż1, ż2, . . . are, in fact, independent. In its usual form, RLS
would assume that these żn’s are observed directly, in which case
its estimate of w would be Bayes-optimal. However, the żn’s are
in our case only observable through ẋn = xn − xn−1 = żn +

ǫs,n − ǫs,n−1. Furthermore, two consecutive ẋn and ẋn+1 are cor-
related as they share the same sensory noise ǫs,n. Therefore, RLS
applied to our problem suffers from two shortcomings. First, the
sensory noise appears twice in each RLS “observation” ẋn. Sec-
ond, the observations are correlated, contrary to the assumptions
underlying RLS.

In terms of update equations, RLS applied to ẋ1, ẋ2, . . . fea-
tures the same prediction step as the full model (see Supple-
mentary Material), except for the covariance terms 6zz and 6zw,
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A B

FIGURE 3 | Graphical representation of the Kalman filter and the RLS

algorithm. Empty and filled circles represent unobserved and observed

random variables, respectively, and arrows indicate dependencies between

them. (A) Shows that, in contrast to our full model (Figure 1), the Kalman

filter assumes the control parameters w to be known. (B) Shows that, in

contrast to our model (Figure 1), RLS does not take the sequential

dependencies between consecutive changes in x into account. Here,

ẋn = xn − xn−1 and żn = zn − zn−1.

A B

C D

FIGURE 4 | Example of filtering showing the true signal (blue line), samples (black crosses), estimated signal (red line with dots), and the 2σ confidence

interval (area shaded in yellow). [σs = 2 in all panels]. (A,B) continuous control; (C,D) random control; (A,C) without process noise; (B,D) with process noise.
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which are updated according to

6zz,n|n−1 = 6zz,n−1|n−1 + σ 2
p + q̇Tn6ww,n−1|n−1q̇n, (21)

6zw,n|n−1 = q̇Tn6ww,n−1|n−1. (22)

Compared to Equations (9, 10), this prediction step effectively
assumes 6zw,n−1|n−1 = 0, which reflects RLS’s independence
assumption about consecutive observations. The RLS update step
is the same as for the full model, see Equations (11–13, 15, 16);
however, σ 2

s are now replaced by the inflated variance 2σ 2
s .

4. Results

The complete scheme for Predictive Inference and Adaptive
Filtering (PIAF), which is given by Equations (8–13), was
tested numerically using one-dimensional control signals q̇n. We
assumed a constant, but unknown proportionality factor w = 1
(the prior estimate was set to µw,0|0 = 0).

In one series of experiments, we applied a continuous control
of the form q̇n = ω · cos(ω · n + φ)with ω = 2π

T , where the
period was chosen T = 50 time steps. The starting state was set
to z0 = sin(φ) such that the resulting signal zn oscillates periodi-
cally between−1 and 1. The start phase φ was chosen randomly,
without giving PIAF any information about it (µz,0|0 = 0). The
variance priors were chosen as follows: 6zz,0|0 = 104 (range of
unknown signal), 6ww,0|0 = 1 (control commands and signal
have same order of magnitude), 6zw,0|0 = 0 (prior covariance is
a diagonal matrix).

In the second set of experiments the control commands
q̇n where sampled randomly from the Gaussian distribution
N

(

0, 1
2ω

2
)

with same mean and variance like the sinusoidal
control in the first set of experiments.

In all experiments presented in this paper, the standard devia-
tion of the sensory noise was set to σ 2

s = 4 corresponding to an
MSE signal-to-noise ratio of 1 : 8 (with respect to z).

As Figure 4A shows, PIAF converged very quickly to a good
estimate close to the true signal in the absence of process noise.
Despite the large amount of noise present in the samples, the
deviation of the estimated signal is below 0.1 after a few 100 time
steps. In Figure 4B, the experiment was repeated with a consid-
erable level of process noise (σp = 0.1). The estimated signal is
struggling to keep up with the jittery signal, which is reflected in
the estimated variance, which does not decrease further after the
first couple of steps. Nonetheless, the variance estimates appear
warranted as the shaded area of width±2 σz around the estimate
µz encloses the true signal.

In Figures 4C,D, we illustrate that also in the case of irreg-
ular, random control, PIAF is working fine when there is no
process noise. In the case with process noise (σp = 0.1), it pro-
duces an “apparently reasonable” posterior variance estimate (we
investigate this quantitatively further in Section 4.3).

4.1. Dependence of Performance on Process
Noise
In Figure 5 we compare different levels of process noise. There
is no qualitative difference between continuous and random con-
trol commands in this experiment, so we show only the plots for

A

B

FIGURE 5 | PIAF accuracy for different settings of σp in the case of

continuous control. (A) Mean squared error of µw (B) mean squared error of

µz [σs = 2, σp = 0,0.001,0.01,0.1,0.2,0.5,1].

the case of the sinusoidal control signals. The z-estimate, shown
in Figure 5A, is obviously limited by the amount of process noise
that contaminates the true signal at every time step. Neverthe-
less, as it can be seen in Figure 5B, PIAF can estimate w well for
moderate process noise levels.

4.2. Comparing with RLS
In order to compare the performance of PIAF (with respect to
its w-estimation capability, neglecting its filtering component)
with the classical RLS algorithm, we measured the mean squared
errors of the w-estimate µw, as shown in Figure 6 in a double-
logarithmic plot over the number of time steps (shown is the
average of theMSE-s of 1000 individual runs). In case of the PIAF
algorithm, the variance estimate σ 2

w is also shown (dashed line);
it coincides well with the observed quadratic error. The process
noise level was set to σp = 0.1, so the PIAF curves in Figure 6

correspond to Figures 4B,D.
The input to the classical RLS algorithm was given by the pairs

(q̇n, xn− xn−1) consisting of control values and the differences of
consecutive observations. The difference of samples is according
to Equations (1, 2) given by
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A

B

FIGURE 6 | Comparison of performance of w-estimation provided by

PIAF (blue) and RLS (red). The accuracy is measured using the mean

squared error. The variance estimate σ2
w of PIAF is also shown (dashed line).

[σs = 2, σp = 0.1]. (A) Continuous control; (B) Random control.

ẋn = xn− xn−1 = zn− zn−1+ ǫs,n− ǫs,n−1 = w · q̇+ ǫẋ,n, (23)

where the noise terms ǫẋ,n are all identically distributed (but
not independent) with variance 2σ 2

s + σ 2
p . Since this difference

signal is extremely noisy (in our setting the variance is more
than 20 times larger than the amplitude of ẋn, corresponding
to a MSE SNR of approximately 1:1000), the initial estimates
produced by RLS are very far away from the true value. The
strength of the PIAF filter (seen as w-estimator) can be thus
seen in the fact that it is not distracted by the noisiness of the
samples and produces good w-estimates already early on. As
Figure 6A shows, in the case of continuous control (as described
in the previous subsection), RLS is nevertheless able to correct
its wrong initial w-estimates. Within approximately 100 time
steps its performance is henceforth comparable to that of the
PIAF filter. The reason for that is that two consecutive errors
ǫẋ,n and ǫẋ,n+1 are not independent: According to Equation
(23) they both contain ǫs,n; the first with a positive, the second
with negative sign. If q̇n and q̇n+1 are very similar, the noise

A

B

FIGURE 7 | Performance of z-estimation of PIAF (blue) and classical

Kalman filter, but provided with knowledge of the true w (red). The

accuracy is measured using the mean squared error. The variance estimates

are shown using dashed lines. [σs = 2, σp = 0.01]. (A) Continuous control; (B)

Random control.

term ǫs,n almost completely cancels out in the RLS’ estimate
for w.

In contrast, panel (B) shows that when the control signal
q̇n is irregular, RLS cannot benefit from this “accidental” noise
cancelation and its performance never catches up with PIAF.

4.3. Comparison with Kalman Filtering
Finally, we compared the performance of PIAF (with respect
to its z-estimation capability) with a classical Kalman filter that
knew w. Note that PIAF must perform worse because it is not
provided with the true value of w—but has to estimate it over
time. The question is, if and how fast it can catch up.

In Figure 7 we show that irrespective of the type of control
(continuous or random), the performance lags behind until the
level of the process noise σp is reached, which corresponds to
best possible performance. The lack of knowledge of the con-
trol weight w comes at a cost of requiring more samples to arrive
at best possible accuracy. At an MSE level of 0.1, for example,
the overhead to infer w amounted roughly to requiring twice the
number of samples in our experiments.
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As expected from the mathematical derivation, PIAF reaches
the best possible performance, which is limited by the level
of process noise σ 2

p . By comparing corresponding dotted lines
(variance estimates of the algorithms) with the solid lines
(actually observed mean squared error), it can be seen that
in both cases the variance is initially under-estimated (by a
factor of maximally 2) and finally a slightly overestimated
(by a factor of ≈ 1.5). The difference between pairs of
corresponding curves in Figure 7 is statistically significant in

the intermediate range (from a few tens to a few thousands of
iterations).

4.4. Comparing with ad-hoc Combinations of
Kalman and RLS
In this section, we consider some ad-hoc combinations of Kalman
filtering andmaximum likelihood estimation using RLS. Our aim
is to show the drawbacks of these schemes in relation to Kalman
filtering. Figure 8 sketches out the three considered systems

A

B

C

FIGURE 8 | Possible ways of combining the classical Kalman

filtering algorithm and RLS in comparison with the combined

system for prediction-based inference and adaptive filtering.

(A) RLS → Kalman: RLS obtains the difference of consecutive noisy

measurements, Kalman is provided with w-estimates from RLS.

(B) Kalman ↔ RLS: The Kalman filtered signal is used as input for

RLS, which returns w-estimates. The feedback loop of this setup

(indicated by black arrows) leads to self-delusional spiralling. (C) PIAF:

Control signals and w-estimates are passed to the adaptive filter in the

prediction step (dotted arrows). The deviation of the resulting prediction

for the signal in the current time step µz from the new measurement x

is used in the update step (solid arrows).
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schematically. Note that only PIAF exchanges posterior, con-
ditional covariances (i.e., uncertainty) reciprocally between the
state and forward model parameter estimations (cf. Figure 8C).

In the approach shown in Figure 8A, RLS is used to estimatew
based on control signals q̇n and differences of consecutive unfil-
tered samples ẋn = xn−xn−1 (setting “RLS→Kalman”). In order
to allow the Kalman filter to determine the optimal mixing coef-
ficient, RLS must be extended to produce a variance estimate σ 2

w

in addition to its estimation of w. We use the expected stan-
dard error of the w estimate of RLS as calculated for example in
Weisberg (2014) (see Supplementary Material for details). In this
setup, RLS essentially assumes independent information sam-
pling and cannot profit from the noise cancelation by the Kalman
filter.

The second possibility (Figure 8B) attempts to benefit from
Kalman filtering by using the difference of consecutive esti-
mates µz produced by Kalman as the input to RLS (setting
“Kalman↔RLS”). We will show that RLS will indeed initially
learn slightly faster but will eventually end up in a delusional loop
due to overconfidence in its learned forward model.

For comparison and illustration purposes, Figure 8C shows
how PIAF can be split up into a subsystem for Adaptive Filtering
(AF), during which the state estimate is adapted, and a subsystem
for Predictive Inference (PI), during which the forward model

is adjusted. This information loop resembles the one indicated
by black arrows in Figure 8B. However, the information flow
through the loop is augmented by variance estimates about the
state estimates, the forward model parameter estimates, and their
interdependencies: The AF component receives updates from the
PI component about the forward model including the certainty
about the forward model. Vice versa, the PI component receives
updates from AF about the current state estimate, its certainty,
and its interdependence with the forward model.

As a consequence, the control signal q̇ is used only in the AF
component directly. It is passed to the PI component indirectly
via the prior variance and covariance estimates 6zz,n|n−1 and
6zw,n|n−1 and the residual between state signal and prior state
estimate (xn − µz,n|n−1). In this way, PIAF’s adaptation of its
forward model benefits from the current forward model knowl-
edge and the interdependence of successive state signals, but it
prevents overconfidence in its forward model-based state priors.

4.4.1. Comparison with RLS→Kalman

Compared with the straightforward ad-hoc system of
Figures 8A, 9 shows that the PIAF system reduces the number
of samples required to reach a certain target performance by a
factor of 5–100 (horizontal offset between the curves PIAF and
RLS→Kalman in Figure 9C). When applying random control

A B

C D

FIGURE 9 | Performance of the RLS → Kalman system (red, solid

line), Kalman ↔ RLS (green, dashed lines) and PIAF (blue).

[σs = 2, σp = 0.01]. (A) Continuous control, mean squared error of µw,

(B) Random control, mean squared error of µw, (C) Continuous control,

mean squared error of µz , (D) Random control, mean squared error

of µz .
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commands, the RLS→Kalman system suffers further from an
even slower convergence of the RLS-based forward model values
w (cf. Figure 9B). As a consequence, Figure 9D shows that
the ad-hoc combination has not yet reached the theoretically
achievable target error performance even after 100k learning
iterations (the theoretical optimum is bounded by σp, as was also
experimentally confirmed in Figure 5).

Figure 10 shows 50 individual runs of the PIAF system and
the ad-hoc systems RLS→Kalman and Kalman↔RLS in the con-
tinuous control setup. All runs have identical settings, except for
the seed value of the random generator that was used to produce
the sensor and process noise samples. The average of each group
of runs is shown by a thick line. While all runs of RLS→Kalman
converge to the optimum, eventually, PIAF is significantly faster
(compare with Figures 9A,C).

4.4.2. The Self-Delusional Loop: Comparison with

Kalman↔RLS

The ad-hoc system Kalman↔RLS of Figure 8B does not reach
the theoretically achievable performance (determined by σp). In
the case of continuous control, it levels off at roughly 10 times

FIGURE 10 | Comparison of individual runs with continuous control of

PIAF (blue) and RLS → Kalman (red) and Kalman ↔ RLS system

(green). [σs = 2, σp = 0.01].

higher mean squared error. In the case of random control signals,
the estimates actually destabilize and estimated values become
completely useless. This is due to the effect of the information
feedback loop that leads to the self-delusional loop (cf. black
arrows in Figure 8B). This insight was investigated inmuchmore
detail already elsewhere (Kneissler et al., 2012, 2014).

To illustrate the self-delusional loop further, the individual
runs in Figure 10 show that the feedback loop of Kalman↔RLS
can be initially advantageous for a certain fraction of runs,
compared to RLS→Kalman and even reach the PIAF perfor-
mance in a few cases. Nevertheless, sooner or later all of the
Kalman↔RLS runs end up in stagnation, where the w estimates
do not improve further. It is characteristic for the self-delusional
loop that the stagnation occurs at an arbitrary point in time and
the resulting end performances are widely spread.

5. Discussion

Any neural system that learns by predictive encoding principles
inevitably faces the problem of learning to predict the effects of its
own actions on itself and on its environment. Meanwhile, such a
system will attempt to utilize current predictive knowledge to fil-
ter incoming sensory information—learning from the resulting
residuals. In this paper, we have shown that a system can learn its
forward model more than 10 times faster when using the filtered
residual. However, we have also shown that a scheme composed
of independent learning and prediction components with decou-
pled confidence estimation tends to become overly self-confident.
When trapped in such a “delusional loop,” the system essentially
overly trusts its internal forward model, disregarding residual
information as noise and consequently prematurely preventing
further learning.

To achieve the learning speed-up and to avoid the self-
delusional loop, we have derived a Bayes-optimal solution to
optimally combine the forward model knowledge with the
incoming sensory feedback. The resulting Predictive Inference
and Adaptive Filtering (PIAF) scheme learns the forward model
and filters sensory information optimally, iteratively, and concur-
rently on the fly. PIAF was shown to be closely related to the
recursive least squares (RLS) online linear regression technique
as well as to Kalman filtering—combining both techniques in a
Bayes-optimal manner by considering the covariances between
the forward model parameters and the state estimates. In con-
trast to joint Kalman filtering approaches, which add the forward
model parameters to the state estimate, PIAF separates the two
components explicitly. Technically, PIAF rests on separating the
exact posterior distribution over states and model parameters
into these parameter groups. This statistical separation requires
the exchange of sufficient statistics (in our Gaussian case, expec-
tations, and covariances) between the Bayesian updates to ensure
that uncertainty about the parameters informs state estimation
and vice versa. The alternative would be to assume a joint pos-
terior over both states and parameters and use a joint or global
Kalman filter. However, this comes at a price of obfuscating the
interaction between these two parameters.

Another generalization would be to repeat our experi-
ments with a higher dimensional control space, where control
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commands q̇n are vectors. More importantly, at the moment the
derivation is limited to linear models. In the non-linear case,
Extended Kalman Filtering (EKF)methods or Unscented Kalman
Filtering (UKF) techniques with augmented states are applicable.
In our previous work, we have investigated locally linear map-
pings to approximate the underlying non-linear forward velocity
kinematics model of a simulated robot arm (Kneissler et al., 2012,
2014), preventing self-delusional loops by means of thresholds. A
general (Bayes optimal) solution for learning such locally linear
mappings and possibly gain-field mappings, as identified in the
brain in various cortical areas (Denève and Pouget, 2004; Chang
et al., 2009), seems highly desirable. The main challenge in this
respect is the estimation of dependencies between the forward
model and the internal state estimates, when combining partially
overlapping, locally linear forward model approximations and

when traversing the local forward models. Our work shows that
it is essential to prevent an overestimation of the forward model
confidence—since overconfidence can lead to delusion. However,
our work also shows that filtering the sensory signal and learning
from the filtered signal is clearly worthwhile, because it has the
potential to speed up learning by an order of magnitude and to
provide more efficient inference.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2015.00047/abstract

Please refer to the Supplementary Material for the full mathe-
matical derivations and the relations to Kalman filtering and RLS.
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