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In this article, the Electroencephalography (EEG) signal of the human brain is modeled

as the output of stochastic non-linear coupled oscillator networks. It is shown that

EEG signals recorded under different brain states in healthy as well as Alzheimer’s

disease (AD) patients may be understood as distinct, statistically significant realizations

of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed

(EC) resting conditions in a pilot study with AD patients and age-matched healthy

control subjects (CTL) are employed. An optimization scheme is then utilized to match

the output of the stochastic Duffing—van der Pol double oscillator network with EEG

signals recorded during each condition for AD and CTL subjects by selecting the model

physical parameters and noise intensity. The selected signal characteristics are power

spectral densities in major brain frequency bands Shannon and sample entropies. These

measures allow matching of linear time varying frequency content as well as non-linear

signal information content and complexity. The main finding of the work is that statistically

significant unique models represent the EC and EO conditions for both CTL and AD

subjects. However, it is also shown that the inclusion of sample entropy in the optimization

process, to match the complexity of the EEG signal, enhances the stochastic non-linear

oscillator model performance.

Keywords: EEG, Alzheimer’s disease, stochastic differential equations, duffing—van der Pol, entropy

1. Introduction

Quantitative analysis of human brain electroencephalography (EEG) recordings aimed at enhanc-
ing our understanding of brain injuries and disorders is currently an important research area. In
addition to being useful in diagnosis, such analysis can provide insights into the underlying neuro-
physiology of the injury or disorder, thereby leading to better treatment and preventive strategies.
Alzheimer’s disease (AD) is the most common form of dementia and is the subject of intense
research. While no known cure exists, certain medications have shown promise in delaying the
symptoms (Dauwels et al., 2010) prompting researchers to seek early diagnosis and intervention
strategies. In this context, analysis of the EEG is a potential non-invasive tool that may aid early
diagnosis of AD. However, the use of EEG signal analysis in order to improve the diagnosis of
AD is a complex problem where, despite significant advances, a number of fundamental questions
remain open (Elgendi et al., 2011).

Considering now the characteristics of the EEG, since the non-stationary nature of the signal
is generally well-recognized (see, for instance Akin, 2002), decomposition using a fast Fourier
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transform (FFT) with sliding windows and the wavelet trans-
forms have been the most popular techniques employed to cap-
ture the spectral properties of EEG (Darvishi and Al-Ani, 2007;
Dauwels et al., 2010). However, linear transformation methods
fail to address the non-linear characteristics of the EEG signal
(Stam, 2005). Therefore, non-linear dynamic approaches have
been attempted as well, mostly involving computationally com-
plex time series analysis (Jeong, 2004). Several other aspects
of non-linear modeling and analysis in this context have also
been studied in the literature (see, for instance, Stam, 2005 for
a review). These include frameworks based on a neural mass
model (Valdes et al., 1999; Huang et al., 2011), coupled oscilla-
tors (Baier et al., 2005; Leistritz et al., 2007), continuum models
(Kim et al., 2007), non-linear non-stationary models (Celka and
Colditz, 2002; Rankine et al., 2007), random neural networks
(Acedo and Morano, 2013), and chaotic phenomena and stabil-
ity aspects (Rodrigues et al., 2007; Dafilis et al., 2009). Stochastic
approaches based on Markov chain Monte Carlo methods (Het-
tiarachchi et al., 2012) and Markov process amplitude (Wang
et al., 2011) that take into account the inherent randomness of
the EEG signal have also been reported. In the same vein, limit
cycle oscillators (Hernandez et al., 1996; Burke and Paor, 2004)
as well as stochastic synchronization (Bressloff and Lai, 2011) and
stochastic approximation (Fell et al., 2000; Sun et al., 2008) meth-
ods have been considered in EEG modeling. Notably, limit cycle
behavior at each of the brain frequency bands appears to provide
a more accurate representation of the EEG signal than one based
on chaotic phenomena.

Some of the most important features in non-linear dynamic
and stochastic approaches are signal information content and
complexity as measured using various forms of information
entropy. Measures such as Shannon entropy (Shannon, 1948)
characterize the information content in a signal and higher
entropy corresponds to increased randomness and chaotic behav-
ior (Abasolo et al., 2006). Importantly, one observes that, with
respect to the EEG signal, higher information content correlates
with better brain function (Shin et al., 2006). Furthermore, it
has been reported that variations in information entropic mea-
sures may be used to detect functional abnormalities in the
brain caused by disorders or injuries (Slobounov et al., 2009).
Hence, information content of the EEG signal, characterized by
information-entropic measures, may be expected to be important
in identifying distinct states of the brain. This is further rein-
forced by the recent results of McBride and colleagues on the
role of information entropic and spectral analysis in the study of
the early stages of Alzheimer’s disease and mild Traumatic Brain
Injury McBride et al. (2013a,b, 2014).

Entropy may also be utilized to measure signal complex-
ity. For instance, embedding entropy provides information
about how the EEG signal fluctuates in time by compar-
ing the time series with a delayed version of itself (Abasolo
et al., 2006). Moreover, the concept of approximate entropy was
introduced as a measure of system complexity (Pincus, 1991)
and has been applied to brain wave signals (Quiroga et al.,
2001). However, the approximate entropy measure suffers from
drawbacks such as bias and inconsistency (Xu et al., 2010).
Hence, the notion of sample entropy was introduced (Richman

and Moorman, 2000) as an improvement over approximate
entropy.

In recent work, the authors proposed a phenomenological
model of the EEG signal based on the dynamics of a stochas-
tic, coupled, Duffing- van der Pol oscillator network (Ghorba-
nian et al., 2015). An optimization scheme was adopted to match
model output with actual EEG data obtained from healthy sub-
jects in the two distinct resting eyes-open (EO) and eyes-closed
(EC) conditions and it was shown that the actual EEG signals
in both cases were distinct realizations of the model with qual-
itatively different non-linear dynamic characteristics. Moreover,
the model output and the actual EEG data were shown to be in
good agreement in terms of both the power spectra (frequency
content) and Shannon entropy (information content).

In the present effort, we improve the model introduced in
Ghorbanian et al. (2015) by matching the sample entropy of the
model output and EEG signal to capture its complexity. A global
optimization routine is employed in order to match the output
of with EEG recordings in terms of power spectrum, Shannon
entropy, and sample entropy. The EEG signals were recorded
under resting EC and EO conditions in an earlier pilot study of
Alzheimer’s disease (AD) patients vs. age-matched healthy con-
trol (CTL) subjects (Ghorbanian et al., 2013). The model param-
eters obtained for the oscillators representing EC and EO EEG
signals for CTL and AD patients are compared in order to estab-
lish statistically significant, distinct models for AD and CTL sub-
jects under each condition. In addition, we present new results
from a phase space reconstruction analysis of themodel output to
match the actual EEG signal. The results indicate that the analyt-
ical model effectively captures the frequency spectrum and non-
linear characteristics of the EEG signal in terms of complexity and
information content. Furthermore, it is shown that the addition
of sample entropy significantly enhances the model performance
in terms of complexity and non-linear dynamic characteristics, as
demonstrated by phase space reconstruction. The results suggest
exciting new pathways to develop better tools for distinguishing
pathological and normal brain states in AD and perhaps other
neurological diseases and disorders.

The rest of the article is set as follows. Details of the EEG
recordings, the analytical model, the optimization scheme and
the phase space reconstruction technique are provided in Section
2. The results are presented in Section 3 and discussed in Section
4. The articles concludes with comments on further research in
Section 5.

2. Materials and Methods

2.1. EEG Recording Blocks
Twenty six AD patients and healthy age-matched CTL subjects
were selected for this study (“A Brain-Computer Interface for
Diagnosing Brain Function,” Aspire IRB, Human Subject Proto-
col Number PDMC-001, approved on October 7, 2010). Of the
26 subjects selected, one withdrew and one did not qualify as AD
or CTL. Subjects were asked to relax and wear an EEG record-
ing headset during alternating blocks of EC and EO followed by a
variety of cognitive and auditory tasks and a final EC-EO resting
period.
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FIGURE 1 | Schematic of the stochastic coupled Duffing—van der Pol oscillators.

TABLE 1 | Optimal parameters of the Duffing—van der Pol oscillator for

EC and EO of CTL subjects (N = 40) and the p-values from unpaired t-test,

Wilcoxon rank sum test, and Bonferonni correction.

Parameter Eyes-Closed Eyes-Open t-test Wilcoxon Bonferroni

(EC) (EO)

k1 7286.5± 192.4 2427.2±448.91 1e-15 1e-8 1e-7

k2 4523.5± 282.3 499.92±84.04 1e-15 1e-8 1e-7

b1 232.05± 18.3 95.61±24.20 1e-15 1e-8 1e-7

b2 10.78± 2.3 103.36±9.22 1e-15 1e-8 1e-7

ǫ1 33.60± 5.4 48.89±9.49 1e-15 1e-8 1e-7

ǫ2 0.97± 0.19 28.75±1.74 1e-15 1e-8 1e-7

µ 2.34± 0.47 1.82±0.78 0.01 0.06 0.06

The EEG signals were recorded through a single-dry electrode
device at position Fp1 (based on a 10–20 electrode placement
system) with a Bluetooth enabled telemetric headset. The head-
set’s effective sample rate is 125 Hz. Frequencies below 1 Hz and
above 60 Hz (near Nyquist frequency) were filtered out by the
device hardware. On comparison of the EEG recordings by the
device with those from other widely accepted devices, frequencies
within 2–30 Hz were deemed to be very accurate.

The recording device eliminated frequently observed artifacts
including line noise. Other artifacts were mainly due to eye- and
muscle-movements, which are common at Fp1 location and can
be clearly identified by their high amplitudes compared to true
EEG signal recordings during resting states. These artifacts were
removed using a simple artifact detection that eliminated any part
of the signal greater than 4.5σ (standard deviation). The algo-
rithm also reconstructed the nulled samples using FFT interpo-
lation of the trailing and subsequent recorded data (Ghorbanian
et al., 2013).

The EEG recordings in this study were obtained from sub-
jects in an AD pilot study with 14 control (CTL) subjects and 10
Alzheimer’s Disease (AD) patients presented in our earlier work
(Ghorbanian et al., 2013). Recording blocks of 40-s duration
(approximately 5000 sample signals) from resting eyes-closed
(EC) and eyes-open (EO) conditions were selected. In all, 60 ran-
dom blocks were selected from the pilot study: 40 blocks from
control CTL subjects (20 EC and 20 EO) and 20 blocks from AD

subjects (10 EC and 10 EO). Note that, the smaller number of AD
patients along with smaller number of AD patient recording ses-
sions that were were not dominated by artifacts resulted in the
selection of smaller AD sample size.

2.2. EEG Features
The time-varying power spectrum in each of the major brain
EEG frequency bands was calculated using short time fast Fourier
transform (FFT) with sliding window, since a good model must
produce signals that can match EEG’s frequency content. Specif-
ically, the power spectrum was computed in seven ranges: lower
δ (1–2 Hz), upper δ (2–4Hz), θ (4–8Hz), α (8–13 Hz), lower
β (13–20Hz), upper β (20–30Hz), and γ (30–60Hz). However,
lower δ and γ band powers, which happen to have little power,
were ignored due to unreliability of the device in those frequency
ranges.

Shannon entropy was measured based on a sliding tempo-
ral window technique. A temporal window was defined to slide
along the signal time representation with a sliding step (interval
or bin) to sample a part of the signal. A discrete entropy esti-
mator was applied, in which 10 uniform intervals equally divided
the range of the normalized observed signal. Then the probability
that the sampled signal belongs to the interval is the ratio between
the number of the samples found within each interval and the
total number of samples of the signal. The Shannon entropy is
then calculated based on these probabilities (Shin et al., 2006),
separately for each 40-s EEG recording block (5000 samples).

Sample entropy (SE) is the negative natural logarithm of the
conditional probability that two sequences of a time series, simi-
lar form points, remain similar at the next point. For givenN data
points from a time series, [x(1), x(2), · · · , x(N)], we calculated
SE of each 40-s EEG recording block (5000 samples) by the
statistic (Abasolo et al., 2006):

SE(m, r,N) =

{

− ln

[

Um+1(r)

Um(r)

]}

, (1)

wherem is the run length, r is the tolerance window size, and

Um(r) =
1

(N −m)(N −m− 1)

N−m
∑

i=1

Ui. (2)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 April 2015 | Volume 9 | Article 48

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ghorbanian et al. Stochastic non-linear oscillator models of EEG

In the above equation, Ui indicates the number of k’s (1 ≤ k ≤

N − m) such that the Euclidean distance between Xm(i) and
Xm(k), k 6= i, is less than or equal r and Xm(i) = [x(i), x(i +
1), · · · , x(i+m− 1)].

Generally, large m or small r values result in number of
matches being too small for confident estimation of the condi-
tional probability and vice versa (Lake and Moorman, 2011). In
this study, we used m = 2 and r = 0.25σ based on the consis-
tency of the results and recommended ranges in previous studies
(Richman and Moorman, 2000; Xu et al., 2010).

2.3. Stochastic Coupled Non-linear Oscillators
We recall that the EEG has been modeled in the literature taking
into account characteristics including non-linearity (both chaotic
and non-chaotic), non-stationarity, and randomness of the sig-
nal (Fell et al., 2000; Rankine et al., 2007; Sun et al., 2008). The
EEG has also been studied as the manifestation of underlying
limit cycle oscillations at a given frequency and other such peri-
odic solutions (Hernandez et al., 1996; Burke and Paor, 2004).
While inspired by the above, the authors were fundamentally
motivated to develop models that can better reproduce the sig-
nificant linear and non-linear characteristics of actual EEG sig-
nals. Hence, we proposed a phenomenological model of the EEG
based on a coupled system of Duffing—van der Pol oscillators
subjected to white noise excitation (Ghorbanian et al., 2015).
This particular oscillator was selected because the Duffing non-
linearity allows a system with only two oscillators capture the

major brain frequency spectra and van der Pol non-linearity pro-
vides self-excited limit cycle behavior which have been previously
reported for each major brain frequency bands (Burke and Paor,
2004).

We consider a phenomenological model of the EEG based on
a coupled system of Duffing—van der Pol oscillators subject to
white noise excitation, as shown in Figure 1. The equations for
the model may be written as:















ẍ1 + (k1 + k2)x1 − k2x2 = −b1x
3
1 − b2(x1 − x2)

3

+ǫ1ẋ1(1− x21),
ẍ2 − k2x1 + k2x2 = b2(x1 − x2)

3

+ǫ2ẋ2(1− x22)+ µ dW,

(3)

where xi, ẋi, ẍi, i = 1, 2 are positions, velocities, and accelera-
tions of the two oscillators, respectively. Parameters ki, bi, ǫi, i =
1, 2 are, respectively, linear stiffness, cubic stiffness, and van
der Pol damping coefficient of the two oscillators. Parameters
bis indicate the strength of the Duffing non-linearity resulting
in multiple resonant frequencies while ǫis indicate the strength
of van der Pol non-linearity and determine the extent of self-
excitation and the shape of the resulting limit cycle. Parameter
µ represents the intensity of white noise and dW is a Wiener
process (Gardiner, 1985; Higham, 2001) representing the addi-
tive noise in the stochastic differential system. The input exci-
tation to the system is provided through µdW. The output
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FIGURE 2 | Comparison of major brain frequency band mean powers of CTL EEG signals and optimal oscillator model output; EC (top), EO (bottom).
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may be selected as any combination of the positions and veloc-
ities to mimic an EEG signal. Note that, the Euler-Maruyama
method (Higham, 2001) was selected to integrate the stochastic
differential equations in Equation (3) since standard numerical
integration methods are not applicable.

2.4. Optimization Formulation
We have selected the velocity of the second oscillator as the sys-
tem output approximating the EEG signal since it is directly
impacted by the noise. A global optimization search method
based on a multi-start algorithm (Ugray et al., 2007) was adopted
to determine the oscillator model parameters that can pro-
duce the output matching various EEG signals. The optimiza-
tion objective function was selected as the root mean squared of
the errors in power spectrum of each selected brain frequency
bands plus weighted values of the errors in absolute Shannon
and sample entropies. Hence, the optimization goal is error
minimization:

min
p

J =

√

√

√

√

m
∑

j= 1

(PEj − POj)
2+w1|SE−SO|+w2|SPE−SPO|, (4)

where J is the objective function, p = [k1, k2, b1, b2, ǫ1, ǫ2, µ]
the decision variables, PEj and POj the powers in the major brain
frequency bands for the normalized EEG signal and the model
output, respectively, m is number of frequency bands (m = 7),
SE and SO the Shannon entropies of the EEG signal and the
model output, respectively, SPE and SPO the sample entropies of
the EEG signal and the model output, respectively, w1 and w2

are weighting factor for absolute Shannon and sample entropies,
respectively, and | | represents absolute value. The weighting fac-
tors w1 and w2 are required to give equal importance to power
spectrum and entropy characteristics of the signal. Note that the
magnitude of the output signals are matched through normaliza-
tion of both the model output and the EEG signal with respect to
their standard deviations.

The objective function minimization is subject to equality
constraints represented by the state (Equation 3) and inequality
constraints represented by the decision variable lower and upper
bounds:

0 < ki ≤ 1e4, 0 < bi ≤
1
2ki, 0 < ǫi ≤

1
3ki,

i = 1, 2, 0 ≤ µ ≤ 2.
(5)

The constraints for bi’s and ǫi’s were imposed to avoid the chaotic
regime (Li et al., 2006) and provide a periodic stochastic response.
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FIGURE 3 | Power spectrum of a sample CTL EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.
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Noise intensity is also constrained to avoid a response dominated
by random noise. The initial guesses for the global optimiza-
tion search are randomly generated within the bounds defined
in Equation (5).

The stochastic component was introduced as white noise,
which was generated through a normally distributed random
variable and applied to the model via Wiener process. A new
random process was generated and applied to the model during
integration of the equations, at each iteration of the optimization
algorithm.

2.5. Statistical Analysis
A key objective of the phenomenological modeling in this work
is the ability to establish a correspondence between variations
in model parameters and the variations in the data obtained
from different physiological conditions. Hence, the parametric
unpaired t-test and non-parametric Wilcoxon rank sum statis-
tical testing methods were employed to determine the relative
significance of the model parameters. Furthermore, Bonferroni
correction was applied due to multiple comparisons problem
and adequacy of sample sizes for statistical tests were established
using power analysis.

2.6. Phase Space Reconstruction
In addition to matching Shannon and sample entropies of the
model output and EEG signal through the optimization process,
it is of interest to investigate matching other features such as
the phase plot which plays a significant role in non-linear time
series analysis (Kantz and Schreiber, 2004). It is known that any
dynamic system can be completely recovered in the phase space,
which maybe reconstructed from the measured time domain
response of the system (Nie et al., 2013). While phase space con-
sists of velocity and position variables for a mechanical system, in
the case where just the time representation of a signal is available,
a phase space reconstruction technique based on the method of
delays is used (Kantz and Schreiber, 2004).

The main idea is that one does not need the derivatives to
form a coordinate system in which to capture the structure
of phase space, but instead one could directly use the lagged
variables:

x(n+ T) = x(t0 + (n+ T)1τs), (6)

where x(n) is the nth sample of the time series, 1τs the time
step, and T the delay integer to be determined. Then, a vector
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FIGURE 4 | Power spectrum of a sample CTL EO (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.
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of (embedding) dimension d may be constructed using the time
lags as:

[x(n), x(n+ T), x(n+ 2T), · · · , x(n+ (d − 1)T)]. (7)

Time-delay embedding is probably one of the best systematic
methods for converting scalar data to multidimensional phase
space (Abarbanel et al., 1993; Burke and Paor, 2004; Nie et al.,
2013). An appropriate and successful reconstruction depends on
the choice of both time delay T and the embedding dimension d
(Nie et al., 2013).

In this study, the appropriate value of the time lag was deter-
mined using the average mutual information method applied to
each EEG recording block. The idea behind mutual information
is to identify the amount of information that can be learned about

a measurement at one time from ameasurement taken at another
time. Consider the time series nth sample x(n) and its value
after time delay T with the associated probability distributions of
P(x(n)) and P(x(n + T)), respectively. The average information
which can be obtained about x(n + T) from x(n) is given by the
mutual information of the two measurements (Abarbanel et al.,
1993; Mizrach, 1996):

I(x(n), x(n+ T)) = log2

[

P(x(n), x(n+ T))

P(x(n))P(x(n+ T))

]

, (8)

where P(x(n), x(n + T)) is the joint probability of the mea-
surements x(n) and x(n + T) calculated using a binning-based
method, in which 20 uniform intervals divided the range of the
measurements equally. The average mutual information between
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FIGURE 5 | Average mutual information for a sample CTL EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy;

(bottom) output of stochastic oscillator model using Shannon and sample entropies.
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measurements of any value x(n) and x(n+ T) is the average over
all possible measurements of I(x(n), x(n + T)) (Abarbanel et al.,
1993):

I(T) =
∑

x(n),x(n+T)

P(x(n), x(n+ T))I(x(n), x(n+ T)). (9)

IfT is too small, themeasurements x(n) and x(n+T) will have too
much overlap. However, if T is too large, then I(T) will approach
zero and nothing relates x(n) to x(n+ T). It is suggested that the
proper T can be chosen as the first minimum of I(T) which is
not necessarily optimal but has been shown to work well (Abar-
banel et al., 1993; Nie et al., 2013). If in a case, no minima exists
for I(T), the choice of T = 1 or 2 has been suggested (Abarbanel
et al., 1993).

After specifying the correct time delay T, an appropriate
embedding dimension, d, should also be found for the phase
space reconstruction. If d is too small, the trajectories will not
be unique. On the other hand, too large a d will result in addi-
tional computational cost by requiring extra dimensions (Nie
et al., 2013).

3. Results

The optimization algorithm was separately applied to determine
the model parameters (decision variables) for each of the 60
selected EEG signals using the weighting factorsw1 = w2 = 0.35.
These weighting factors give equal importance to the entropy
measures and power spectrum. We then categorized the result-
ing 60 set of model parameters into four groups based recording
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FIGURE 6 | Reconstructed phase plot of a sample CTL EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy;

(bottom) output of stochastic oscillator model using Shannon and sample entropies.
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conditions and subject diagnosis: EC-CTL, EO-CTL, EC-AD, and
EO-AD.

3.1. Healthy Eyes-Closed and Eyes-Open Results
Initially, we studied the models derived for the EC and EO EEG
signals of CTL subjects for validation purposes. The means and
standard deviations of the optimal values of the model parame-
ters for EC-CTL and EO-CTL EEG signals are listed in Table 1.
The p-values from the two statistical tests and non-parametric
method after Bonferroni corrections indicate that the differences
between of all parameters of the two models are strongly statisti-
cally significant with the exception of noise intensity. Note that,
µ is also found statistically significant using t-test but is slightly
off when the non-parametric method is used.

In order to ensure that adequate sample sizes are used, the
minimum required difference between means of two groups of
data for each parameter are computed. As expected due to very
small p-values, the sample size for statistical testing is found to
be sufficient with more than 99.9% power for all parameters
except noise intensity µ, which was not found to be statistically
significant using the non-parametric method.

Power spectrums of the optimal stochastic oscillator model
output and EEG signals for the EC and EO cases of CTL subjects
are presented in Figure 2 where θ , α, and β band powers show
excellent agreement. The comparison revealed that, as expected,
the optimal model is closely following the α-band dominance in
the EC cases. While, in the EO cases, the optimal model follows

TABLE 2 | Optimal parameters of the Duffing—van der Pol oscillator

model for EC and EO of AD subjects (N = 20) and the p-values from

unpaired t-test, Wilcoxon rank sum test, and Bonferonni correction.

Parameter Eyes-Closed Eyes-Open t-test Wilcoxon Bonferroni

(EC) (EO)

k1 1742.1± 197.91 3139.9±1040.9 0.0005 0.0025 0.009

k2 1270.8± 277.13 650.32±175.76 1e-5 0.0005 0.002

b1 771.99± 126.81 101.1±27.86 1e-12 0.0001 0.001

b2 1.91± 0.22 81.3±9.76 1e-15 0.0001 0.001

ǫ1 63.7± 11.64 56.3±5.75 0.0884 0.021 0.063

ǫ2 20.7± 5.64 19.12±2.87 0.4234 0.879 0.95

µ 1.78± 0.8 1.74±0.67 0.905 0.879 0.95

a more flat frequency distribution from upper δ to lower β fre-
quency bands. Furthermore, Shannon and SE values of the EEG
signals and the model outputs for the EC and EO cases show
close agreement. Shannon entropy values were 1.80 ± 0.08 and
1.92 ± 0.08 for EC EEG and model output, respectively, and
1.71 ± 0.11 and 1.57 ± 0.15 for EO EEG and model output,
respectively. While, SE values were 1.04 ± 0.20 and 1.17 ± 0.22
for EC EEG and model output, respectively, and 0.97± 0.20 and
1.20 ± 0.18 for EO EEG and model output, respectively. These
results show a significant improvement over our previous model
where only Shannon entropy was used (Ghorbanian et al., 2015).
The improvement is clearly observed in the the power spectra of
sample EC and EO EEG signals and their corresponding optimal
model outputs, respectively shown in Figures 3, 4. Both figures
demonstrate more distributed spectra of the model outputs with
similar noise complexities to the actual EEG signals when SE is
added to the objective function; i.e., power spectra of the signals
without matching of SE have very discrete peaks unlike the EEG.

The impact of SE tomatch signal complexity is further demon-
strated through phase plot reconstruction of the time series. Aver-
age mutual information for a sample EC EEG signal and outputs
of the optimal stochastic oscillator models are shown in Figure 5

as a function of lag time. The first minimum occurs at T = 5 lag
samples for both the EEG signal and the optimal model derived
with both Shannon and sample entropies while T = 3 for the
output of the model derived solely based on Shannon entropy.
The resulting reconstructed phase plots of the EC EEG signal and
the outputs of the two optimal models are presented in Figure 6.
Clearly, the reconstructed phase plots of the EEG and the output
of the model derived using both Shannon and sample entropies,
display similar behavior. While the output of the model derived
using only Shannon entropy is qualitatively different form the
EEG signal in terms of complexity and noise. Indeed this result
provides further affirmation that the stochastic Duffing—van der
Pol model yields an output that matches the actual EEG data in
terms of non-linear characteristics observed in the phase space.

3.2. Alzheimer’s Disease vs. Control Results
Next, we studied the models derived for the EC and EO EEG
signals of AD subjects. The mean and standard deviation of the
optimal values of the model parameters for EC-AD and EO-AD
EEG signals are listed in Table 2 along with the p-values from
the two statistical tests and the non-parametric test after Bonfer-
roni corrections indicating that the differences between only the

TABLE 3 | The p-values from unpaired t-test, Wilcoxon rank sum test, and Bonferonni correction for comparison of model parameters between AD

(N = 20) and CTL (N = 40) subjects.

Parameter t-test (EC) Wilcoxon (EC) Bonf. (EC) t-test (EO) Wilcoxon (EO) Bonf. (EO)

k1 1e-30 1e-5 4e-5 0.013 0.027 0.08

k2 1e-23 1e-5 3e-5 0.0034 0.0015 0.007

b1 1e-17 1e-5 5e-5 0.58 0.027 0.08

b2 1e-12 1e-5 6e-5 1e-6 1e-5 9e-5

ǫ1 1e-10 6e-5 1e-5 0.031 0.0018 0.007

ǫ2 1e-15 5e-5 7e-6 4e-12 1e-5 7e-5

µ 0.02 0.06 0.06 0.80 0.70 0.7
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first four parameters of the two models are statistically signifi-
cant. Next, we separately compared the model parameters of EC
and EO EEG signals of CTL subjects with those AD patients.

Table 3 lists the p-values from the two statistical testing meth-
ods and the non-parametric method after Bonferroni corrections
comparing CTL vs. AD subjects under separate EC and EO con-
ditions. The results indicate that the difference between all model
parameters of CTL and AD subjects under EC condition are
strongly statistically significant except for noise intensity. Again,
µ is also found statistically significant using t-test but is slightly
off when non-parametric method is used. The difference between

TABLE 4 | Minimum required difference between model parameter mean

values of EC AD vs. EC CTL for various desired powers of statistical tests.

Parameter 90% 95% 99% 99.9%

1k1 (5544.3) 281.39 313.53 371.72 439.46

1k2 (3252.7) 406.65 453.09 537.18 635.08

1b1 (539.94) 106.44 118.60 140.61 166.24

1b2 (8.87) 2.82 3.14 3.72 4.40

1e1 (30.09) 11.54 12.86 15.25 18.03

1e2 (19.79) 4.64 5.17 6.13 7.25

1µ (0.56) 0.87 0.97 1.15 1.36

the model parameters of CTL and AD subjects under EO con-
dition are not, however, as strong, though they are still mostly
statistically significant. In the EO case, parameter µ is not statis-
tically significant using either method and t-test does not find b1
to be statistically significant either.

The power analysis results for 90%, 95%, 99%, and 99.9%
for two statistical are listed in Tables 4, 5 for EC and EO cases,
respectively. The actual difference between means are given
within parentheses following each parameter. The results indi-
cated that our sample size for statistical testing in EC case
between AD and CTL subjects was sufficient for all parameters

TABLE 5 | Minimum required difference between model parameter mean

values of EO AD vs. EO CTL for various desired powers of statistical tests.

Parameter 90% 95% 99% 99.9%

1k1 (712.78) 1009.12 1124.36 1333.04 1575.97

1k2 (175.81) 175.81 195.89 232.25 274.57

1b1 (5.49) 36.86 41.07 48.69 57.56

1b2 (22.02) 13.61 15.17 17.98 21.26

1e1 (7.41) 12.27 13.68 16.22 19.17

1e2 (9.62) 3.14 3.50 4.15 4.91

1µ (0.07) 1.08 1.21 1.43 1.70
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FIGURE 7 | Comparison of major brain frequency band mean powers of AD EEG signals and optimal oscillator model output; EC (top), EO (bottom).
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except µ with more than 99.9% power. However, in the EO
case, only sample size for parameters b2 and ǫ2 has more than
99.9% confidence and k2 shows a 90% confidence. The sam-
ple size for the remaining parameters did not provide sufficient
confidence.

Power spectrums of the optimal stochastic oscillator model
output and EEG signals for the EC and EO cases of AD subjects
are presented in Figure 7 where again θ , α, and β band pow-
ers show excellent agreement. The comparison revealed that the
optimal model was closely and correctly slightly θ-band domi-
nated in the EC cases for AD subjects (Ghorbanian et al., 2013).
While, in the EO cases, the optimal model followed the more flat
frequency distribution. Again, it should be noted that the higher
error rates are related to those frequency bands with lower pow-
ers. Furthermore, Shannon and SE values of the EEG signals and
the model outputs for the EC and EO cases show close agree-
ment. Shannon entropy values were 1.78± 0.04 and 1.70± 0.10
for EC EEG and model output, respectively, and 1.63± 0.32 and
1.62 ± 0.27 for EO EEG and model output, respectively. While,
SE values were 1.06±0.19 and 1.17±0.21 for EC EEG andmodel
output, respectively, and 1.02± 0.39 and 1.29± 0.24 for EO EEG
and model output, respectively.

Power spectra of outputs of the optimal stochastic oscillator
models and EEG signals for sample EC and EO cases of AD sub-
jects are presented in Figures 8, 9. Again, it is clear that the addi-
tion of SE to the objective function results in output signals with
power spectra patterns which are much more similar to the EEG
signal in terms of distribution and noise complexity. As expected,
the power spectrum plots demonstrated that the EC EEG signals
from AD subjects were slightly θ band dominated unlike α band
dominance of EC EEG recordings from CTL subjects.

4. Discussion

Power spectra of the optimal stochastic oscillator model out-
put and EEG signals show excellent agreement in the brain’s
major frequency bands. The comparison revealed that the opti-
mal model is closely following the α-band dominance in EC
recordings for the control subjects. Furthermore, the model for
EC recordings of AD patients closely followed θ-band power
dominance indicating the slowing of the EEG signal for these
patients. In the EO cases, the optimal model, as expected, fol-
lowed a more flat frequency distribution from upper δ to lower β

frequency bands for both AD and CTL subjects. Further evidence
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FIGURE 8 | Power spectrum of a sample AD EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.
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FIGURE 9 | Power spectrum of a sample AD EO (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.

of robustness of the the models derived in this study is that the
models derived for healthy subject EC and EO EEG signals in
our earlier study (Ghorbanian et al., 2015) fall within the same
distributions obtained for the CTL subjects in the clinical study.

Moreover, Shannon and SE values of the EEG signals and the
model outputs for the EC and EO cases show close agreement
for both CTL and AD subjects. However, the difference between
the entropy values of the CTL subjects and AD patients were not
statistically significant for neither the EEG signal nor the model
output. This aspect needs to be further studied since EEG signals
from AD patients may be expected to have lower complexity and
thus lower entropy values.

The contributions of the article are as follows. Firstly, the
objective function of the optimization scheme that yields model
parameters based on comparison with actual EEG data in our
previous work was extended to include both Shannon and sample
entropies, with the latter being a measure of signal complexity.
The procedure yielded model outputs that were in agreement
with the actual EEG signals with respect to the frequency con-
tent (power spectra), information content (Shannon entropy)
and complexity (sample entropy). It was shown that the addition

of SE significantly enhances the performance of the optimal
model in terms of both power spectrum and non-linear char-
acteristics displayed through phase space reconstruction. The
results demonstrate the feasibility of stochastic non-linear oscil-
lator models which can be further studied for greater insight into
EEG signal dynamic characteristics.

Secondly, the model parameter differences for EC and EO
EEG recordings were statistically significant leading to qualita-
tively and quantitatively distinct realizations of the underlying
models for the cases considered. This is a key result of the work
since it verifies that distinct models represent the EEG signals
recorded under different brain states. Potentially, this could lead
to unique models for different brain disorders and injuries.

Thirdly, the study provided unique models for EC and EO
EEG recordings from AD patients. The results showed that
almost all of the model parameters were statistically significant
for the EC and EO cases when comparing the AD and CTL sub-
jects. Moreover, the power spectrum plots showed a good match
between the generated signal from the stochastic model and the
actual EEG signal from AD patients. However, the results for the
EC case of ADweremore accurate and reasonable than the results
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of EO cases mainly due to the ability of the optimization scheme
to provide a better match in EC cases. The important conclusion
here is that unique stochastic non-linear oscillator models can be
developed to represent EEG signals from patients with a brain
disorder.

Of particular interest is the potential connection between our
model and the neural mass models studied in the literature.
For instance, characterization of functional connectivity between
remote cortical areas has been studied using neural mass mod-
els (David and Friston, 2003; David et al., 2004). These and
other efforts (Sotero et al., 2007) represent intriguing attempts
to capture actual neural dynamics using coupled oscillator mod-
els and suggest that, after all, models such as the one dis-
cussed in this article may be of broader scope than being purely
phenomenological. Extrapolating further, it would then be of
immense interest to understand the manifestation of phenom-
ena such as synchronization (Mirollo and Strogatz, 1990) within
the framework of our model and the implications for EEG
characterization.

5. Conclusions

In this article, we presented results that further develop our
recent work on modeling the EEG signal as the response of a
stochastic, coupled Duffing—van der Pol system of two oscil-
lators. The results presented verify that unique and statistically
significant stochastic Duffing—van der Pol oscillator models
represent EEG recorded from AD patients vs. health controls.
Overall, the results presented in this article further affirm the
efficacy of a stochastic Duffing—van der Pol oscillator net-
work model in capturing the key characteristics of actual EEG
data under different brain states as well as brain conditions in
terms of healthy controls vs. patients with a brain disorder.
The validation provided by the results certainly motivates fur-
ther research toward improving the analytical model and test-
ing it against larger data sets. Furthermore, the results suggest
that the modeling approach could potentially help develop novel
diagnostic and interventional tools for neurological diseases and
disorders.
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