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Brain regions of human subjects exhibit certain levels of associated activation upon

specific environmental stimuli. Functional Magnetic Resonance Imaging (fMRI) detects

regional signals, based on which we could infer the direct or indirect neuronal connectivity

between the regions. Structural Equation Modeling (SEM) is an appropriate mathematical

approach for analyzing the effective connectivity using fMRI data. A maximum likelihood

(ML) discrepancy function is minimized against some constrained coefficients of a path

model. The minimization is an iterative process. The computing time is very long as the

number of iterations increases geometrically with the number of path coefficients. Using

regular Quad-Core Central Processing Unit (CPU) platform, duration up to 3 months

is required for the iterations from 0 to 30 path coefficients. This study demonstrates

the application of Graphical Processing Unit (GPU) with the parallel Genetic Algorithm

(GA) that replaces the Powell minimization in the standard program code of the analysis

software package. It was found in the same example that GA under GPU reduced the

duration to 20 h and provided more accurate solution when compared with standard

program code under CPU.

Keywords: genetic algorithms, magnetic resonance imaging, structural equation modeling, graphical processing

unit, effective connectivity, path model, neuronal circuitry

Introduction

Human brain regions are activated in response to external stimuli or in carrying out cognitive
tasks. Functional MRI is an imaging modality that can interrogates the hemoglobin oxygenation
and deoxygenation related to blood flow at the activated regions through the change in magnetic
signals. The activated brain regions can be identified by their synchrony with the applied stimuli or
the tasks that are being carried out by the human subject (Erkonen and Smith, 2009). The functional
imaging technique becomes more crucial for understanding the regional brain functions and the
neuronal connectivity in response to the external factors. Brain regions are represented by nodes
connected with links in a brain network. Depending on the scope of study, the links could represent
anatomical, functional or effective connectivity. Anatomical links are usually used for studying
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white matter tracts among brain regions. Functional links
implicate that the brain regions exhibit strong temporal
association between the detected regional signals. Effective links
are directional and indicate if a region influences another directly
or indirectly. Based on the existing knowledge, anatomical links
hypothesize a brain network model concerning a relatively small
number of regions. Using the time series of brain dynamics
acquired by functional imaging technique, such as fMRI, effective
links can be inferred from the brain network model by
quantifying the directional connectivity strength (Rubinova and
Spornsd, 2010).

Structural Equation Modeling
Structural equation modeling (SEM) is a mathematical tool for
computing the effective connectivity based on the functional
brain imaging data. SEM is aimed to infer a path model for
quantifying the strength of the interregional directed connections
with the associated path coefficients. The path model is
formulated by the anatomical constraints extracted from the
existing studies and knowledge and the values of path coefficients
are obtained by data-driven path analysis. Prior to the path
analysis, we need to specify the regions of interest (ROI’s) that are
potentially activated due to the stimuli. The data pre-processing
steps include denoising, trend removing, motion correction,
normalization, and deconvolution using hemodynamic response
function (Stein et al., 2007).

In SEM, an interregional correlation matrix is derived
using the processed time series of the ROI’s. The estimated
correlation matrix and the adjustable path coefficients constitute
the maximum likelihood (ML) discrepancy function. With a
fixed estimate of correlation matrix, the “best” path model
is characterized by path coefficients that minimize the ML
discrepancy function. The minimization process is performed
iteratively where the number of unconstrained path coefficients
increases after each constrained minimization of ML discrepancy
function (Bullmore et al., 2000). As the time required for such
computation increases geometrically with the number of the
path coefficients, only a few brain regions were considered in
the previous studies. Quad-Core Central Processing Unit (CPU)
takes a whole day to compute a single iteration for estimating 40
path coefficients. Duration of a month is required for iterations
from 0 to 40 path coefficients.

Supercomputing Solution
Graphics Processing Unit (GPU), equipped with dedicated
pixel processing hardware, could speed up the arithmetic
computation. Software development tools, e.g., CommonUnified
Device Architecture (CUDA) toolkit (http://www.nvidia.com/),
transform the scientific computing platform from CPU to GPU
(Ritchie and Venkatraman, 2010). The current applications of
GPU are mostly DNA and protein sequence alignments in
bioinformatics. Eklund et al. (2012) and Eklund et al. (2014)
used GPU to analyse the associations between brain regions
but the directed connections cannot be identified using such
functional analysis. GPU has been applied for analyzing the
effective connectivity in human brain (Chan et al., 2013).
However, the performance of GPU in the minimization process

has not been compared with that of CPU for fixed periods
of computational time and the accuracy of the identified
connections has not been validated against the published
findings.

Genetic Algorithm (GA) is a parallel algorithm for randomly
exploring the “best” solution with a cost function. A number
of successful applications for porting GA to GPU have been
demonstrated previously (Wang and Shen, 2012). As an
alternative to the parallel iterations of GA, Simulated Annealing
(SA) controls the iteration convergence through a cooling
schedule. GA and SA are integrated to form the hierarchical
parallel genetic simulated annealing (HP-GSA) algorithm under
GPU (Mahfoud and Goldberg, 1995). This study demonstrates
the powerful application of HP-GSA under GPU in accurately
analyzing fMRI data with much lower computational load.

Methods

Subjects and Data Acquisition
An fMRI study recruited 11 subjects who were university
students, 21–32 years old and early Chinese-English bilinguals.
The image data were acquired from the subjects using a 1.5T
scanner with T2∗-weighted gradient-echo EPI sequence. English
verbs, English nouns, Chinese verbs and Chinese nouns were
presented to the subjects through an LCD projector system
during the fMRI scan (Chan et al., 2008).

The dataset is comprised of dynamic three-dimensional (3D)
voxel values collected by the fMRI scan. The regional signals were
obtained by averaging the time series of voxels over the regions.
We denote the number of subjects and the number of data points
of time series bym and n, respectively wherem is generally much
less than n. Let Ri be an m × n matrix containing the time
series data for a given ith region, whose values have already been
standardized to zero mean and unit variance.

Mathematical Principle of Neuronal Connectivity
Analysis
In each region across all subjects, the dominant component
of time series due to the stimuli was identified by Principal
Component Analysis (PCA). The singular value decomposition
yields the data matrix given by,

Ri = UiLiV
T
i (1)

where the columns of Vi represent the eigentimeseries
(eigenvectors) of Ri and the diagonal elements of Li, the
square roots of the eigenvalues of Ri, denoted by λ1, λ2, . . . ,λm.

The first principal component of Ri, denoted by vi(t), drives
the statistical variation of regional time series subject to the
stimuli-induced neuronal interactions. We denote the number of
ROI’s by p and the first principal components of p ROI’s at time
t by v(t), a p×1 vector [v1(t), v2(t), . . . , vp(t)]

T. The path model
can be represented by a set of simultaneous regression equations
given by,

v = Kv+ u (2)
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where K represents a p × p matrix of path coefficients with
zero diagonal elements and u, the vector of residual time series
independent of the neuronal interactions. If there is no evidence
of direct anatomical connectivity of a path, its off-diagonal
elements of K will be set to zeros. We define the interregional
correlation matrix as C=E[vvT]. With the estimated path model
the parametric estimate of C, given by C1, can be obtained by the
following formula,

C1 =
(

1− K̂
)−1

R
(

1− K̂
)−T

(3)

where R=E[uuT] represents a p × p diagonal matrix of the
residual variances, r1, r2, . . . , rp, which are given by,

ri = 1−
λ21

∑m
j=1 λ2j

(4)

If the q× 1 vector containing the non-zero path coefficients in K
is denoted by θ, the matrix C1 will become a parametric function
of path coefficients θ. Another estimate of C, denoted by C2,
can be calculated by the observed correlation matrix of the first
principal components, E[vvT]. According to SEM, the values of
θ governing the path model are estimated by minimizing
the maximum likelihood (ML) discrepancy function F
given by,

F (C1 (θ) ,C2) = log |C1 (θ)|+tr
(

C2C
−1
1 (θ)

)

− log |C2|−p (5)

Iterative Minimization under CPU and GPU
An automated search method was applied as the number of paths
or path coefficients, q, for the best fitting model is unknown.
The automated search process starts with a null model where all
non-zero path coefficients θ are constrained to zeros. Lagrangian
multiplier (LM) associated with each constrained coefficient in
θ is then computed. In the next iteration, the coefficient with
the largest LM becomes unconstrained in minimizing F. LM is
then computed for the second unconstrained coefficient and F is
minimized again against the two unconstrained coefficients. The
iterations continue until the parsimonious fit index of the path
model reaches a pre-specified acceptable value (Bullmore et al.,
2000).

The minimization of F is very fast in the first few iterations
due to the small number of the unconstrained path coefficients.
However, the computing load increases in geometric order with
the number of unconstrained path coefficients. The number of
possible paths will be 30 if six ROI’s are considered. As we
limited the number of non-zero path coefficients to twelve, there
are 30C12 = 86,493,225 possible solutions. If we use the AMD
Phenom X4 9850 Quad-Core CPU at 2.5 GHz and 2MB cache
memory, the optimization of each possible solution takes 0.1 s
and the best solution is obtained in 3 months. To make the path
model estimation a feasible approach, we rewrote the coding for
minimization process under CPU into that under NVIDIA Tesla
C2050 GPU card equipped with 448 cores at 1.15 GHz and 3

GB global memory. Each GPU card can theoretically operate
with up to 30,000 threads in parallel. A computer equipped with
four GPU cards can operate with 120,000 threads. With the GPU
approach, it will take 2 h only to get the best from 86,493,225
possible solutions.

Analysis of Functional NeuroImages (AFNI), a C program
set for analyzing and visualizing of fMRI data of human brain,
was used in this study (Cox, 1996). In the original AFNI source
code, the iterative minimization of F is implemented by the
modules “1dSEM” and “powell_int” where Powell Optimization
approach is applied. Since GPU could not accelerate the Powell
Optimization routine, we replaced the routine by HP-GSA for
GPU implementation (Mahfoud and Goldberg, 1995).

FIGURE 1 | Effective connectivity maps inferred by (A) 1dSEM under

CPU, and (B) HP-GSA under GPU. ROI’s: (1) L medial frontal gyrus; (2) L

inferior frontal gyrus; (3) L middle frontal gyrus (BA 9); (4) L middle frontal gyrus

(BA 10); (5) L cerebellum; (6) L inferior parietal lobule. Solid line indicates

positive path coefficient and dotted line indicates negative path coefficient.

Background picture was obtained from http://imgkid.com/

left-brain-diagram.shtml.
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Results

We analyzed the effective connectivity among six ROI’s,
including left middle frontal gyrus BA9 and BA10 (LMFG1,
LMFG2), left medial frontal gyrus BA6/8 (LMedFG), left inferior
parietal lobule BA39/40 (LIPL), left cerebellum (LCere) and
left inferior frontal gyrus BA45/46 (LIFG) for comparing the
performance of 1dSEM and HP-GSA. There were altogether 30
possible paths. The number of non-zero path coefficients was
limited to 12.

The computation of standard “1dSEM” was performed under
Quad-Core CPU, while that of the modified HP-GSAmodule was
done under GPU. Since it has been proved that the computing
speed of GPU is about 1000 time faster than that of CPU, we
were particularly interested in their performance in minimizing
F values and identifying accurate neuronal connections.

With a setting of the population size 1024, for individuals
composed of 6 ROI’s and a maximum generation number 200,
HP-GSA obtained the best θ that minimizes the function F. A
fixed reference F value was obtained by the standard “1dSEM.”
We performed 100 trials and grade the performance of HP-GSA
according to the following criteria.

Improved: FHP-GSA < F1dSEM
Worsened: FHP-GSA ≥ F1dSEM

HP-GSA yielded better minimization results in 56 trials and
worse results in 44 trials. Although the improved performance
of HP-GSA was seemingly unremarkable, we could perform the
HP-GSA minimization process repeatedly and choose the lowest
F value. If we repeat the HP-GSA minimization process for 10
times, the probability for getting worse results is 0.4410, i.e.,
0.027%. HP-GSA under GPU took only 20 h to achieve 99.973%
confidence in getting a minimization solution better than the
1dSEM under CPU could achieve in 3 months. The neuronal
connections of the best solutions obtained from 1dSEM and HP-
GSA with 100 trials are illustrated in Figures 1A,B respectively
and are compared in Table 1with the available literature support.

Discussions and Conclusion

To apply GPU for computing the effective connectivity, the
standard SEM algorithm was replaced by the GA optimization
routine. It was clearly shown that the optimization process of
GA under GPU was much faster than that of the standard
SEM under CPU. This study also compared the performance
of HP-GSA under GPU against that of 1dSEM under CPU
in iteratively minimizing the ML discrepancy function and
accurately identifying the neuronal connections. It was found
in 56% of trials that ML discrepancy function minimized by
GA was lower than that by standard SEM algorithm. Although
the difference between the values of ML discrepancy function
minimized by the two approaches was not significantly large,
the individual connections between the ROI’s derived from the
solutions exhibited largely different effective connectivity maps.
It is critical to evaluate the accuracy of the identified neuronal
connections against the ground truth supported by the published
findings.

The best solutions obtained from 1dSEM and HP-GSA
yielded two different connectivity maps that are illustrated in
Figures 1A,B, respectively and compared in Table 1. A rigorous
literature search through PubMed and BrainMap was performed
to validate the obtained connections with the available published
findings (Fox et al., 2005). HP-GSA identified connections 1-4
but 1dSEM did not. Cognitive control, including task switching,
involves the inferior frontal junction (IFJ) area that was found
to be significantly co-activated with medial frontal gyrus and
cerebellum in language processing (Sundermann and Pfleiderer,
2012). Since the English verbs, English nouns, Chinese verbs
and Chinese nouns were presented to the subjects, the processes
included the switching between English and Chinese and that
between verb and noun. The connection 1 is therefore justified
by this published finding. In a functional magnetic resonance
imaging study, the neural connectivity in adults was analyzed
using dynamic causal modeling (Booth et al., 2007). It was shown
that the cerebellum was connected to the left inferior frontal
gyrus during the rhyming judgment, a language processing task.
This finding justified the connection 2. A speaking experiment

TABLE 1 | Comparison between 1dSEM under CPU and HP-GSA under GPU in exploring effective connectivity.

No. ROI1 ROI2 1dSEM under CPU HP-GSA under GPU References

1 L medial frontal gyrus L cerebellum No connection ROI 1→ ROI 2 Sundermann and Pfleiderer, 2012

2 L inferior frontal gyrus L cerebellum No connection ROI 1→ ROI 2 Booth et al., 2007

3 L inferior frontal gyrus L inferior parietal lobule No connection ROI 1→ ROI 2 Menenti et al., 2012

4 L middle frontal gyrus (BA 9) L inferior parietal lobule No connection ROI 1→ ROI 2 Not available

5 L inferior frontal gyrus L middle frontal gyrus (BA 9) ROI 1↔ ROI 2 ROI 1→ ROI 2 Ardila et al., 2015

6 L middle frontal gyrus (BA 10) L inferior parietal lobule ROI 1→ ROI 2 ROI 1↔ ROI 2 Not available

7 L middle frontal gyrus (BA 10) L cerebellum ROI 1↔ ROI 2 ROI 1↔ ROI 2 Heisterueber et al., 2014

8 L medial frontal gyrus L inferior frontal gyrus ROI 1↔ ROI 2 ROI 1↔ ROI 2 Not available

9 L inferior parietal lobule L cerebellum ROI 1← ROI 2 ROI 1→ ROI 2 Not available

10 L medial frontal gyrus L middle frontal gyrus (BA 10) ROI 1→ ROI 2 No connection Not available

11 L middle frontal gyrus (BA 9) L medial frontal gyrus ROI 1→ ROI 2 No connection Not available

12 L cerebellum L middle frontal gyrus (BA 9) ROI 1→ ROI 2 No connection Not available
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explored the sense of each subject upon the presentation of target
pictures preceded by its corresponding verb and the request
for describing the target pictures (Menenti et al., 2012). The
sense was reflected by the neural connectivity map derived from
functional magnetic resonance imaging. It was shown that the
response in BA39 including inferior parietal lobule and in the
left middle frontal gyrus increased after repetition of sense. The
connection 3 is supported by this experimental result.

A behavioral study performed meta-analyses for assessing
the language network, the visual perception network and their
contrasts and convergence involving BA37 (Ardila et al., 2015).
Significant connection between BA37, middle frontal gyrus
(BA 9), and inferior frontal gyrus (BA45) was found among
12 identified clusters. The meta-analysis results supported the
connection 5. The neural correlates underlying the individuals’

variability in German word stress processing were investigated
in a functional magnetic resonance imaging study. The
neuroimaging evidence showed clusters of voxels co-activated in
cerebellum and middle frontal gyrus (BA 10) bilaterally. These
relevant published findings supported mostly the connections
identified by the HP-GSA but not the 1dSEM. Thus, the HP-
GSA under GPU is a highly recommended approach that
outperformed 1dSEM under CPU in accurately identifying the
biological truth of neuronal connectivity.
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