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Modeling place field activity with
hierarchical slow feature analysis

Fabian Schénfeld * and Laurenz Wiskott

Theory of Neural Systems Group, Institut fir Neuroinformatik, Ruhr Universitdt Bochum, Bochum, Germany

What are the computational laws of hippocampal activity? In this paper we argue for the
slowness principle as a fundamental processing paradigm behind hippocampal place
cell firing. We present six different studies from the experimental literature, performed
with real-life rats, that we replicated in computer simulations. Each of the chosen studies
allows rodents to develop stable place fields and then examines a distinct property of
the established spatial encoding: adaptation to cue relocation and removal; directional
dependent firing in the linear track and open field; and morphing and scaling the
environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA)
network topped by a principal component analysis (ICA) output layer. The slowness
principle is shown to account for the main findings of the presented experimental studies.
The SFA network generates its responses using raw visual input only, which adds to
its biological plausibility but requires experiments performed in light conditions. Future
iterations of the model will thus have to incorporate additional information, such as path
integration and grid cell activity, in order to be able to also replicate studies that take
place during darkness.
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Introduction

Since their initial discovery (O’Keefe and Dostrovsky, 1971) place cells found in the hippocampus
were subject to a wide range of both experimental studies as well as theoretical models and
ideas. Their main draw is their unusual potential to directly correlate with observable behavior
by developing spatially localized fields of activity, the so-called place fields. Place cells also take
part in planning (Robitsek et al., 2013) and goal directed behavior (Pfeifer and Foster, 2013).
They react to changes in familiar environments and have been shown to adapt their firing rate
(local remapping), reposition themselves (global remapping), or become silent, depending on
the performed manipulation (Leutgeb et al., 2005a). However, even though their activity has
been carefully measured and documented, place field activity has yet to be explained in terms of
(neuronal) computation. Theoretical models of place cells do not only have to explain localized
firing in the first place, but also need to account for their remapping behavior in order to be able to
make compelling predictions for future experiments.

Different modeling approaches can be distinguished by the input they accept and their level
of abstraction. While most theoretical work is done in simulation, there are also examples of
algorithms implemented on robots. RatSLAM (Milford et al., 2004) employs an architecture that
includes competitive attractor networks to successfully solve the SLAM (Simultaneous Localization
And Mapping) problem in real time on a robot platform. Though its computational approach
significantly differs from ours, RatSLAM operates on a similarly high level of abstraction and
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also uses raw image data as its input. However, while inspired
by hippocampal processing, the goal of RatSLAM is not to
explain the emergence of place fields, but to solve the SLAM
engineering problem. More biologically motivated approaches
usually work on the level of neuronal networks and base their
artificial place cell firing on the activity of other cells, such
as border cells (Hartley et al, 2000) or grid cells (Solstad
et al., 2006). The latter models contribute to a larger debate
about whether place field firing is based on grid cell activity
(or vice versa) and what their precise nature of interaction is?
(Bush et al., 2014).

In this paper we argue that the slowness principle is a
fundamental computational principle for place field formation
during navigation. We use Slow Feature Analysis (SFA) (Wiskott
and Sejnowski, 2002) in a hierarchical network to model parts
of the visual system and the hippocampus. The system works
with raw visual data as its only input and operates on a systems
level rather than a neuronal level of abstraction. This means that
despite referring to it as a “network” and “units,” these terms
do not denote a set of individual neurons in a clearly defined
anatomical region. Instead the model is a self-organizing system
implementing the slowness principle to produce place cell firing
patterns, in an attempt to explain the computation within the
overall hippocampal system and not its mechanistic realization
by individual neurons. There is also no explicit representation of
grid cell activity in the model. While this is a valid approach—
place cells have been shown to work properly in the absence of
grid cell activity (Hales et al., 2014)—it is not entirely without
issue. We will address the matter of grid cells as well as the
role of path integration in our framework in the discussion
below.

To support our claim of the slowness principle being a
central element in hippocampal computation, we replicated six
experimental studies, performed on living animals, in simulation.
This allows us to compare real-life place cell measurements
with the activity produced by our network. Since our model is
aimed at the formation of a purely spatial code, we have focused
on studies based on (a) random/free exploration and (b) the
manipulation of spatial cues in the absence of the animals. These
are: two experiments on the effect of cue card manipulations
[rotation (Knierim et al., 1995) and removal (Hetherington and
Shapiro, 1997)]; two experiments on firing activity depending
on the animal’s direction [the linear track (McNaughton et al.,
1983; Dombeck et al., 2010) and an open field with directed
movement (Markus et al., 1995)]; and two experiments on
manipulating the borders of a familiar environment [morphing
(Leutgeb et al., 2005b; Wills et al., 2005) and scaling (O'Keefe
and Burgess, 1996)]. These experiments neither require the
animals to understand goal locations nor to memorize specific
sequences or timings. The chosen studies include results
that we would not necessarily expect from the theory of
SFA (Franzius et al, 2007), such as remapping to different
firing fields, or stable firing fields in unknown environments.
We also discuss the process of measuring place fields over
time and demonstrate how different stages of place field
development may be explained as mere artifacts of the sampling
process.

Methods

The model used in this work is a hierarchical network that can be
mapped to the visual cortex, entorhinal cortex, and the dentate
gyrus of the hippocampus proper. It works on a systems level of
abstraction and assumes the neural substrate to be sophisticated
enough to implement the required computations. In our case
these computations are based on one fundamental principle that
can be implemented via basic mathematical building blocks.

The Slowness Principle

For our work the essential processing paradigm is the slowness
principle. It states that more meaningful information within a
stream of data changes slower in time than less meaningful
information. As an example, consider noisy TV reception: the
flickering noise over the actual image varies as quickly as the
hardware of the TV is able to produce it. This is much faster than
any component of the actual scene you are watching, and thus
may be discarded without loss of meaningful information. The
slowness principle has first been applied to place field formation
by Wyss et al. (2006) where it was used in combination with
robotic agents. SFA is an algorithm implementing the slowness
principle (Wiskott and Sejnowski, 2002) and has been shown
to be applicable to a variety of problem cases (Escalante and
Wiskott, 2011) as well as being able to recreate plausible place
field firing in both the plain open field (Franzius et al., 2007)
and a wide range of other environments (Schonfeld and Wiskott,
2013).

Slow Feature Analysis (SFA)

The SFA algorithm is an implementation of the slowness
principle. It is an unsupervised learning algorithm that can
be trained to extract the most slowly varying components
of a continuous stream of input data. Formally: given a
multidimensional input signal x(¢) = [x;(¢), x2(), ..., 17,
SFA finds a set of functions g; (x), g2(x), ..., gk(x) such that each
output signal y;(t):= g;(x(¢)) varies most slowly over time, i.e.,

A (yi) i = (j/iz)t is minimal. (1)

Note that by this formal definition of slowness the slowest
possible signal is a constant value that does not change over time
and thus carries no information. To avoid SFA delivering such a
constant function as a result, as well as forcing it to not yield the
same signal more than once, the following three constraints are
defined for the output signals y;(t):

Zero mean:(y;); = 0. (2)
Unitvariance:(yiz)t = 1. (3)

(4)

Il
e

Decorrelation and order: Vi < j, (yi, yj)t

As a first step the SFA algorithm applies a quadratic expansion
to the set of input signals (cf. Escalante and Wiskott, 2013, for
alternative expansions that work well with SFA), and the resulting
set is whitened to satisfy constraints (2) and (3). The sought out
functions will be linear combinations of the expanded input set.
To compute these, the derivative of the data is taken and the
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covariance matrix thereof computed. The eigenvalue problem of
this matrix is solved and the resulting set of eigenvectors denotes
the directions of smallest variance within the sphered signal. The
elements of each eigenvector now denote the coefficients of the
functions g;(x) while their respective eigenvalues denote the A-
values of the extracted slow feature. An alternative version of SFA
is described in Berkes and Wiskott (2005); whitening and the
standard eigenvalue problem are in this case combined into one
step which solves only a single, generalized, eigenvalue problem.

Hierarchical Network

In our experiments SFA is trained with the visual stream of a
simulated rat that explores a virtual environment in a random
fashion. Single frames of this data consist of 320 by 40 pixel
images. In the azimuthal dimension each pixel column represents
1° of the full 320° field of vision (FoV) of the rat (Hughes, 1979),
while the 40 pixel range in the vertical dimension represents
only a slice of the rat’s full vertical field of view. Since wall
segments used in the (physical and simulated) experiments
do not vary in the vertical dimension, the narrower 40 pixel
range still maintains the relevant visual information and helps
to reduce the dimensionality of the input. While SFA is able
to handle an arbitrarily high number of input dimensions in
theory, in practice the algorithm suffers from the curse of
dimensionality: SFA requires unreasonable amounts of resources
when processing high-dimensional input such as the visual data
of our experiments. Specifically, the computational complexity of
the SFA algorithm is of order O(NI?> + I*), with N denoting the
number of samples and I the input dimensionality (Escalante and
Wiskott, 2013). We therefore resort to hierarchical processing,
which greatly reduces overall computational costs. To construct
the hierarchical network from a set of SFA-instancing nodes
we use the Modular toolkit for Data Processing (MDP) (Zito
et al., 2009). Arrays of SFA nodes form the different layers of
the network, and each node processes the data of a predefined
receptive field over time. Neighboring fields are set up to overlap
each other by half of their size to enable detection of features
larger than the size of a single field.

Figure 1 depicts the structure of the SFA network used in
our simulations. The initial three layers are formed from three
individual SFA nodes that are each cloned into multiple copies to
form their respective layer. The cloned nodes will each perform
SFA on their respective input data but share the initial training
data. This can be done since we do not expect significant
differences in the input statistics at any specific area of the visual
field, and further reduces training time of the network. Of the
three SFA layers, the initial layer consists of a two dimensional
array of 63 by 9 clone nodes featuring a 10 by 8 pixel wide
receptive field and 32 output channels each. It works directly on
the raw image frames and extracts the most slowly varying signals
to relay them to the next layer. Berkes and Wiskott (2005) have
shown that the features learned by such a layer resemble those
measured in cells of the primary visual cortex. The second layer
is defined as an 8 by 2 array of nodes (14 by 6 input channels
each) and processes the abstract features provided by the previous
layer. The third SFA layer consists of a single SFA instance that
integrates all of the features detected over the whole input range

(0000000000 ]

FIGURE 1 | Overview of our hierarchical Slow Feature Analysis (SFA)
network. SFA nodes in the lowest layer directly work on our
software-generated image frames. Each node scans a predetermined
receptive field that overlaps 50% with directly adjacent ones. The second layer
works on the pre-processed output of the first layer. The third layer consists of
a single SFA node integrating the output of all layer-2 SFA nodes. The last layer
is one node performing independent component analysis (ICA) to perform
sparse coding on the final SFA output.

by the previous two layers. It can be mapped to the entorhinal
cortex and yields the most abstract features extracted from the
input data stream. The output signals of this node, however,
do not yet resemble clearly localized place field firing patterns.
The three initial SFA layers are thus followed by a fourth layer,
made from a single MDP node performing sparse coding via
independent component analysis (ICA) (Hyvirinen, 1999). This
additional step is linked to the dentate gyrus, the hippocampal
area one synapse downstream of the entorhinal cortex, where
experimental studies have reported sparse firing patterns (Jung
and McNaughton, 1993; Chawla et al., 2005).

It is important to note that this network is neither changed
nor modified for any specific experiment presented in this
text. In fact it is even unknown to the SFA hierarchy that a
spatial navigation task is being presented and no heuristics are
implemented to make use of any such a priori knowledge. The
specific parameter values described above are primarily chosen
for a division of labor that agrees with the available hardware.
The SFA algorithm merely extracts the slowest varying features
it is able to detect within a given input stream. If these patterns
correspond to the neuronal spiking behavior in real place cells
and react qualitatively similar to changes in their input data—
i.e., what the rat visually perceives during exploration—we may
assume slowness to be an underlying computational principle of
a population of such neurons.

While training a hierarchical SFA network instance is fairly
time consuming, a fully trained network works in close to real-
time and is able to produce its firing patterns without any
significant processing requirements. In order to reduce the time
it takes to fully train a network we make use of a generic training
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phase. Generic training only trains the first/lowest two SFA
layers of our hierarchy and does not use visual data from the
actual experiment but rather a set of generic sequences, such as
randomly navigating a small set of different mazes featuring a
variety of textures and geometric layouts. This enables the lower
layers of the network to become familiar with common features
of our landscapes, like basic edges, corners, and the horizon (if
visible). During the actual experiments only the final two layers
are being trained with the data generated during the experiment.
Not only does this generic training reduce the overall training
time—since only a small remaining part of the network needs
to be trained—it is also a much more plausible way to train a
biologically inspired model. The visual system does not need to
re-learn how to recognize edges with every new room we enter,
but instead simply makes use of edge detecting cells that have
developed over time.

Software Framework

The training data for our network instances is generated by
our freely available Ratlab software framework (Schonfeld and
Wiskott, 2013). It allows us to set up any kind of maze layout
that is based on a single level (i.e., contains no stairs or ramps).
The foraging behavior of the virtual rodent is defined by a
number of variables that allow for unguided exploration as well
as following user specified waypoints, which is used in two of the
six experiments described below. In experimental studies with
real animals, random search patterns are generated by tossing
food pellets into the mazes. In our model the rat randomly
chooses a new direction within its field of view, and employs
an additional momentum parameter to smooth its path and
avoid unrealistically hectic behavior (Franzius et al., 2007). When
instructed to follow a specific path the virtual agent does not
move from waypoint A to B in a direct line, but includes a
randomized deviation from the optimal path to model a more
plausible behavior yielding more realistic input data for our
model.

The overall software framework offers a pipeline of four
distinct steps that can be interchanged and concatenated to
replicate a wide range of experimental studies (cf. Schonfeld
and Wiskott, 2013). Once the setup is defined by the user, the
software places the virtual rat within the maze and records
the visual stream of the agent while it performs the predefined
experiment. The recorded data is then used to train a hierarchical
SFA network as described above. The trained network is
then sampled over the whole environment and automatically
generates the plots presented throughout this work. To replicate
the chosen experimental studies we reconstructed the respective
environments as closely as the software permits. Maze layouts
are matched to scale, similar textures and cue cards are being
used, and the background consists of either a closed curtain or
an office panorama at a distance (resulting in a realistic parallax).
Since the simulated field of view is very narrow in the vertical
dimension, however, wall height is usually set to a lower value in
order to allow the agent to peek over the walls just like its real
life counterpart. Figure 2 shows an example screenshot from our
software after concluding a simulation run; it includes a graph of

FIGURE 2 | Screenshots of our software tool. (A) Rendered overview of a
simulated square environment featuring a white cue card and the position of
the virtual animal marked by a black arrow. (B) Exemplary image frame
produced by the software; a sequence of such 320 by 40 pixel frames is used
to train our network. (C) Trajectory of a virtual rat running for 10 simulated
minutes within a circular environment. (D) Trajectory of a real rat exploring a
circular environment of the same radius for 10 min of real time. Note that the
virtual agent runs at a constant speed of 20 cm/s and does not slow down or
stop as real rats do. Thus, simulated rats tend to cover more ground than their
real-life counterparts in the same amount of time.

the trajectory of the artificial animal as well an exemplary image
frame depicting the view of the agent.

Experimental Protocol

For all simulations presented in this paper the identical base
network was used. This network underwent a generic training
phase consisting of a set of 100.000 image frames recorded
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from randomly traversing a variety of virtual environments (a
rectangular box, a multiple arm maze, a large square littered
with a multitude of cube-shaped obstacles, and a T-maze that
also included several such obstacles). For each simulation trial
replicating an experimental study, only the uppermost SFA and
the top ICA layer were trained with the actual visual data
from the experiment considered. The results presented are taken
from a single simulation run per experiment, which yields 32
output signals/cell recordings per trial. Of these signals we first
selected the ones most similar to the cited experimental results for
direct comparison. Where cells depicted a qualitatively different
behavior, we selected a range of representative cells from our
simulations. This also includes examples of cells with unusual or

Track 1 Track 2 Track 3

30sec

1min

2min

4Amin

8min

FIGURE 3 | Development and quality of firing fields as produced by our
hierarchical SFA network. Each row depicts the activity of three cells after
exploration of a square environment (white cue card at the north wall) for 30s
and 1, 2, 4, and 8 min of simulation time. Since SFA is not an online algorithm
that can be stopped and continued, five individual networks were trained anew
along incrementally longer sections of the same overall trajectory. The cells
depicted along each column are thus not the same output signals, but rather
hand-matched signals produced by the five different SFA networks. This
matching was done in order to help compare the quality of place fields over
time, and it can be seen that stable and distinct fields develop within 2 min of
simulation time.

“misbehaving” firing patterns, if such a behavior was produced
by the network. For each result, cell activity is plotted on the
commonly used blue-to-red (low to high activity) jet scale. If the
selected experimental study has presented its data in a different
graphical style we show our results in both their individual and
our default format. Note that in contrast to the cited studies,
the recorded activity from our model does not correspond
to neuronal spikes per time unit. Instead it is a scalar value
representing the slow feature as extracted by SFA. This value is
not bounded by the algorithm itself, but tends to stay in the
reported ranges (see below) unless the network failed to extract
a spatial representation. In this case the activity is often erratic
and clearly without localized place fields for any output signal
component. It is possible to use the SFA output signals to emulate
spikes over time (see below), but not only does this process yield
no new information, it also results in a reduced resolution when
presenting the resulting data.

Data Analysis

To quantify the results produced by our network, we measured
both directional consistency and spatial consistency in terms of
the numbers of distinct firing areas for a cell during the different
trials. Directional consistency was computed by sampling the full
environment with a fixed head direction (N, NE, E, SE, S, SW,
W, NW) and computing the average correlation of those fixed-
direction plots with the average activity over all views. The data
is presented in histograms to show how many cells were firing
in a consistent manner independent of the viewing direction.
The number of active fields was computed by segmenting firing
activity into connected areas of activity above 50% of the cells
maximum activity. Activity fields of 25 pixels or less—an area of
5 by 5 cm—were discarded. The data is presented in histograms
to show how many cells featured a specific number of firing fields
(including zero).

Simulations

In the following we present seven different experiments, six
of which were modeled after previously published studies with
real-life animals. While exploring the various environments, the
virtual agent was moving at a constant speed of 20 cm/s, without
the occasional brake that real-life animals are known to take.
Therefore, the virtual rodents in our simulations tend to cover
more ground than real animals, whose average moving speed
comes down to about 15 cm/s. Though artificial breaks could be
added to the simulations, we would not expect this to affect the
spatial representation, as long as the breaks happen as randomly
as they do with real-life animals. The individual protocols of the
actual experiments are as follows.

Sampling and Development

To examine how place fields are measured over time we set up
two simulations: (A) Training of a virtual agent for 8 min in a
60 x 60 cm box built from uniform gray walls with the north wall
covered by a white cue card. Walls were high enough to prevent
the agent from being able to perceive any surroundings of the
maze. Place field activity was sampled over the full environment
after 30s and 1, 2, 4, and 8 min of exploration time. Since
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SFA cannot be paused and continued we trained five individual
networks with successively longer segments of the same overall
trajectory. Furthermore, while SFA yields output signals that are
ordered by their slowness value, this order is lost when the signals
are processed by the uppermost ICA layer of the network. Signals
were matched by hand to reconstruct place field development
over time. (B) Training of a virtual agent for 8 min in a circular
environment also built from uniform gray walls and the northern
90° of arc covered by a white cue card. The radius of the arena
was set to 40cm and the walls again prevented the agent to
see the surroundings of the enclosure. Place field activity was
sampled while the agent explored the arena after completion
of the training phase, but only taking into account the space
actually visited by the agent after 30s and 1, 2, 4, and 8 min,
respectively. Since this is much closer to measuring place fields
in real-life studies, the data from this simulation is also processed
as it would in a real-life study: SFA output values are used as firing
probabilities to generate artificial neuronal spikes; these are then
accumulated in the spatial bins of a regular grid spanning the
environment and smoothed over. Note that the need for manual
matching described above does not apply in this case, as the
training of the network training was not split into different parts.

Cue Card Rotation
This experiment is modeled after Knierim et al. (1995). A circular
arena of radius 76 cm is explored for 8 min. Walls are of a uniform

gray and a 90° arc of the walls is covered by a white cue card.
The arena is surrounded by a black curtain to block out any
other visual cues. The network is trained with the visual input
stream recorded during the exploration phase. Afterwards the 32
network output signals are sampled over both the original arena
as well as a variation where the cue card is rotated by 90° along
the wall.

Cue Card Removal

This experiment is modeled after Hetherington and Shapiro
(1997). A 83 cm square build from uniform walls with three white
cue cards of length 12, 40, and 69 cm attached to the east, west,
and south wall, respectively. The apparatus does have a ceiling
which for us translates into walls high enough to prevent the
agent from looking over them. The virtual agent explored the box
for 12 min, after which place fields were sampled multiple times
over the whole environment, with different subsets of cue cards
removed for each sampling run.

Linear Track

This experiment is modeled after McNaughton et al. (1983) and
Dombeck et al. (2010). A basic linear track of 80 by 12 cm was
constructed that bears no distinguishing features but allows the
agent to look over its walls to see a surrounding lab environment
to orient itself. The virtual agent was instructed to traverse the
linear track from one end to the other for 5 min. Traversal control

Cell 1

Bin activity Smoothed

Trajectory

Trajectory

Osec

Cell 2

Bin activity

Cell 3

Smoothed Bin activity Smoothed

Trajectory

min

.
’

2min

4min

\

8min

FIGURE 4 | Sampling of three already established place fields over
the course of an 8 min long trajectory. Despite the place fields being
stable from the beginning, they appear to change position and/or split up
depending on the coverage of the terrain over time. For each cell three
columns are shown; from left to right these are: artificial spikes along the
agent’s trajectory, based on the activity values produced by our network;

2.0
2.0)
| 4.5 :
‘ :
49
‘. | AE

5.0)

accumulated spikes collected in a grid of rectangular bins over the
environment; the smoothed bin data as it is commonly presented in
experimental papers. The activity was plotted after 30s and 1, 2, 4, and 8 min
of exploration; the number in each row denotes the peak firing activity of the
corresponding cell. It can be seen that even though the place fields are stable
from the beginning, measurements take time to depict stale firing fields.
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of this path included a noise term to prevent the agent from
running along the exact same trajectory during each iteration.

Rhombus Track

This experiment is modeled after Markus et al. (1995). A
circular environment of radius 38 cm was traversed along a
rhombus-shaped path for 6.5min. The path again included
random variations to avoid identical visual input for each round
along the preset path. Textured walls and a visible laboratory
background provided a multitude of available visual cues for

L 3O

3@

FIGURE 5 | Example of a place field sampled with the agent looking in
eight different directions (N, NE, E, SE, S, SW, W, NW). The center image
shows the average activity over the surrounding directional plots. Both in
experimental studies and our simulations, place fields are found to be largely
invariant to the orientation of the (virtual) agent.

Simulation

P

Experiment

i

Cell 1 Cell 1

FIGURE 6 | Rotation of a cue card attached to the wall of an otherwise
featureless cylindrical environment. Left: activity of two cell recordings
[Reprinted by permission from Society of Neuroscience: Journal of
Neuroscience (Knierim et al., 1995)]. Right: activity of two cells as produced
by our computer simulation. In both experiments and simulations the cue card
was rotated by 90° after familiarization and the spatial representation shown to
be bound to the single available visual cue.

orientation. After training, place fields where sampled while
following the rhombus-path in both a clockwise and counter-
clockwise fashion.

Morphed Environment

This experiment is modeled after the experiments presented in
Leutgeb et al. (2005b) and Wills et al. (2005). The virtual agent
explores both a 62 cm square box and a circular arena with a
39 cm radius for 10 min each. Walls are of a uniform color and
there are no other distinguishing features within the arena itself.
To orient itself the agent is able to look over the walls, where
a laboratory background provides distant cues for orientation.
After the training phase place fields are sampled over both
environments as well as four intermediate stages that represent
the enclosure morphing from the square box to the circular arena.
The spatial specifications for the in-between stages of the arena
were duplicated from Wills et al. (2005).

Scaled Environment

This experiment is modeled after O’Keefe and Burgess (1996).
The simulated rat explores a 120 by 60 cm rectangular box for
10 min. The arena is built from uniform walls that bear no
distinguishing marks but are low enough to allow the agent to
look over them and orient itself using the global cues of the
surrounding laboratory environment. After training, place fields
are sampled over the whole arena as well as three additional
environments that are constructed in the same way but differ in
their dimensions (60 by 120 cm, 60 by 60 cm, and 120 by 120 cm).

Results

Sampling and Development

To examine the (a) development and (b) sampling issues of
place fields we present the results of two different simulations.
(a) Figure 3 shows the development of three different place
fields after 30 s and 1, 2, 4, and 8 min of exploration time. It can
be seen that the hierarchical network produces distinct spatial
fields of activity as early as within 2min of exploration in an
unknown environment. (b) Figure4 shows the emergence of
three fully established place fields while the (virtual) animal
randomly traverses the environment for 8 min. Network activity
is depicted after 30s and 1, 2, 4, and 8 min of random foraging.
Despite the place fields being established from the beginning,
Figure 4 shows that it can take up to 8 min before their actual
shape becomes clearly visible. It can also be seen that during this
time the incomplete sampling leads to the place fields grow (cell
1), split and change position (cell 2), or lose alternative firing
locations (cell 3). In addition, Figure 5 shows the firing pattern
of a simulated cell as the arena is being traversed while the agent
is consistently looking in one of eight different directions. As can
be seen, place fields produced by our model fire independently of
direction when being trained by random exploration in the open

field.

Cue Card Rotation
Figure 6 presents the activity of two representative cells before
and after the rotation of a white cue card in an environment that
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lacks any other distinguishing cues. Results from our computer
simulations are shown next to the measurements results of real-
life animals as reported in Knierim et al. (1995). In both cases

the spatial representation can be seen to follow the rotation of
the cue card. Directional consistency values for fixed-direction
activity over the arena are clustered closely around 1.0, while all
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FIGURE 7 | Left: directional consistency of the artificial cell population during cue rotation. Right: spatial consistency of the population.
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(Hetherington and Shapiro, 1997)]. Middle column: activity of the closest
matching cell as produced in our simulations. Right column: the same cell
activity as depicted by the center column formatted with the jet-scale heat
map used throughout this work for coherence.
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FIGURE 9 | Cell activity in a square environment with three
removable cue cards (red) of different size. Each row shows
the activity of a single cell during the removal of different subsets
of the available cues (indicated at the top). Removing the smallest
cue affects cell activity the least, with only place fields located
close to the missing cue displaying a significant reduction in firing
rate. Removal of the medium sized cue card leads to nearby firing
fields displaying a distinctive loss in firing activity, while fields
positioned further away are impacted considerably less. Removing
the largest cue card has the largest overall effect on place field
firing. All fields display an explicit reduction in firing activity with
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fields located near the cue being affected the most. Not all cells
behave in the predicted way though and some try to compensate
the loss of their associated cue by relocating to a position
featuring a similar visual experience (see last row for an example).
The rightmost two columns show cell activity with two cue cards
removed. In this case most place fields not in direct contact with
the single remaining cue card either vanish or develop multiple
firing fields which usually are mirrored versions of the original field.
This occurs especially in place fields that are located in
geometrically distinct but visually indistinguishable locations, such as
the corners or the center of the square arena (not shown here).
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cells but one feature a single distinct field of activity (Figure 7).
Since the model is based solely on visual information, this result
is not unexpected but does confirm a basic ability of the model to
generalize: the cue card has to be recognized via edge and color
information rather than by memorizing a distinct pixel pattern.
Such patterns depend on location and perspective and change
when the cue card is rotated.

Cue Card Removal

When removing one of three available cue cards in a square box,
Hetherington and Shapiro (1997) report that place field firing
patterns change depending on their relation to the removed cue.
Fields closer to a missing cue have been observed to display
a greater reduction in firing rate than fields near a cue that is
still available. Figure 8 shows the firing patterns of a cell in the
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FIGURE 10 | Directional consistency of the overall cell population
during cue removal. Each plot depicts cell activity in a different version of
the familiar environment. Inlets in the top left corner depict which cues

No. of cells

8.0 0.2 0.4 0.6 0.8 1.0
Correlation of directional & average activity

(marked red) were still available during sampling of the environment. The
order from smallest to largest change in the visual environment is indicated
by grew arrows in the bottom right corner of each plot.
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original experimental study (Hetherington and Shapiro, 1997)
and a side by side comparison with the activity of a similarly
located place field in our simulation framework. Figure 9 shows
the activity of a range of our simulated cells as well as the reaction
of the network to the removal of two cue cards at once. As
can be seen, our model replicates the findings of Hetherington

and Shapiro (1997) and place fields close to removed cue cards
tend to be affected more than fields located further away. We
also observed cells that reacted in different ways though, such as
developing additional, usually symmetric, firing fields; cells that
try to compensate the loss of their associated cue by relocating to
a position featuring a similar visual experience (see last row for
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during cue removal. Each plot depicts cell activity in a order from smallest to largest change in the visual environment
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cards. Inlets in the top right corner depict which cues (marked plot.
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an example); and cells that were specifically anchored to a single
cue card. Such fields ignore the absence of cue cards they were
not bound to and almost vanish upon removal of their associated
cue. Furthermore, removing the smallest cue affects cell activity
the least, with only place fields located close to the missing cue
displaying a significant reduction in firing rate. Removal of the
medium sized cue card leads to nearby firing fields displaying a

distinctive loss in firing activity, while fields positioned further
away are impacted considerably less. Removing the largest cue
card has the largest overall effect on place field firing. All fields
display an explicit reduction in firing activity with fields located
near the cue being the ones affected the most.

If two cue cards are removed at the same time, fields close
to the remaining cue remained intact, though sometimes with a

FIGURE 12 | Place field activity for three cells located in the direct
vicinity of cue cards to be removed later. For each cell, the first row
depicts field activity with all cue cards present and indicates the relevant cue

card. The lower rows depict cell activity while looking at or away from the
relevant cue card; arrows next to these plots indicates the head direction
during the sampling process.
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FIGURE 13 | Firing activity of a range of cells while traversing a
narrow linear track in both directions. Top row: cell activity as
recorded in animals [Reprinted by permission from Macmillan Publishers
Ltd: Nature Neuroscience (Dombeck et al., 2010), copyright 2010].
Bottom row: cell activity as produced by our simulations. Left and
right images depict activity while the agent moves to the right and left,
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respectively. In both, the experiment and the simulation, place fields
cover the whole track and mostly are only active while the rat/camera
faces a particular direction. Note that no simulated place fields are
active at the very ends of the linear track, as the virtual animal is told
to stop a specified distance before hitting any wall to simulate the
extent of a physical body.
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reduction in firing rate especially when the last cue is one of the
smaller ones. Place fields at geometrically distinct positions, like
the center of the square environment, either remained intact or
split into multiple firing fields according to their position. Fields
in corners that could no longer be distinguished due to missing
cues became active in multiple corners albeit with significantly
reduced firing rates. Place cells that were neither anchored to
the remaining cue nor placed in geometrically distinct locations
usually vanished almost completely.

Data analysis for all cases shows directional consistency to
be higher for environments closer to the initial, familiar state.
With the removal of the learned cues, orientation becomes more
and correlation values drop accordingly—with larger cues again
influencing activity patterns more than smaller cues (Figure 10).
The spatial consistency of the cell population can be seen to be
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FIGURE 14 | Directional consistency of the overall cell population
within the linear track.
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FIGURE 15 | Firing activity in the open field after animals were trained
to follow a rhombus-shaped path in both a clockwise and a
counter-clockwise fashion. Left: firing patterns of two cells as the open
field is traversed by animals along the trained path in two orientations
[Reprinted by permission from Society of Neuroscience: Journal of
Neuroscience (Markus et al., 1995)]. Right: firing patterns of two cells as
produced by our simulations. Both cases depict direction sensitive activity
despite the (virtual) agents navigating in an open field where firing is usually
reported to be invariant to orientation.
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FIGURE 16 | A representative sample of firing activity in the
rhombus-track experiment as produced by our simulations. Each row
depicts the firing activity of one cell during both clockwise and
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FIGURE 16 | Continued

counter-clockwise traversal of the open field along the pre-trained
rhombus-shaped path. All cells can be seen to be sensitive to a specific
orientation and lose their distinct firing fields when traversed in the other
direction.

influenced in a similar way: cells tend to either lose distinct firing
areas or acquire another one, depending on which subset of cues
is removed (Figure 11).

Cells in the direct vicinity of a single removed cue also behaved
differently depending on whether the virtual rat was facing the
cue or not. We assumed this to be the case, since the visual field
should not change much when right next to a cue but facing
away from it—while activity should be impacted when facing a
missing clue at a close distance, since in this case even a small cue
card would fill a large section of the visual field. Of the 32 cells
recorded, only three cells were located directly next to one of the
two smaller cue cards, and their activity in relation to orientation
is depicted in Figure 12.

Linear Track

Figure 13 shows the firing activity of cells while the agent follows
a long narrow corridor. In their study, Dombeck et al. (2010)
report two distinct properties of the examined fields: (a) they
are sensitive to the direction the animal/agent is facing and (b)
cover the full length of the linear track. Figure 13 depicts these
for both the original recordings and our simulation results. Of the
32 simulated cells, 11 cells did not display any significant firing,
9 cells showed clear direction sensitivity, and 12 cells featured
bi-directional activity (two of which featuring two distinct firing
locations). Compared to the distribution of cells reported in
McNaughton et al. (1983), our results match the percentage of
cells that were discarded due to inactivity (34%), while of 25 cells
recorded in CA1, McNaughton et al. (1983) reports that “(...)
14 were subjectively classified as highly directional, 6 relatively
non-directional, and 5 were ambiguous.” Figure 14 depicts the
directional consistency of the overall population, which peeks at
zero as expected.

Rhombus Track

In Markus et al. (1995) animals were trained to follow a
rhombus shaped path within an open environment. Measuring
the animals’ place code revealed directional dependent firing.
Figure 15 shows one such cell as reported in Markus et al.
(1995) in a side by side comparison with a hand-picked cell
from our simulation. Figure 16 shows a number of representative
cells from our simulation results and their firing activity when
the animal follows its trained path in a clockwise and counter-
clockwise fashion. Of the 32 cells measured in our simulation,
16 cells showed clear place fields in one direction and little
to no activity in the other; 8 cells showed clear fields in one
direction and significant but unstructured activity in the other;
while the remaining 8 cells showed either unstructured activity in
both directions or stayed silent. Figure 17 shows the directional
consistency of the cell population, which for this second direction
sensitive setup again peeks at zero.
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FIGURE 17 | Directional consistency of the overall cell population
within the area covered by the virtual agent during training in the
rhombus track experiment.

Morphed Environment

Both Wills et al. (2005) and Leutgeb et al. (2005b) studied the
effects of morphing the environment from a familiar square box
to an also familiar circular arena, with the in-between morph
states being unfamiliar to the animals. Figure 18 shows the
activity of two representative cells over the whole arena during
the different morph stages. In our simulations, cells usually
have one distinct firing field in either the box or the circular
arena. Field activity stays in the same location (as far as the
geometry of the maze layout permits) and gradually fades out
as the environment morphs from a rectangular configuration
into a circular one and vice versa. Figure 19 shows how this
forms the statistics of the overall population: in both the square
box and circular arena around half of the cells show directional
consistency. It can also be seen how this value drops for all cells
during the in-between morph stages of the arena. Similarly, in
both the square box and the circular arena around half of the
population shows a single firing field, while the other half remains
silent (Figure 20).

Stretched Environment

In O’Keefe and Burgess (1996) animals were trained to become
familiar with a rectangular environment and then have their place
cells being recorded from while exploring a number of differently
scaled versions of the original arena. In their study, they reported
a range of observations: fields were seen to stay at fixed distances
from certain sections of the walls, stay at relative positions
within the overall maze, and getting pulled apart when the maze
was being stretched out. Figure 21 shows a number of results
reported in O’Keefe and Burgess (1996) as well as a collection of
selected cell activity as computed by our model, including one cell
with a striking resemblance to the one reported in O’Keefe and
Burgess (1996). The images shown were chosen to demonstrate
the observed range of behavior, including the classes reported in
O’Keefe and Burgess (1996). All 32 cells simulated in our model
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Cell 1

FIGURE 18 | Firing activity of cells that were trained in both a
rectangular and a circular environment: each of the two rows depicts
the firing activity of one cell as the environment morphs from a

rectangular layout to a circular one. Firing rates decrease steadily as the
environment morphs into the shape a cell is not anchored to while the
network attempts to keep the fields in the same positions.
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FIGURE 19 | Directional consistency of the overall cell population in the different stages of the environment-morph experiment. Each plot depicts a
different stage as indicated by the respective diagrams in the top left corner of each plot.
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showed clear spatial activity in the original 120 x 60 cm setting
as well as in the morphed versions—i.e., none of the cells broke
down into an incoherent excess of activity, which usually happens
if the model is unable to properly process its input. For almost
all of the cells the activity in the morphed boxes can be labeled
as either belonging to one of the categories reported in O’Keefe
and Burgess (1996) or to one of the additional classes observed in
our simulations: fields that rotated to stick with the same relative
position to distinct landmarks (such as corners, for example);
fields splitting into two, usually mirrored fields; and fields that
relocated (often to the center of the new environment and

usually observed in the square variants). While the firing patterns
stayed coherent in almost all 32 cases, two units displayed an
overall loss of localized firing, with different “mutations” of the
original field in each of the stretch variants. Figures 22, 23 depict
the statistics of this behavior for the overall population. While
directional consistency is close to 1.0 for the familiar 120 x 60 cm
environment, this value drops for most cells in the scaled versions
of the arena, with the large 120 x 120 environment being the most
confusing to the network. The number of firing fields behaves in
a similar fashion, and cells can be seen to fall below 50% of their
familiar-setting peak activity in the unfamiliar settings.
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Discussion

In this section we put our results in context and discuss
our hypothesis of the slowness principle being a fundamental
building block in hippocampal processing. Afterwards we look at
the shortcomings of the model in its current state, and talk about
the role of path integration and grid cells.

Place Field Development

In Figure3 we have shown that our model produces stable
firing fields after only 2min of exploration. In the real-life
experiments this process is usually reported to take significantly
longer, generally around 8 to 12 min. In order to reconcile this
difference in development time, we ask: assuming animals would
be able to create a stable spatial representation within 2 min,
would we be able to measure this? Figure 4 shows the answer to
this question to be no. We can see that even with stable firing
fields from the start, it is very difficult to verify their position
and size until the agent has sufficiently sampled the environment.
In a suitably small and plain arena, as they are commonly used
in real-life experiments, we show that this process takes about
8 min—note, however, that due to the higher average speed of our

virtual agents, real-life rats might need up to 25% more time to
fully sample an environment. Additionally, we observe the same
phenomena that are reported when the “development” of real-life
place fields is being tracked: fields seem to shift position, split, and
merge. As can be seen, we do not need to look for a complicated
mechanism that is responsible for this behavior, since we can
explain it as a logical consequence of the sampling process.

Place Fields and Cue Control

It is well-established that prominent visual cues help to anchor
the spatial representation of the environment, and this is also
the case in our simulations (Figure 6). Removal of one or more
cues leads to remapping of cells, as demonstrated in real-life
animals by Hetherington and Shapiro (1997) and our simulations
(Figure 9). Hetherington and Shapiro (1997) suggest that the
remapping is based on a distance measure: “(...) evidence that
[Place Cells] encode information about distances between the
organism and environmental stimuli.” While it would be difficult
to discard this hypothesis based on our results alone, it is possible
to propose an alternative that does not require the addition of a
distance metric in order to explain the observed results: assuming
all cues are of the same size, then a distant cue takes up less space
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FIGURE 21 | Firing activity of a variety of cells within the original
environment they were trained in (marked by a white star in A) and
differently scaled versions of it. (A) Firing of a single cell as reported in
O’Keefe and Burgess (1996) (left) and a handpicked, similarly behaving cell as
produced by our computer simulations (middle). The same virtual cell is
depicted to the right in the original format used by our software for comparison
reasons. (B) Firing activity of four different cells recorded from rats [Reprinted
by permission from Macmillan Publishers Ltd: Nature (O’Keefe and Burgess,
1996), copyright 1996]. (C) Firing activity of eight different cells as produced by
our simulations.

within the field of view (FoV) than a closer cue. Therefore, if
a place field is established right next to a prominent cue, this
cue will almost always take up a significant amount of the very
wide FoV of the rat. It follows that the removal of a closer cue
changes the visual input at this location more than the removal
of a cue that is located further away. A network that associates
visual input with location will thus significantly reduce the firing
if a cue close to a firing field is removed. This explanation of the
observed remapping is obviously still based on distance, but now
the notion of distance is something to be concluded from the
difference in firing upon cue removal instead of being required

to compute that difference in the first place. This hypothesis has
two implications: (a) when directly looking away from a nearby
cue, place field activity should be impacted a lot less if the cue is
removed, since the cue takes up less, if any, space within the FoV
in either case; (b) a larger cue should impact place field activity
even if it not close, since it takes up significant space in the FoV
in both cases. The former can be seen in Figure 12, the latter in
Figure 9. In a more abstract sense, this suggests that the deciding
factor to explain the described observations is to be found in the
input statistics, and not an additional mechanism like distance
measurement.

Directional Dependency

Place cell activity that depends on the direction the animal is
facing has been known for some time. The linear track has been
proven a reliable method to investigate this behavior, as shown in
McNaughton et al. (1983) where it was observed in the arms of a
multiple-arms apparatus, or as reported in Dombeck et al. (2010)
where mice were held in position on top of an air-cushioned
ball and ran along a virtual track projected into their field of
view. Our own simulation setup took cues from both of these
studies, and in all three variations we can see place cell activity
that depends on the head direction of the animal, as shown in
Figure 13. Such directional specificity is usually not observed
in rats that randomly explore an open arena. Presumably this
is because, over time, every location is traversed from different
angles and thus overlapping views can be associated with the
same location—and with the rat’s wide field of view, most visual
impressions at the same location can be expected to overlap. It
should thus not be the layout of an environment that leads to
place cells being sensitive to the animal’s orientation but rather
the agent’s movement pattern and thus the statistics of the visual
input. This idea is supported by the study by Markus et al. (1995)
where animals were trained to follow a rhombus-shaped path
on the floor of a cylindrical platform without walls. Place field
activity was then measured while the animals followed this path
in both a clockwise and counterclockwise orientation. Despite no
further geometry obstructing the animal’s view, clear directional
dependent firing was shown both in their original study with
real-life animals and our virtual version of it (Figure 16).

Remapping in Morphing Environments

Re-arranging a familiar environment is a different class of
spatial modification compared to the modification of cues within
an otherwise unchanged arena. Two central questions may be
addressed in this fashion: (a) At what point does a familiar
environment become unfamiliar enough to be judged a different
environment and thus warrant global remapping? (b) How do
cells adapt to subtle but successively increasing changes of a
familiar environment; and does it happen gradually or suddenly?
The study of O'Keefe and Burgess (1996) examines the first
of these questions and reports remapping of place fields that
seems to follow clear patterns: place fields stick with both relative
and absolute spatial features such as corners or stretching along
walls, and relocate appropriately in scaled versions of the original
environment. Our simulation results behave in a similar way
(Figure 21) and support the hypothesis that, despite clearly being
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recognized as not the same, scaled environments are not treated
as entirely different. The spatial representation upheld by the
animals’ place cells can thus be adapted and re-used and does not
have to be acquired anew.

To address the second question, both Wills et al. (2005) and
Leutgeb et al. (2005b) trained animals in two distinct arenas—
one square and one circular—before measuring their place cell
activity in a number of intermediate stages. However, while Wills
et al. (2005) report a sudden shift in the place cell’s spatial
representation from one of the intermediate stages to the next,
Leutgeb et al. (2005b) observe a gradual shift in firing activity
from the first environment to the last. Despite a thorough
discussion, (Leutgeb et al., 2005b), as the later of the two studies,
is unable to point to a single distinguishing feature that differs
from one experiment to the other and would help to explain this
divergence of results. Therefore, it is difficult to judge whether
our own results match the “correct” real-life recordings. As can
be seen in Figure 18, firing activity in our network would seem
to suggest that a gradually shifting representation is supported
by our theoretical work. However, the Wills et al. (2005) study
originally set out to find evidence for pattern separation in the
place cells of area CA3 due to their recurrent connections—which
would predict the sudden shift in activity that they do observe.
Because of this, comparing the output of our model to their
measurements directly is problematic, since our network lacks
any kind of recurrent connectivity. The gradual shift observed
in our simulations would lead to a sudden shift if it was taken as
the input to a second network featuring recurrent connections.
As long as activity stays above a certain threshold, recurrent

connections would reinforce firing activity and thus allow the
network to stay in this particular attractor state. Dropping below
such a threshold would, by the same reasoning, force the network
into a different attractor state, where the formerly active cells now
become silent.

Grid Cells

In this paper we have shown how a computational model can be
based on visual input alone and produce biologically plausible
place field activity in a variety of experiments. Our model does
not include a path integration system, however, nor does it take
grid cell activity into account. This is an unusual approach in a
field where a lot of work is dedicated to investigating the issue
of how exactly grid cells interact with place cells. It is widely
assumed (Burgess and O’Keefe, 2011) that these two systems, one
based on path integration and one based on visual cues, work
together to facilitate the full navigation abilities of rodents. We
consider the interplay between these two systems as supportive
rather than strictly required. The primary benefit of these systems
cooperating is not to enable each other in the first place, but
to compensate for their corresponding weaknesses. Navigating
with visual cues alone will fail in darkness, for example, while
depending on path integration alone will confuse the agent due
to the accumulating error in the motor system. Working spatial
representations without grid cell input are supported by Hales
et al. (2014), who have shown that place cells can operate in the
absence of functional grid cells, and Brandon et al. (2014), who
have shown that new place field representations are developed
and retained in unfamiliar environments during the inactivation
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of grid cell activity. In order to replicate experiments that include
stages in darkness, such as (Quirk et al., 1990), or the so-called
“teleportation trials” (Jezek et al., 2011), though, path integration
and grid cell activity will have to be part of the modeling
approach.

Conclusion

In this paper we have demonstrated that a hierarchical SFA/ICA
model is able to establish, without any prior information, a
stable spatial representation akin to place cells found in real-life
rodents. We found good agreement of our simulations with
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