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Modeling the Hemodynamic Response Function (HRF) is a critical step in fMRI studies of

brain activity, and it is often desirable to estimate HRF parameters with physiological

interpretability. A biophysically informed model of the HRF can be described by a

non-linear time-invariant dynamic system. However, the identification of this dynamic

system may leave much uncertainty on the exact values of the parameters. Moreover,

the high noise levels in the data may hinder the model estimation task. In this

context, the estimation of the HRF may be seen as a problem of model falsification or

invalidation, where we are interested in distinguishing among a set of eligible models of

dynamic systems. Here, we propose a systematic tool to determine the distinguishability

among a set of physiologically plausible HRF models. The concept of absolutely

input-distinguishable systems is introduced and applied to a biophysically informed HRF

model, by exploiting the structure of the underlying non-linear dynamic system. A strategy

to model uncertainty in the input time-delay and magnitude is developed and its impact

on the distinguishability of two physiologically plausible HRF models is assessed, in

terms of the maximum noise amplitude above which it is not possible to guarantee

the falsification of one model in relation to another. Finally, a methodology is proposed

for the choice of the input sequence, or experimental paradigm, that maximizes the

distinguishability of the HRF models under investigation. The proposed approach may

be used to evaluate the performance of HRF model estimation techniques from fMRI

data.

Keywords: HRF, fMRI, BOLD fMRI, distinguishability, model selection, experimental paradigm

Introduction

The hemodynamic response function (HRF) describes the local changes in cerebral blood
flow, volume, and oxygenation associated with neuronal activity, and it is extensively used to
model Blood Oxygen Level Dependent (BOLD) signals measured using functional Magnetic
Resonance Imaging (fMRI) (Logothetis and Wandell, 2004). In general, fMRI experiments
are used to map networks of brain activity that are associated with a specific stimulus or
task, or that are functionally correlated during rest. Mapping of stimulus/task-related BOLD
changes is most frequently achieved by fitting a general linear model (GLM) to the data,
consisting on the stimulus/task time course convolved with a pre-specified HRF model (Friston
et al., 1994), assuming a linear time invariant system (Boynton et al., 1996). Although
the exact mechanisms underlying the HRF are not yet completely known, the consistency
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of its observed shape allowed for canonical (parameterized)
HRF models to be derived (Friston et al., 1998). In particular,
double-gamma HRF models are commonly employed in fMRI
analysis. Nevertheless, extensive HRF variability has been
reported across brain regions (Handwerker et al., 2004), scanning
sessions (Aguirre et al., 1998), tasks (Cohen and Ugurbil,
2002), physiological modulations (Liu et al., 2004), subjects
(Handwerker et al., 2004), and populations (D’Esposito et al.,
2003), which may hinder or confound the measurement of
BOLD changes associated with brain activity, limiting the
interpretability of fMRI studies.

Common approaches attempting to take into account HRF
variability allow for greater flexibility in the HRF shape and
dynamics by describing it through a set of basis functions in a
GLM framework. They include using the partial derivatives with
respect to time and dispersion of a canonical HRF (Friston et al.,
1998), finite impulse response (FIR) basis sets (Glover, 1999),
and specially designed basis functions (Woolrich et al., 2004).
An approach that also takes into account the spatial localization
of the HRF was very recently proposed in Vincent et al. (2014).
While a small number of basis functions cannot accurately
model the whole range of HRF shapes and delays, at the other
extreme, deconvolution of the BOLD response is a very noisy
process. Critically, these approaches do not provide a biophysical
foundation for the HRF model, hence limiting the physiological
interpretability of the associated parameters. Moreover, they do
not explain empirically observed non-linearities in the BOLD
responses (Birn et al., 2001).

Biophysically informed non-linear models of the HRF have
been proposed, based on the combination of the Balloon model,
describing the dynamic changes in deoxyhemoglobin content
as a function of blood oxygenation and blood volume (Buxton
et al., 1998), with a model of the blood flow dynamics during
brain activation, where neuronal activity is approximated by the
stimulus/task input scaled by a factor called neural efficiency
(Friston et al., 2000). In the original work that proposed this
model, the associated parameters were estimated by using a
Volterra kernel expansion to characterize the system dynamics
(Friston et al., 2000). Later, a Bayesian estimation framework
was introduced, allowing for the use of a priori distributions
of the parameter values and the production of the respective
posterior probability distributions given the data by using
Expectation-Maximization methods (Friston, 2002). This HRF
model and respective estimation procedure have further been
incorporated in Dynamic Causal Models (DCM) developed to
study effective connectivity among networks of brain regions
from fMRI data (Friston et al., 2003). More recently, the methods
of dynamic expectation maximization, variational filtering, and
generalized filtering have also been proposed for model inversion
(estimation) in this context (Friston et al., 2008).

Several extensions of the Balloon model have since
been considered (Buxton et al., 2004), as well as a
metabolic/hemodynamic model that takes the metabolic
dynamics into account in order to incorporate the separate roles
played by excitatory and inhibitory neuronal activities in the
generation of the BOLD signal (Sotero and Trujillo-Barreto,
2007). A few alternative approaches for the estimation of these
HRF models and related extensions have also been proposed

(Riera et al., 2004). In Riera et al. (2004), a fully stochastic model
was presented in order to include physiological noise in the
hemodynamic states, in addition to the measurement noise in the
observations. A local linearization filter was used for estimating
the hemodynamic states as well as the model parameters. In
Sotero et al. (2009), a similar approach was used for estimating
the metabolic/hemodynamic model proposed by the same group.
In contrast to these linearization-based approaches, Johnston
et al. (2008) used particle filters so as to truly accommodate
the model non-linearities. More recently, Havlicek et al. (2011)
proposed non-linear cubature Kalman filtering as a means to
invert models of coupled dynamical systems, which furnishes
posterior estimates of both the hidden states and the parameters
of the system, including any unknown exogenous input.

In fMRI experiments, the system input is given by the
stimulus/task time course, which is generally designed as a series
of events alternating with baseline periods at specified inter-
stimulus intervals (ISIs). A number of studies have addressed
the problem of systematically assessing the quality of fMRI
experimental designs, both in terms of the ability to detect
stimulus/task-related BOLD activation (detection power) and the
ability to estimate the HRF model (estimation efficiency) in a
given amount of imaging time (Dale, 1999; Liu et al., 2001).
Different methodologies have been proposed to determine the
optimal design of fMRI experiments for maximal estimation
efficiency (Buracas and Boynton, 2002; Wager and Nichols, 2003;
Maus et al., 2012), and a few studies have compared different
HRF models and the associated estimation efficiency, focusing
on specific parameters of interest such as the response latency
and duration (Lindquist andWager, 2007; Lindquist et al., 2009).
Importantly, the authors were concerned with the physiological
plausibility of the estimated HRF parameters and with their
independence, such that differences in one parameter are not
confounded with differences in another parameter. However,
these studies were based on parameterized HRF models with no
direct biophysical groundings, which severely limited the desired
physiological interpretability. To our knowledge, no study has
so far investigated the effect of experimental design on the
estimation of biophysically informed models of the HRF.

When the HRF model is expressed as a dynamic system,
the identifiability of this system must be established in order to
guarantee that the HRF models inferred from the input/output
data are physiologically plausible. It has been shown that the
sensitivity of the HRF system input/output behavior to the
model parameters is in general small, which means that, when
many parameters are estimated together, their values can be
varied over a large range with only small changes in the
system output (Deneux and Faugeras, 2006). In these cases,
the problem of model estimation may be treated as a model
falsification (or invalidation) problem, in which we are interested
in distinguishing among a set of eligible dynamic systems
(Silvestre et al., 2010a). The simplest model falsification problem
one can think of is that of stating whether or not a given
model is compatible with the current observed input/output data.
However, it is important to notice that a model can never be
validated in practice. Indeed, the model being compatible with
the input/output data up to time t does not imply that it should
be compatible at time t + δ where δ > 0. Therefore, one can
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only say that a given model is not falsified (or invalidated) by
the current input/output data. On the other hand, a model is
obviously invalidated or falsified once it is not compatible with
the observations. Hence, we usually refer to model falsification
rather than model validation, since the latter is not achievable
in practice. The related problem of model (in)distinguishability
arises in a wide range of decision architectures, especially in those
that are used in noisy and/or uncertain environments, where
more than a single eligible model is compatible with the observed
input/output dataset. The distinguishability of two models is
in general affected by the input signals, particularly by the
uncertainty on the input time-delay and on its magnitude. In fact,
model invalidation requires a kind of persistence of the excitation
condition in the exogenous inputs, so that the magnitude of the
system output signal is large enough when compared to the noise
level of the data acquisition process—see (Grewal and Glover,
1976; Walter et al., 1984) and references therein.

In this paper, we extend the results in Silvestre et al.
(2010b), by first introducing the concept of absolutely input-
distinguishable systems and showing that, for systems with
forced responses, the distinguishability between two models can
be significantly affected by the shape and magnitude of the
external input signals. Moreover, several types of uncertainty,
such as unknown input time-delays and uncertain magnitudes
of the input signal, can also be adverse to model invalidation.
We then exploit the concept of absolutely input-distinguishable
systems, in order to optimize the estimation efficiency of
fMRI experimental designs through the maximization of the
distinguishability among a set of physiologically plausible HRF
models. It is stressed that one of the main motivations for
the work described herein is the development of a technique
that helps define an optimal sequence of stimuli, so that the
differences between the models in the set of plausible HRFs
become apparent. Hence, the methodology proposed in this
paper provides a first step to the so-called experimental paradigm
design, while also shedding light on the intrinsic limitations of
HRF parameter estimation based on fMRI.

Methods

The Balloon Model proposed by Buxton et al. (1998), and further
analyzed and complemented with the flow dynamics by Friston
et al. (2000), consists of a non-linear differential equation that
describes the dynamics of normalized values of the blood flow bf ,
with s being the vasodilatatory and activity dependent signal that
increases the flow bf , the veins deoxyhemoglobin content q, and
the blood venous volume v, which are considered 1 at rest. This
non-linear dynamic system can be described by

ṡ = εu− kss− kf (bf − 1)
1
= F1

ḃf = s
1
= F2

v̇ = 1
τ

(

bf − v
1
α

)
1
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τ

(

bf
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(
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where x = [x1, x2, x3, x4]
T = [s, bf , v, q]

T, Eo is the resting
net oxygen extraction fraction by capillary bed, ε is the efficacy
with which neuronal activity causes an increase in signal, 1/ks
and 1/kf are time constants, τ is the mean transit time, and α is
a stiffness exponent that specifies the flow-volume relationship
of the venous balloon. The output of this model, y(t), is the
BOLD signal and represents a complex response controlled by
different parameters, that range from the blood oxygenation, to
the cerebral blood flow, and cerebral blood volume, and reflects
the regional increase in metabolism due to enhancing of the
neural activity. In the output equation, Vo is the resting blood
volume fraction, and k1, k2, and k3 are constants.

The response of the system described by Equation (1), with
the parameters in Table 1 and with initial state xT(0) = [0 1 1 1],
to a rectangular input signal, is depicted in Figure 1, for different
integration periods.

The linear approximation of the model of the system leads to
pronouncedly different responses, when compared to the non-
linear system. An alternative to this, as described in sequel,
is to consider a so-called bilinear model, which accurately
mimics the non-linear behavior for sufficiently small integration
periods.

Linearization and Discretization of the Model
The model described by Equation (1) is highly non-linear
and parameter-dependent, thus barely allowing any systematic
analysis of the associated expected behavior. Hence, to make
the problem tractable from a mathematical point of view, the
(bi)linearization of the HRF is considered in this paper. This
approach allows the use of a widely spread framework for
analysis, namely that of the linear time-varying systems. Figure 1
shows that a close match of the HRF can be obtained by using a
bilinear approximation (linear on the state, if the input is fixed,
and linear on the input, if the state is fixed). Therefore, in this
subsection, a (bi)linearization is derived that approximates the
non-linear model locally and that is able to describe the state of
the system at a given time, x(kTs), as a function of the state several
sampling periods before, x

(

(k− N)Ts

)

.
In particular, linearizing Equation (1) around x(·) =

x∗ and u(·) = 0, i.e., writing the associated Taylor
expansion and truncating it at the linear term, one obtains
(omitting the time-dependence of the variables, for the sake of
readability):
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TABLE 1 | Parameters for the non-linear model described by Equation (1).

Parameter ε ks[s−1] kf [s
−1] τ[s] α Eo Vo k1 k2 k3

Value 0.065 0.550 0.410 1.280 0.880 0.920 4.88 7Eo 2.0 2Eo − 0.2

FIGURE 1 | Approximations of the response of model Equation (1) to a rectangular input signal (in black), for the parameters of Table 1, where TR

denotes the repetition time.
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and with output equation described by

∂y
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=
[

0, 0, −k3Vo + k2Voqv
−2, −k1Vo − k2Vov

−1
]

.

Moreover, given that F1 depends linearly upon u, we have that
∂2F

∂x∂ui
= 0.

Using the transformation proposed in Friston et al. (2000), one
finally obtains the following dynamics:

˙̃x = Ax̃+
∑

i

ui Eix̃, (3)

where x̃ =
[

1 x
]T
,

A
1
=

[

0 0
(

F(x∗, θ, u)− ∂F(x∗,θ,u)
∂x x∗

)
∂F(x∗,θ,0)

∂x

]

,

Ei
1
=

[

0 0
∂F(x∗,θ,0)

∂ui
0

]

,

and ∂F(x∗,θ,0)
∂ui

=
[

ε 0 0 0
]T

.

Uncertain Dynamic Model Description
It should be noticed that the dynamics in Equation (3) are bilinear
in the state and input variables. This non-linear term hinders the

distinguishability analysis proposed in Rosa and Silvestre (2011)
and, thus, a more suitable description is derived in herein.

For the sake of simplicity, we start by redefining x(t)
1
= x̃(t)

and x∗(t)
1
=[1

(

x∗(t)
)T
]T. It was previously shown that the

continuous-time dynamic model of the HRF, for a single input,
can be approximated by







ẋ(t) = (A(t)+ Bo(t)u(t)+ 1(t)B1(t)u(t))x(t),
x(0) = x∗(0),

y(t) = h(x(t)),
(4)

with t ≥ 0, and where1 :R+ → R was also included to represent
an input uncertainty subject to |1(t)| ≤ 1 for all t ≥ 0, and where
Bo = E1. This input uncertainty can be seen as a surrogate for
uncertainty in the stimulation signal. The initial state is denoted
by x(0) ∈ Rn, and n is the number of states of the system.
Moreover, we assume that

B1(t) = ηBo(t),

with known η ∈ R. We also define B(t) = Bo(t)+ 1(t)B1(t).
To proceed with the derivation of a discrete-time description

of the HRF model in Equation (4), for a given sampling period,
Ts, the following assumptions are posed:

Assumption 1: The input signal, u(·), is constant during
sampling periods, i.e., u(t) = u(kTs), for all t ∈ [kTs, (k+ 1)Ts[.

Assumption 2: The input uncertainty,1(·), is constant during
sampling periods, i.e.,1(t) = 1(kTs), for all t ∈ [kTs, (k+1)Ts[.
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Assumption 3: The maps A(·), Bo(·), and B1(·), are constant
during sampling periods, i.e., A(t) = A(kTs), Bo(t) = Bo(kTs),
and B1(t) = B1(kTs), for all t ∈ [kTs, (k+ 1)Ts[.

Under these assumptions, the system in Equation (4) can be
rewritten as

{

ẋ(t) = Ã
(

k,1(k)
)

x(t), x(0) = x∗(0),
y(t) = g(x̃(t)),

(5)

for x̃(t) ∈ [kTs, (k+ 1)Ts], and where

Ã
(

k,1(k)
)

= Ao(k)+ 1(kTs)A1(k),

with

Ao(k) = A(kTs)+ Bo(kTs)u(kTs),

and

A1(k) = B1(kTs)u(kTs).

In the sequel, we will abbreviate x(k) = x(kTs), for the sake
of simplicity. We are now in conditions of stating the following
proposition:

Proposition 1: Define
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,

and

φ(k) = V(k)3∗(k)V−1(k)eA(kTs)Ts − V(k)3∗(k)V−1(k)− I∗,

where V(k)3(k)V−1(k) = A(kTs)Ts is the spectral
decomposition of A(kTs)Ts with 3(k) diagonal and 311(k) = 0,
and

3∗
ij(k) =

{
1

3ij(k)
, if i = j and 3ij 6= 0,

0, otherwise.

Furthermore, let

Go(k) = eA(k) + Bo(k)u(k)+ φ(k)Bo(k)u(k) and

G1(k) = B1(k)u(k)+ φ(k)B1(k)u(k).

Then, the system in Equation (5) is described by

{

x(k+ 1) = G
(

k,1(k)
)

x(k), x(0) = x∗(0),
y(k) = h(x(k)),

(6)

where

G
(

k,1(k)
)

= Go(k)+ 1(k)G1(k),

and for x(k) = x(kTs). Proof: See Appendix A in Supplementary
Material.

Notice that Equation (6), with G
(

k,1(k)
)

= Go(k) +

1(k)G1(k), associated with the linearization of the output map,
g, is a full description of the HRF dynamics by means of
a linear model with known matrices, Go(k) and G1(k), and
an uncertain parameter, 1(k). This description, however, is
bilinear in the state, x(k), and model uncertainty, 1(k). This
bilinear relationship is tainted once we describe the state
x(k + 1) as a function of x(k − 1). Nevertheless, notice
that
(

Go(k+ 1)+ 1G1(k+ 1)
) (

Go(k)+ 1G1(k)
)

= Go(k +

1)Go(k) + 1
(

G1(k+ 1)Go(k)+ Go(k+ 1)G1(k)
)

, since G1(k +
1)G1(k) = 0 and where, for the time being, we considered that 1
is constant (but unknown), i.e., 1(k) = 1 for all k. To see this,
notice that

G1(k+ 1)G1(k) = (B1(k+ 1)+ φ(k+ 1)B1(k+ 1))(B1(k)
+φ(k)B1(k))

= B1(k+ 1)B1(k)
︸ ︷︷ ︸

=0

+B1(k+ 1)φ(k)B1(k)

+φ(k+ 1)B1(k+ 1)B1(k)
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=0

+

+φ(k+ 1)B1(k+ 1)φ(k)B1(k),

and that B1(k + 1)φ(k)B1(k) = 0, due to the fact that the first
row of φ is zero, and that all but the first column of B1 are also
zero.

By proceeding in a similar manner, we conclude that

(
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)

· · ·
(

Go(k) + 1G1(k)
)

= 9o(k+m)+ 191(k+m),

where
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91(k+m) = Go(k+m)91(k+m− 1)
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Hence, the state x(k+m+ 1) can be written as

x(k+m+ 1) =
(

9o(k+m)+ 91(k+m)1
)

x
(

k
)

Furthermore, the non-linear output Equation of (1) can be
linearized as

y(x) = y(x∗)+
∂y

∂x

∣
∣
∣
∣
x∗
(x− x∗), (8)

which, in turn, can alternatively written as:

z = y(x)− y(x∗)+
∂y

∂x

∣
∣
∣
∣
x∗
x∗ =

∂y

∂x

∣
∣
∣
∣
x∗
x. (9)

where z(t) can be seen as the measurement for the linear
time-varying system obtained by the linearization of
Equation (1).
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Absolutely Distinguishable Systems
The problem of indistinguishability typically arises from large
amplitudes of the measurement noise, small intensity of the
input excitation signals, model uncertainty, and uncertain initial
conditions. In particular, if the Signal-to-Noise Ratio (SNR) of the
measurements is not sufficiently large, one may be able to explain
the observed variables by using more than a single dynamic
model, from the set of eligible models. A similar conclusion
applies if the intensity of the input signal is not sufficient to excite
the dynamics of the system.

This section will therefore propose a methodology
to systematically derive conditions that guarantee the
distinguishability of a set of dynamic models, regardless of
the noise sequences and initial states.

Systems with Uncertain Initial State
We start by analyzing the case where the dynamics of the
system are known, although the initial state is uncertain and
the measured variables are corrupted by bounded noise. Using
Equation (8), we have that

y(k) = y(x∗(k))− C(k)x∗(k)
︸ ︷︷ ︸

ȳ(k)

+C(k)x(k)+ n(k), (10)

where

C(k) =
∂y

∂x

∣
∣
∣
∣
x∗(k)

,

and where n(k) is the measurement noise. Consider that a given
input sequence, u(0), · · · , u(N), feeds the inputs of systems SA
and SB, respectively described by

SA :

{

xA(k+ 1) = GA(k)xA(k),
yA(k) = ȳA(k)+ CA(k)xA(k)+ nA(k),

SB :

{

xB(k+ 1) = GB(k)xB(k),
yB(k) = ȳB(k)+ CB(k)xB(k)+ nB(k),

where yA and yB are defined as in Equation (10), and |nA(k)| ≤
n̄
2 ,

|nB(k)| ≤
n̄
2 . Moreover, we assume that xA(0) ∈ Xo and xB(0) ∈

Xo, where Xo ∈ Rn is a convex polytope. Let φi = [nTi , uTi ]
T,

denote the measurement noise, ni ∈ W ⊆ Rnn , and input signals,
ui ∈ U ⊆ Rnu , at time instant i.

Definition 1: Systems SA and SB are said absolutely
(X0,U,W)-input distinguishable in N sampling times if, for any
non-zero

(

xA(0), xB(0), φ1, φ2, · · · , φN

)

∈ Xo × Xo ×

Ntimes
︷ ︸︸ ︷

8 × · · · × 8,

where φi ∈ W × U = :8 ⊆ Rnu+nd for i = 0, 1, · · · ,N, there
exists k ∈ {0, 1, · · · ,N} such that

yA(k) 6= yB(k).

Moreover, two systems are said absolutely (Xo,U,W)-input
distinguishable if there exists N ≥ 0 such that they are absolutely
(Xo,U,W)-input distinguishable in N sampling times.

Let U = (u(0), u(1), · · · , u(N)) and

W =

{
(

n(0), n(1), · · · , n(N)
)

: ∀
0≤k≤N

|n(k)| ≤
n̄

2

}

.

The following proposition can be used to state whether a pair of
systems is distinguishable or not.

Proposition 2: Systems SA and SB are absolutely (Xo,U,W)-
input distinguishable inN sampling times if and only if a solution
to the following linear problem does not exist:



















CA(0) −CB(0)

−CA(0) CB(0)

CA(1)GA(0) −CB(0)GB(0)

−CA(1)GA(0) CB(0)GB(0)
.
.
.

.

.

.

CA(N)GA(N − 1) · · ·GA(0) −CB(0)GB(N − 1) · · ·GB(0)

−CA(N)GA(N − 1) · · ·GA(0) CB(0)GB(N − 1) · · ·GB(0)

Mo 0

0 Mo



















[

xA(0)

xB(0)

]

≤



















n̄− ȳA(0)+ ȳB(0)

n̄+ ȳA(0)− ȳB(0)

n̄− ȳA(1)+ ȳB(1)

n̄+ ȳA(1)− ȳB(1)
.
.
.

n̄− ȳA(N)+ ȳB(N)

n̄+ ȳA(N)− ȳB(N)

mo

mo



















, (11)

where Xo is defined so that x ∈ Xo ⇔ Mox ≤ mo, which can be
written as Xo = Set(Mo,mo).

Proof: See Appendix B in Supplementary Material.

Systems with Uncertain Model
We now consider the case where the system dynamics are
uncertain and described by

SA :

{

xA(k+ 1) =
(

GA
o (k)+ 1AG

A
1 (k)

)

xA(k),
yA(k) = ȳA(k)+ CA(k)xA(k)+ nA(k),

SB :

{

xB(k+ 1) =
(

GB
o (k)+ 1BG

B
1 (k)

)

xB(k),
yB(k) = ȳB(k)+ CB(k)xB(k)+ nB(k),

where yA and yB are defined as in Equation (10), and |nA(k)| ≤
n̄
2 ,

|nB(k)| ≤ n̄
2 . We also assume that |1A| ≤ 1 and |1B| ≤ 1.

Moreover, for this case we assume that Xo is a singleton, thus
removing the uncertainty in the initial state. In this case, SA and
SB denote families of systems, due to the uncertainties 1A and
1B. Therefore, the introduction of the following definition is
required.

Definition 2: The families of systems SA and SB are said
absolutely (Xo,U,W)-input distinguishable in N sampling times
if, for any pair of realizations (S1, S2) ∈ SA × SB, the systems
S1 and S2 are absolutely (Xo,U,W)-input distinguishable in N
sampling times.

Hence, we are now in condition to state the following
proposition:
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Proposition 3: The families of systems SA and SB are
absolutely (Xo,U,W)-input distinguishable in N sampling times
if and only if there does not exist a solution to the following linear
problem:

2N

[

1A

1B

]

≤ θN, (12)

where

2N =
















0 0

0 0

CA(1)9
A
1 (0)xA(0) −CB(1)9

B
1 (0)xB(0)

−CA(1)9
A
1 (0)xA(0) CB(1)9

B
1 (0)xB(0)

.

.

.
.
.
.

CA(N)9A
1 (N − 1)xA(0) −CB(N)9B

1 (N − 1)xB(0)

−CA(N)9A
1 (N − 1)xA(0) CB(N)9B

1 (N − 1)xB(0)
















and

θN

=






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








n̄− ȳA(0)+ ȳB(0)− CA(0)xA(0)+ CB(0)xB(0)

n̄+ ȳA(0)− ȳB(0)+ CA(0)xA(0)− CB(0)xB(0)

n̄− ȳA(1)+ ȳB(1)− CA(1)9
A
o (0)xA(0)+ 9B

o (0)xB(0)

n̄+ ȳA(1)− ȳB(1)+ CA(1)9
A
o (0)xA(0)− 9B

o (0)xB(0)

.

.

.

n̄− ȳA(N)+ ȳB(N)− CA(N)9A
o (N − 1)xA(0)+ 9B

o (N − 1)xB(0)

n̄+ ȳA(N)− ȳB(N)+ CA(N)9A
o (N − 1)xA(0)− 9B

o (N − 1)xB(0)
















Proof: See Appendix C in Supplementary Material.
Figure 2A depicts the impulse and step responses of the HRF

model with the parameters of Table 1, with an uncertainty of
10% in the input signal. It should be noticed that this type
of uncertainty mainly affects the amplitude of the responses of
the system. Thus, the rise- and fall-times are not significantly
influenced by small variations on the amplitude of the input
signal.

Systems with Uncertain Input Time-Delays
In this subsection, a strategy to model uncertain input time-
delays is developed. The approach presented in the sequel
amounts for rewriting these uncertain input time-delays asmodel
uncertainty.

Consider that the input signal, at sampling time k, is given by

u(k) = ũ(k− kd),

where kd is an integer (the uncertain delay) satisfying |kd| ≤

k̄d, with known k̄d. The value of ũ(k), for each k ≥ 0, is

also assumed known and bounded. Thus, we have, for each
k ≥ 0,

u(k) ≤ u(k) ≤ ū(k), (13)

where ū(k) = max
|m|≤k̄d

ũ(k−m) and u(k) = min
|m|≤k̄d

ũ(k−m).

Therefore, Equation (13) can be rewritten as

u(k) = uo(k)+ 1u(k)u1(k),

where |1u(k)| ≤ 1, uo(k) =
ū(k)+u(k)

2 , and u1(k) =
ū(k)−u(k)

2 .
Hence, unknown but bounded time-delays on the input can

be treated as uncertainty on the B matrix. The impulse and step
responses of the HRF model with the parameters of Table 1, with
an uncertain input time-delay, kd, bounded by |kd| ≤ 3, are
depicted in Figure 2B. As seen in the figure, the uncertainty in
the input time-delay enlarges the uncertainty in the rise- and
fall-times of the output.

Systems with Uncertain Model and Input Time-Delays
For the sake of completeness, in this subsection we analyze the
effects of simultaneous uncertainty on the model and on the
input time-delays. The results for this scenario are depicted in
Figure 2C. As expected, the uncertainty on the model chiefly
affects the amplitude of the responses, while the uncertainty
on the input time-delay changes the corresponding rise- and
fall-times.

Systems with Uncertain Model and Uncertain Initial

State
We now consider the case where both the system dynamics
and the initial state are uncertain. The problem is set to that
of concluding whether the following two families of systems are
distinguishable:

SA :

{

xA(k+ 1) = (GA
o (k)+ 1A(k)G

A
1 (k))xA(k),

yA(k) = ȳA(k)+ CA(k)xA(k)+ nA(k),

SB :

{

xB(k+ 1) = (GB
o (k)+ 1B(k)G

B
1 (k))xB(k),

yB(k) = ȳB(k)+ CB(k)xB(k)+ nB(k),

where yA and yB are defined as in Equation (10), and |nA(k)| ≤
n̄
2 ,

|nB(k)| ≤
n̄
2 . We also assume that |1A(k)| ≤ 1 and |1B(k) ≤ 1.

Moreover, for this case we assume that Xo is a convex polytope.

Proposition 4: Let e1 =
[

1 0 0 0 0
]T
. The

families of systems SA and SB are absolutely (Xo,U,W)-input
distinguishable in N sampling times if and only if there does not
exist a solution to the following linear problem:

∀
k∈{0,1,··· ,N}

:































xA(0), xB(0) ∈ Xo,

CA(k)xA(k)− CB(k)xB(k) ≤ n̄− ȳA(k)+ ȳB(k),

−CA(k)xA(k)+ CB(k)xB(k) ≤ n̄+ ȳA(k)− ȳB(k),

xA(k+ 1)− GA
o (k)xA(k)− GA

1 (k)e1zA(k) = 0,

xB(k+ 1)− GB
o (k)xB(k)− GB

1 (k)e1zB(k) = 0,

−eT1 xA(k) ≤ zA(k) ≤ eT1 xA(k),

−eT1 xB(k) ≤ zB(k) ≤ eT1 xB(k),
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FIGURE 2 | Impulse and step responses of the HRF model with the

parameters of Table 1. (A) 10% uncertainty on the input signal. (B)

Uncertain input time-delay. (C) Uncertain model and input time-delay.

where the unknown variables are xA(0), · · · xA(N),
xB(0), · · · xB(N), zA(0), · · · zA(N − 1), and zB(0), · · · zB(N − 1).

Proof: See Appendix D in Supplementary Material.

FIGURE 3 | Maximum amplitude of the measurement noise that

guarantees the absolute distinguishability of two particular families of

models. (A) As a function of the uncertainty on the input signal and on the

corresponding time-delay. (B) As a function of the uncertainty on the

magnitude and time-delay of the input signal, for a deterministic input signal.

(C) As a function of the uncertainty on the magnitude and time-delay of the

input signal, for a stochastic input signal with mean thigh and tlow of 12 s

obtained from a uniform distribution of width 12 s.

Figure 3A depicts the maximum amplitude of
the measurements noise that guarantees the absolute
distinguishability of two particular families of HRF models,
as a function of the uncertainty on the input signal and on the
corresponding time-delay. As expected, the maximum level of
sensor noise such that the two families of models are absolutely
distinguishable, decreases with both types of uncertainty.

Pre-Processing of fMRI Time Series
We stress that the assumption that the additive noise in the
measured signal is bounded is not conservative in practice, since
outliers and other unboundedness behaviors can, in general, be
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tackled during pre-processing, i.e., before performing the main
analysis of the signals. This can be done, in particular, by low-pass
filtering the signal, so that high-frequency noise is significantly
attenuated.

Additionally, the following pre-processing steps are
commonly applied to fMRI time series data before submitting
them to statistical analysis (Jezzard et al., 2001): (i) normalization
of the whole 4D fMRI dataset by scaling each volume by a
single (common) scaling factor, so that subsequent analyses are
valid; (ii) motion correction by alignment of all fMRI volumes
to a reference volume in the time series, usually performed
by applying rigid-body transformations, in order to reduce
the effect of subject head motion during the experiment; and
(iii) high-pass temporal filtering, usually using a local fit of a
straight line (Gaussian-weighted within the line to give a smooth
response), in order to remove low-frequency artifacts such as
signal drifts or physiological fluctuations.

Results

In this section, we study the influence of the choice of the
input signal on the distinguishability of a set of HRF models.
A methodology to optimize the fMRI experimental design that
takes advantage of this knowledge is also presented.

Throughout the remainder of this paper, we are going to refer
to the families of HRFmodelsA and B, described by the dynamics
in Equation (1), with the physiologically plausible parameters
presented in Table 2. Model family B displays a pronounced
undershoot and the presence of an initial dip, in stark contrast
to model family A.

The response of the nominal HRF models, for the
parameter configurations of Table 2, with initial state
xT(0) =

[

0 1 1 1
]

, to a rectangular input signal of
duration 1 s and unit magnitude, is depicted in Figure 4.

In general, the input signal is composed of a series of
rectangular pulses (events) of duration thigh alternating with
baseline periods of duration tlow, with a total duration of 200 s
(see Figure 5).

In order to illustrate the characteristic behavior of HRF model
family A, their responses to rectangular input signals of duration
5 and 20 s and unit magnitude, with an uncertain input time-
delay, kd, bounded by |kd| ≤ 3 s, and input uncertainty of 10%,
are depicted in Figure 6. The uncertainty on the input time-delay
enlarges the uncertainty in the rise- and fall-times of the output,
while the uncertainty in the input mainly affects the amplitude of
the responses of the system.

Figure 3B depicts the maximum amplitude of the
measurements noise that guarantees the absolute
distinguishability of the families of models A and B, for an
input signal with tlow = 12 s and thigh = 12 s, as a function of

TABLE 2 | Parameters for the families of non-linear models.

HRF ks [s−1] kf [s
−1] τ [s] α Eo

A 0.400 0.100 2.080 0.320 0.340

B 0.220 0.110 2.180 0.320 0.985

the uncertainty on the magnitude of the input signal and on
the corresponding time-delay. As expected, the maximum level
of measurement noise such that the families of models A and
B are absolutely distinguishable decreases with both types of
uncertainty.

Furthermore, we considered a stochastic input signal,
composed of a series of rectangular pulses with mean duration
of E(thigh) = 12 s, and mean baseline period of E(tlow) = 12 s
drawn from a uniform distribution of width 12 s. According to
the results in the literature (see, for instance, Josephs et al., 1997;
Miezin et al., 2000), we observe that, by performing random small
variations on thigh and tlow, alternative trajectories of the non-
linear model Equation (1) are exploited, which in turn improves
the identifiability of the models, as depicted in Figure 3C.

We now analyze the effect of different experimental designs
on the distinguishability of the families of models at hand. At
this point, our goal is to find the combination of values of tlow
and thigh such that the absolute distinguishability of two or more

FIGURE 4 | Time responses of the nominal models of families A and B.

FIGURE 5 | Input signal adjustable parameters.
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FIGURE 6 | Rectangular input responses of family A with uncertain

input magnitude and input time-delay.

families of models is guaranteed for the highest upper bound
on the amplitude of the measurement noise. We denote this
optimal combination of values by (t∗

low
, t∗

high
). The advantage of

using an input signal with parameters (t∗
low

, t∗
high

) obviously stems

from the fact that we can allow for the highest amplitude on the
measurement noise, while guaranteeing the distinguishability of
the families.

Figure 7 depicts the results obtained, considering no time-
delay or magnitude uncertainty. As expected, input signals with
very small values of thigh and large values of tlow do not have the
power required to significantly stimulate the system. On the other
hand, input signals with very small values of thigh and tlow are
faster than the dynamics of the system, and hence do not produce
remarkable changes in the output of the plant. As a final remark,
the optimum value for tlow and thigh is 10 s, i.e., t∗

low
= 10 s and

t∗
high

= 10 s.

Discussion

We have addressed the problem of the distinguishability of HRF
models in the analysis of fMRI data of brain activation, based
on the biophysically informed description of the HRF as a non-
linear time-invariant input-state-output dynamic system. We
first introduced the concept of absolutely input-distinguishable
systems and then showed that the distinguishability between two
HRF models, and hence system identification, is significantly
affected by the external input (stimulus/task) signals. In
particular, the uncertainty in the input time-delays and its
magnitude may adversely affect model identification, by reducing
the maximum noise level below which model distinguishability
is guaranteed. We then applied the concept of absolutely input-
distinguishable systems to the development of a methodology
for the assessment of the HRF estimation efficiency of
fMRI experimental designs, through the maximization of the
distinguishability level among a set of physiologically plausible
HRF models.

FIGURE 7 | Maximum amplitude of the measurement noise

guaranteeing the absolute distinguishability of the families A and B, as

a function of tlow and thigh.

The main contribution of this paper is therefore 2-fold. On
the one hand, we show that the distinguishability of two HRF
models depends on the level of the measurement noise as well
as on the characteristics of the input signal. On the other
hand, we develop a methodology to optimize fMRI experimental
designs for HRF estimation, whichmaximizes the allowable noise
amplitude that does not impair the distinguishability of a set of a
priori admissible dynamic systems.

In this paper, it is assumed that the system inputs can be
selected or, at least, measured. This assumption is verified in
a straightforward manner when external inputs are present,
such as sensory stimuli or cognitive tasks. Although no explicit
external inputs exist in resting-state fMRI acquisitions, it has
been observed that discrete neuronal events do occur (Deco and
Jirsa, 2012). Most interestingly, it has been recently suggested
that such events can be identified as peaks of relatively large
BOLD signal amplitude (Tagliazucchi et al., 2011), and resting-
state fMRI data can then be seen as “spontaneous event-related”
data (Wu et al., 2013).

Significance of HRF Estimation
The importance of estimating the HRF in fMRI experiments
is based on the extensively observed variability of its shape
and dynamics across brain regions, conditions, subjects, and
populations, with critical consequences in the analysis of fMRI
data. In fact, one direct consequence of HRF variability is that
the deviation of the real HRF from the pre-specified HRF leads
to a poorer model of the observed BOLD signal and hence
reduces the sensitivity to detect BOLD changes (Handwerker
et al., 2004). Another consequence is the potential detection
of a group effect due to a systematic HRF difference, which
would then be incorrectly interpreted as a neuronal effect.
Moreover, when attempting to infer causality within brain
networks from BOLD data, differences in HRF latency across
brain regions can potentially confound the directionality of
information flow (David et al., 2008; Smith et al., 2011; Murta
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et al., 2012; Jorge et al., 2014). On the other hand, HRF variability
may be an object of interest on its own, potentially reflecting
physiological changes associated with the effects of drugs, aging
or pathology, for example (Iadecola, 2004). Additionally, there
is a growing interest in studying, not only the amplitude of
BOLD activation, but also its dynamics, namely its latency and
duration, which are reflected in the HRF (Bellgowan et al., 2003).
In these cases, it would be desirable to estimate the actual HRF
model underlying the BOLD signal measured in each voxel,
experiment, subject or population, or otherwise account for its
variability.

Despite the acknowledged need for modeling the HRF
underlying fMRI BOLD data, and although different approaches
have been continuously proposed in the literature for this
purpose, our ability to understand HRF variability remains poor
(Handwerker et al., 2012). Critically, most studies have focused
on parameterized HRF models in a linear framework, while the
estimation of physiologically plausible non-linear HRF models
with direct biophysical interpretability has been very limited. In
particular, no previous study has investigated the optimal fMRI
experimental design for the estimation of such biophysical HRF
models. We believe that our work therefore makes an important
contribution for understanding how a biophysically informed
model of the HRF may be inferred from fMRI data, as a function
of experimental design and measurement noise.

Biophysically Informed HRF Modeling
Using a biophysically informedmodel of the HRF not only allows
for a physiologically plausible interpretation of the results, but it
also more accurately explains empirical BOLD data, particularly
concerning commonly observed non-linearities. Importantly,
in contrast to parameterized HRF models, biophysical models
described by dynamic systems can account for the detailed
dynamics of BOLD responses through a reduced number of
parameters, while constraining it to be physiologically plausible.
For example, the post-stimulus undershoot and the initial dip
are two features of observed BOLD responses that naturally
emerge from this dynamic system under slightly different
combinations of a limited number of parameters. Although using
such dynamic systems represents an additional computational
effort compared to the more straightforward linear methods, this
may nevertheless become the chosen approach in studies where
a detailed characterization of the BOLD temporal dynamics is
desirable. In particular, the combination of EEG with fMRI
may greatly benefit from such approaches (Riera et al., 2005).
On the other hand, important complementary information may
be gained for HRF model estimation by combining BOLD
recordings with the acquisition of blood flow data using Arterial
Spin Labeling (ASL) or near-infrared spectroscopy (NIRS)
(Huppert et al., 2006). Despite the potential advantages of such
a biophysically informed dynamic system approach to fMRI
data analysis, only a few studies have been dedicated to the
associated problem of system identification/model estimation
(Friston, 2002; Riera et al., 2004). Our study therefore makes
a significant contribution to this limited body of literature,
by introducing the concept of input-distinguishability of HRF
models in order to inform model selection in this context.

Optimization of the Experimental Design
Previous studies systematically assessing the quality of fMRI
experimental designs have again been focused on parameterized
HRF models within a linear framework (Dale, 1999; Liu et al.,
2001). They found that optimal estimation efficiency is obtained
at the cost of reduced detection power by employing randomized
rapid event-related designs. In fact, it was shown that, if the
ISI is properly jittered or randomized from trial to trial, the
efficiency improves monotonically with decreasing mean ISI
(Dale, 1999). In general, it is found that a trade-off exists
between detection power and estimation efficiency, with block
designs being optimal for the former while event-related designs
are optimal for the latter (Liu et al., 2001). Nevertheless, a
recent report established the feasibility and test-retest reliability
of estimating HRF parameters from block design fMRI data
(Shan et al., 2014). In our work, we have used a randomized
design by introducing uncertainty in the ISI, and we showed
that smaller uncertainty leads to better distinguishability for the
same noise level. Our results are therefore consistent with the
literature.

Limitations

The framework adopted in this work resorts to deterministic
concepts and, therefore, certain assumptions are posed on the
signals acting on the system, in particular in terms of maximum
amplitudes. Stochastic approaches are more flexible in that sense,
but require the knowledge regarding the statistical properties of
those signals, which may not be trivial to obtain, or which may
be violated in practice. Therefore, a compromise between these
two alternative frameworks—deterministic and stochastic—for
the distinguishability of HRF models is still a subject of further
research.

Conclusion

In summary, in this paper we proposed a novel approach
to assess distinguishability among a set of physiologically
plausible biophysically informed HRF models, and to design
fMRI experiments for optimal estimation efficiency of such HRF
models, with potentially great impact in further understanding
HRF variability and its physiological meaning.

Acknowledgments

We acknowledge financial support by the Portuguese Science
Foundation through Projects PTDC/SAU-ENB/112294/2009,
PTDC/BBB-IMG/2137/2012 and FCT [UID/EEA/50009/2013],
and project MYRG117(Y1-L3)-FST12-MKM of the University
of Macau. We also thank the reviewers for their insightful
comments and corrections.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2015.00054/abstract

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2015 | Volume 9 | Article 54

http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00054/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rosa et al. On the distinguishability of HRF models in fMRI

References

Aguirre, G., Zarahn, E., and D’Esposito, M. (1998). The variability of human,

BOLD hemodynamic responses. Neuroimage 8, 360–369.

Bellgowan, P., Saad, Z., and Bandettini, P. (2003). Understanding neural system

dynamics through task modulation and measurement of functional mri

amplitude, latency, and width. Proc. Natl. Acad. Sci. U.S.A. 100, 1415–1419. doi:

10.1073/pnas.0337747100

Birn, R., Saad, Z., and Bandettini, P. (2001). Spatial heterogeneity of the

nonlinear dynamics in the fMRI BOLD response.Neuroimage 14, 817–826. doi:

10.1006/nimg.2001.0873

Boynton, G., Engel, S. A., Glover, G., and Heeger, D. (1996). Linear systems

analysis of functional magnetic resonance imaging in human v1. J. Neurosci.

16, 4207–4221.

Buracas, G., and Boynton, G. (2002). Efficient design of event-related fMRI

experiments using msequences. Neuroimage 16(3 Pt 1), 801–813. doi:

10.1006/nimg.2002.1116

Buxton, R., Uluda, K., Dubowitz, D., and Liu, T. (2004). Modeling the

hemodynamic response to brain activation. Neuroimage 23, 220–233. doi:

10.1016/j.neuroimage.2004.07.013

Buxton, R., Wong, E., and Frank, L. (1998). Dynamics of blood flow and

oxygenation changes during brain activation: the balloon model.Magn. Reson.

Med. 39, 855–864. doi: 10.1002/mrm.1910390602

Cohen, E., and Ugurbil, K. (2002). Effect of basal conditions on the magnitude

and dynamics of the blood oxygenation level-dependent fMRI response.

J. Cereb. Blood Flow Metab. 22, 1042–1053. doi: 10.1097/00004647-200209000-

00002

D’Esposito, M., Deouell, L., and Gazzaley, A. (2003). Alterations in the BOLD

fMRI signal with ageing and disease: a challenge for neuroimaging. Nat. Rev.

Neurosci. 4, 863–872. doi: 10.1038/nrn1246

Dale, A. (1999). Optimal experimental design for event-related fMRI. Hum. Brain

Mapp. 8, 109–114.

David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., et al.

(2008). Identifying neural drivers with functional mri: an electrophysiological

validation. PLoS Biol. 6:2683–2697. doi: 10.1371/journal.pbio.0060315

Deco, G., and Jirsa, V. K. (2012). Ongoing cortical activity at rest: criticality,

multistability, and ghost attractors. J. Neurosci. 32, 3366–3375. doi:

10.1523/JNEUROSCI.2523-11.2012

Deneux, T., and Faugeras, O. (2006). Using nonlinearmodels in fMRI data analysis:

model selection and activation detection. Neuroimage 32, 1669–1689. doi:

10.1016/j.neuroimage.2006.03.006

Friston, K. (2002). Bayesian estimation of dynamical systems: an application to

fMRI. Neuroimage 16, 513–530. doi: 10.1006/nimg.2001.1044

Friston, K., Fletcher, P., Josephs, O., Holmes, A., Rugg, M., and Turner, R. (1998).

Event-related fMRI: characterizing differential responses.Neuroimage 7, 30–40.

doi: 10.1006/nimg.1997.0306

Friston, K., Harrison, L., and Penny, W. (2003). Dynamic causal modelling.

Neuroimage 19, 1273–1302. doi: 10.1016/S1053-8119(03)00202-7

Friston, K., Jezzard, P., and Turner, R. (1994). Analysis of functional mri time-

series. Hum. Brain Mapp. 1, 153–171. doi: 10.1002/hbm.460010207

Friston, K., Mechelli, A., Turner, R., and Price, C. (2000). Nonlinear responses

in fMRI: the Balloon model, Volterra kernels and other hemodynamics.

Neuroimage 12, 466–477. doi: 10.1006/nimg.2000.0630

Friston, K., Trujillo-Barreto, N., and Daunizeau, J. (2008). DEM: a

variational treatment of dynamic systems. Neuroimage 41, 849–885. doi:

10.1016/j.neuroimage.2008.02.054

Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD

fMRI. Neuroimage 9, 416–429. doi: 10.1006/nimg.1998.0419

Grewal, M., and Glover, K. (1976). Identifiability of linear and nonlinear

dynamical systems. IEEE Trans. Autom. Control 21, 833–837. doi:

10.1109/TAC.1976.1101375

Handwerker, D. A., Gonzalez-Castillo, J., D’Esposito, M., and Bandettini,

P. A. (2012). The continuing challenge of understanding and modeling

hemodynamic variation in fMRI. Neuroimage 62, 1017–1023. doi:

10.1016/j.neuroimage.2012.02.015

Handwerker, D. A., Ollinger, J. M., and D’Esposito, M. (2004). Variation

of BOLD hemodynamic responses across subjects and brain regions

and their effects on statistical analyses. Neuroimage 21, 1639–1651. doi:

10.1016/j.neuroimage.2003.11.029

Havlicek,M., Friston, K. J., Jan, J., Brazdil, M., and Calhoun, V. D. (2011). Dynamic

modeling of neuronal responses in fMRI using cubature kalman filtering.

Neuroimage 56, 2109–2128. doi: 10.1016/j.neuroimage.2011.03.005

Huppert, T., Hoge, R., Diamond, S., Franceschini, M. A., and Boas, D. A.

(2006). A temporal comparison of BOLD, ASL, and NIRS hemodynamic

responses to motor stimuli in adult humans. Neuroimage 29, 368–382. doi:

10.1016/j.neuroimage.2005.08.065

Iadecola, C. (2004). Neurovascular regulation in the normal brain and in

Alzheimer’s disease. Nat. Rev. Neurosci. 5, 347–360. doi: 10.1038/nrn1387

Jezzard, P., Matthews, P. M., and Smith, S. M. (Eds). (2001). Functional MRI: an

Introduction to Methods, Vol. 61. Oxford: Oxford University Press.

Johnston, L. A., Duff, E., Mareels, I., and Egan, G. F. (2008). Nonlinear

estimation of the BOLD signal. Neuroimage 40, 504–514. doi:

10.1016/j.neuroimage.2007.11.024

Jorge, J. P., van der Zwaag, W., and Figueiredo, P. (2014). EEG-fMRI integration

for the study of human brain function. NeuroImage 102(Pt1), 24–34. doi:

10.1016/j.neuroimage.2013.05.114

Josephs, O., Turner, R., and Friston, K. (1997). Event-related fMRI. Hum. Brain

Mapp. 5, 243–248.

Lindquist, M. A., Meng Loh, J., Atlas, L. Y., andWager, T. D. (2009). Modeling the

hemodynamic response function in fMRI: efficiency, bias and mis-modeling.

Neuroimage 45, S187–S198. doi: 10.1016/j.neuroimage.2008.10.065

Lindquist, M. A., and Wager, T. D. (2007). Validity and power in hemodynamic

response modeling: a comparison study and a new approach. Hum. Brain

Mapp. 28, 764–784. doi: 10.1002/hbm.20310

Liu, T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., et al.

(2004). Caffeine alters the temporal dynamics of the visual BOLD response.

Neuroimage 23, 1402–1413. doi: 10.1016/j.neuroimage.2004.07.061

Liu, T. T., Frank, L. R., Wong, E. C., and Buxton, R. B. (2001). Detection power,

estimation efficiency, and predictability in event-related fMRI. Neuroimage 13,

759–773. doi: 10.1006/nimg.2000.0728

Logothetis, N. K., and Wandell, B. A. (2004). Interpreting the BOLD signal. Annu.

Rev. Physiol. 66, 735–769. doi: 10.1146/annurev.physiol.66.082602.092845

Maus, B., van Breukelen, G. J., Goebel, R., and Berger, M. P. (2012). Optimal design

for nonlinear estimation of the hemodynamic response function. Hum. Brain

Mapp. 33, 1253–1267. doi: 10.1002/hbm.21289

Miezin, F. M., MacCotta, L., Ollinger, J. M., Petersen, S. E., and Buckner, R. L.

(2000). Characterizing the hemodynamic response: effects of presentation rate,

sampling procedure, and the possibility of ordering brain activity based on

relative timing. Neuroimage 11, 735–759. doi: 10.1006/nimg.2000.0568

Murta, T., Leal, A., Garrido, M. I., and Figueiredo, P. (2012). Dynamic causal

modelling of epileptic seizure propagation pathways: a combined EEG–fMRI

study. Neuroimage 62, 1634–1642. doi: 10.1016/j.neuroimage.2012.05.053

Riera, J., Aubert, E., Iwata, K., Kawashima, R., Wan, X., and Ozaki, T. (2005).

Fusing EEG and fMRI based on a bottom-up model: inferring activation and

effective connectivity in neural masses. Philos. Trans. R. Soc. Lond. B Biol. Sci.

360, 1025–1041. doi: 10.1098/rstb.2005.1646

Riera, J. J., Watanabe, J., Kazuki, I., Naoki, M., Aubert, E., Ozaki, T., et al.

(2004). A state-space model of the hemodynamic approach: nonlinear filtering

of BOLD signals. Neuroimage 21, 547–567. doi: 10.1016/j.neuroimage.2003.

09.052

Rosa, P., and Silvestre, C. (2011). “On the distinguishability of discrete linear time-

invariant dynamic systems,” in Proceedings of the 50th IEEE Conference on

Decision and Control. (Orlando, FL).

Shan, Z. Y., Wright, M. J., Thompson, P. M., McMahon, K. L., Blokland, G. G., de

Zubicaray, G. I., et al. (2014). Modeling of the hemodynamic responses in block

design fMRI studies. J. Cereb. Blood Flow Metab. 34, 316–324. doi: 10.1038/

jcbfm.2013.200

Silvestre, C., Figueiredo, P., and Rosa, P. (2010a). “Multiple-model set-valued

observers: a new tool for HRF model selection in fMRI,” in 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), (Buenos Aires), 5704–5707.

Silvestre, C., Figueiredo, P., and Rosa, P. (2010b). “On the distinguishability

of HRF models in fMRI,” in 2010 Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), (Buenos Aires),

5677–5680.

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., et al. (2011). Network modelling methods for fMRI.Neuroimage

54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2015 | Volume 9 | Article 54

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rosa et al. On the distinguishability of HRF models in fMRI

Sotero, R. C., and Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory

and inhibitory neuronal activity in the generation of the BOLD signal.

Neuroimage 35, 149–165. doi: 10.1016/j.neuroimage.2006.10.027

Sotero, R. C., Trujillo-Barreto, N. J., Jiménez, J. C., Carbonell, F., and

Rodríguez-Rojas, R. (2009). Identification and comparison of stochastic

metabolic/hemodynamic models (sMHM) for the generation of the

BOLD signal. J. Comput. Neurosci. 26, 251–269. doi: 10.1007/s10827-008-

0109-3

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Montoya, P., and Chialvo, D.

R. (2011). Spontaneous BOLD event triggered averages for estimating

functional connectivity at resting state. Neurosci. Lett. 488, 158–163. doi:

10.1016/j.neulet.2010.11.020

Vincent, T., Badillo, S., Risser, L., Chaari, L., Bakhous, C., Forbes, F., et al. (2014).

Flexible multivariate hemodynamics fMRI data analyses and simulations with

PyHRF. Front. Neurosci. 8:67. doi: 10.3389/fnins.2014.00067

Wager, T. D., and Nichols, T. E. (2003). Optimization of experimental design in

fMRI: a general framework using a genetic algorithm.Neuroimage 18, 293–309.

doi: 10.1016/S1053-8119(02)00046-0

Walter, E., Lecourtier, Y., and Happel, J. (1984). On the structural

output distinguishability of parametric models, and its relations with

structural identifiability. IEEE Trans. Autom. Control 29, 56–57. doi:

10.1109/TAC.1984.1103379

Woolrich, M. W., Behrens, T. E., and Smith, S. M. (2004). Constrained linear basis

sets for HRFmodelling using variational bayes.Neuroimage 21, 1748–1761. doi:

10.1016/j.neuroimage.2003.12.024

Wu, G. R., Liao, W., Stramaglia, S., Ding, J. R., Chen, H., and Marinazzo, D.

(2013). A blind deconvolution approach to recover effective connectivity brain

networks from resting state fMRI data. Med. Image Anal. 17, 365–374. doi:

10.1016/j.media.2013.01.003

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Rosa, Figueiredo and Silvestre. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2015 | Volume 9 | Article 54

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	On the distinguishability of HRF models in fMRI
	Introduction
	Methods
	Linearization and Discretization of the Model
	Uncertain Dynamic Model Description

	Absolutely Distinguishable Systems
	Systems with Uncertain Initial State
	Systems with Uncertain Model
	Systems with Uncertain Input Time-Delays
	Systems with Uncertain Model and Input Time-Delays
	Systems with Uncertain Model and Uncertain Initial State

	Pre-Processing of fMRI Time Series

	Results
	Discussion
	Significance of HRF Estimation
	Biophysically Informed HRF Modeling
	Optimization of the Experimental Design

	Limitations
	Conclusion
	Acknowledgments
	Supplementary Material
	References


