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Neuron encodes and transmits information through generating sequences of output

spikes, which is a high energy-consuming process. The spike is initiated whenmembrane

depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and

depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying

the metabolic energy involved in neural coding and their relationship to threshold dynamic

is critical to understanding neuronal function and evolution. Here, we use a modified

Morris-Lecar model to investigate neuronal input-output property and energy efficiency

associated with different spike threshold dynamics. We find that the neurons with

dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve

and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could

prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt,

instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node

on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It

is also shown that the bifurcation, frequency-current curve and PRC type associated

with different threshold dynamics arise from the distinct subthreshold interactions of

membrane currents. Further, we observe that the energy consumption of the neuron

is related to its firing characteristics. The depolarization of spike threshold improves

neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during

an action potential. The high energy efficiency is achieved at more depolarized spike

threshold and high stimulus current. These results provide a fundamental biophysical

connection that links spike threshold dynamics, input-output relation, energetics and

spike initiation, which could contribute to uncover neural encoding mechanism.

Keywords: spike threshold dynamic, input-output relation, energy efficiency, biophysical connection, spike

initiation

Introduction

Neurons, as the basic information-processing unit of the nervous system, can accurately represent
and transmit various spatiotemporal patterns of sensory input in the form of sequences of output
spikes (Koch, 1999; Dayan and Abbott, 2005; Klausberger and Somogyi, 2008). The generation
and conduction of action potentials need to consume a lot of energy, which would have a great
impact on neural codes and circuits (Niven and Laughlin, 2008; Alle et al., 2009; Sengupta et al.,
2010, 2013, 2014; Moujahid et al., 2011). Characterizing energy efficiency associated with different
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input-output relations is an essential step toward capturing
the full strategies used by the neuron to encode stimulus.
Previous experimental and modeling studies (Koch, 1999; Dayan
and Abbott, 2005; Klausberger and Somogyi, 2008; Niven and
Laughlin, 2008; Prescott et al., 2008a; Alle et al., 2009; Carter and
Bean, 2009; Sengupta et al., 2010, 2013, 2014) have reported that
both of the input-output relation and energy efficiency of neurons
depend not only on input spatiotemporal properties but also on
neuronal intrinsic characteristics.

One basic intrinsic property for all spiking neurons is the
spike threshold, which is a special membrane potential that
distinguishes subthreshold responses from spikes (Izhikevich,
2005; Goldberg et al., 2008). The small depolarization of
membrane potential below this special value is subthreshold
and decays to resting potential, while large depolarization above
this value is suprathreshold and results in an action potential
(Izhikevich, 2005; Prescott et al., 2008a; Wester and Contreras,
2013). That is, a spike is initiated only when membrane
depolarization reaches this threshold potential. In vivo, the spike
threshold is dynamic, and varies with input properties as well
as spiking history. Especially, it is inversely correlated with the
preceding rate of membrane depolarization (i.e., dV/dt) prior to
spike initiation (Azouz and Gray, 2000, 2003; Henze and Buzsáki,
2001; Ferragamo and Oertel, 2002; Escabí et al., 2005; Wilent
and Contreras, 2005; Kuba et al., 2006; Goldberg et al., 2008;
Priebe and Ferster, 2008; Cardin et al., 2010; Higgs and Spain,
2011; Platkiewicz and Brette, 2011; Wester and Contreras, 2013;
Fontaine et al., 2014). A dynamic threshold plays a critically
important role in spike generation, which would participate
in and produce profound influences on neuronal input-output
properties (Azouz and Gray, 2000, 2003; Henze and Buzsáki,
2001; Ferragamo and Oertel, 2002; Escabí et al., 2005; Wilent
and Contreras, 2005; Kuba et al., 2006; Priebe and Ferster, 2008;
Cardin et al., 2010; Platkiewicz and Brette, 2011). For instance,
the neuron with a dynamic threshold is more capable of filtering
out synaptic inputs (Higgs and Spain, 2011) and regulating its
response sensitivity (Azouz and Gray, 2000, 2003; Ferragamo and
Oertel, 2002; Wilent and Contreras, 2005; Cardin et al., 2010).
Further, the dynamic threshold could also effectively enhance
feature selectivity (Azouz and Gray, 2003; Escabí et al., 2005;
Wilent and Contreras, 2005; Priebe and Ferster, 2008), contribute
to coincidence detection and gain modulation (Azouz and Gray,
2000, 2003; Platkiewicz and Brette, 2011), as well as facilitate
precise temporal coding (Kuba et al., 2006; Higgs and Spain,
2011).

The spike threshold dynamics could be modulated by the
biophysical properties of intrinsic membrane currents (Hodgkin
and Huxley, 1952; Azouz and Gray, 2000, 2003; Wilent and
Contreras, 2005; Guan et al., 2007; Goldberg et al., 2008;
Higgs and Spain, 2011; Platkiewicz and Brette, 2011; Wester
and Contreras, 2013; Fontaine et al., 2014). Two especially
relevant biophysical mechanisms are Na+ inactivation and K+

activation, which are originally recognized by Hodgkin and
Huxley (1952). Because Na+ inactivation specifically affects
spike initiation (Platkiewicz and Brette, 2011), it is usually
regarded as the fundamental mechanism of regulating threshold
(Azouz and Gray, 2000, 2003; Henze and Buzsáki, 2001; Wilent

and Contreras, 2005; Platkiewicz and Brette, 2011; Wester and
Contreras, 2013; Fontaine et al., 2014). Recently, more and more
studies find that the outward K+ channels, especially those
activated at the subthreshold potentials, could also powerfully
regulate spike threshold (Storm, 1988; Bekkers and Delaney,
2001; Dodson et al., 2002; Guan et al., 2007; Goldberg et al., 2008;
Higgs and Spain, 2011; Wester and Contreras, 2013). Blocking
them (Storm, 1988; Bekkers and Delaney, 2001; Dodson et al.,
2002; Guan et al., 2007; Goldberg et al., 2008) or depolarizing
their activation voltage to make them unactivated prior to spike
initiation (Wester and Contreras, 2013) could both result in a loss
of the inverse correlation between spike threshold and dV/dt.

In addition to modulating threshold dynamic, the biophysical
properties of membrane currents could also control neuronal
spike initiation (Koch, 1999; Izhikevich, 2005; Prescott and
Sejnowski, 2008; Prescott et al., 2008a,b; Yi et al., 2014a,b). It
is shown that if the K+ current that flows out of the cell is
absent or unactivated at the potentials around spike threshold,
i.e., perithresholds, the neuron generates a continuous frequency-
current curve through a saddle-node on invariant circle (SNIC)
bifurcation, i.e., Hodgkin class 1 excitability (Izhikevich, 2005;
Prescott et al., 2008a,b; Yi et al., 2014a). On the contrary, if the
outward K+ current has already activated at the perithresholds,
the neuron generates a discontinuous frequency-current curve
through a Hopf bifurcation, i.e., Hodgkin class 2 excitability
(Izhikevich, 2005; Prescott et al., 2008a,b; Yi et al., 2014a).
Furthermore, Rothman and Manis (2003a,b,c) find that a high
density of low-threshold K+ current in ventral cochlear nucleus
is responsible for phasic firing of class 2 excitability, while a
lower density promotes regular firing of class 1 excitability.
These reports suggest that membrane biophysics is able to
further determine neuronal input-output relations. Then, the
dynamics of the spike threshold should also be dependent on
input-output properties. Uncovering the biophysical connection
between them is crucial for explaining how biophysical properties
contribute to neural coding. Meanwhile, it could also provide
a deeper insight into the mechanism of neural coding than a
purely phenomepological description of input-output relation.
However, the relevant studies are still lacking.

In fact, the biophysical properties of membrane currents not
only affect spike threshold dynamic and input-output relation,
but also influence neuronal energetics. During the generation of
action potential, there is flux of different ions across their voltage-
gated ionic channels, such as, influx of Na+ and efflux of K+.
In this process, the ions need to expand significant quantities of
energy to permeate cell membrane against their concentration
gradient (Attwell and Laughlin, 2001; Niven and Laughlin, 2008;
Alle et al., 2009; Carter and Bean, 2009; Sengupta et al., 2010,
2013, 2014; Moujahid et al., 2011, 2014; Moujahid and D’Anjou,
2012). The influx or efflux of ions, i.e., inward or outward
ionic currents, dominate and make a significant contribution
to neuronal energy consumption (Attwell and Laughlin, 2001;
Alle et al., 2009; Sengupta et al., 2010, 2013, 2014). Previous
studies (Alle et al., 2009; Carter and Bean, 2009; Sengupta et al.,
2010, 2013; Moujahid and D’Anjou, 2012; Moujahid et al., 2014)
have shown that adjusting the biophysical properties of voltage-
gated Na+ and K+ currents, such as, channel conductance or
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activation/inactivation time constant, could modulate the energy
efficiency of neuron. Then, a critical question arises as to how the
spike threshold dynamic, a basic property of neuron, influences
its energy consumption. Until now, there is still no relevant
research on this issue.

Here, we systematically characterize the input-output
property and energy efficiency of the neuron with different
spike threshold dynamics. To achieve this goal, we first adopt
a two-dimensional biophysical model and vary its parameter
that controls the voltage-dependency of K+ current to produce
different relationships between spike threshold and dV/dt. Then,
we investigate how the minimal neuron responds to external
stimulus as well as its relevant biophysical mechanism in the
case of different threshold dynamics. Finally, we deduce the
energy functions involved in the dynamics of neuron model, and
determine the energy efficiency associated with each threshold
dynamic.

Materials and Methods

Two-Dimensional Neuron Model
A two-dimensional biophysical model proposed by Prescott et al.
(2008a) is adopted to explore how spike threshold dynamic
modulates neuronal input-output relation and metabolic energy
in present study. It is a modified version of Morris-Lecar model,
which incorporates three ionic currents, i.e., a fast Na+ current
INa, a delayed rectifying K+ current IK , as well as a leak current
IL. The model is given by the following differential equations
(Prescott et al., 2008a)

C
dV

dt
= Iin + Inoise − gKn(V − VK)− gNam∞

(V)(V − VNa)− gL(V − VL) (1)

dn

dt
= ϕn

n∞(V)− n

τn(V)
(2)

where V is the membrane voltage and n is the activation
gating variable for IK . The three terms on the right side of
Equation (1), i.e., gKn(V − VK), gNam∞(V)(V − VNa) and
gL(V − VL), respectively denote slow outward IK , fast inward
INa and outward IL. m∞(V) = 0.5

{

1+ tanh [(V − βm) /γm]
}

and n∞(V) = 0.5
{

1+ tanh [(V − βn) /γn]
}

are the steady-
state voltage-dependent activation functions for INa and IK , and
τn(V) = 1/ cosh [(V − βn) /2γn] is the K+ voltage-dependent
time constant function. The kinetics of inward INa are controlled
by parameter βm and γm, and the kinetics of outward IK are
controlled by βn and γn. In previous modeling study, Wester
and Contreras (2013) have shown that hyperpolarizing K+

activation voltage, even in the absence of Na+ inactivation, is
sufficient to produce a dynamic spike threshold that is inverse
to the preceding dV/dt. Then, we vary parameter βn from −5
to −15 mV in steps of −2 mV to produce different sensitivity
of spike threshold to dV/dt in our stimulation. These values of
βn can span different spike initiation dynamics of the model
(Prescott et al., 2008a). Table 1 gives the numerical values

TABLE 1 | Parameters in two-dimensional model (Prescott et al., 2008a).

Symbol Value Description

C 2µF/cm2 Membrane capacitance

gNa 20mS/cm2 Na+ maximal conductance

gK 20mS/cm2 K+ maximal conductance

gL 2mS/cm2 Leak maximal conductance

VNa 50 mV Na+ reversal potential

VK −100 mV K+ reversal potential

VL −70 mV Leak reversal potential

βm −1.2 mV Controlling the half-activation voltage of

Na+ current

γm 18 mV Slope factor of activation curve m∞ (V )

βn −5, −7, −9, −11, −13,

or −15 mV

Controlling the half-activation voltage of

K+ current

γn 10 mV Slope factor of activation curve n∞ (V )

ϕn 0.15 (unitless) Scaling factor for K+ activation variable n

and corresponding neural functions of the parameters in two-
dimensional model, which are the same as those described in
Prescott et al. (2008a).

Iin is the injected current used to stimulate neuron, which can
be either steps or ramps in our study. Inoise is used to replicate
synaptic noise, and is modeled as an Ornstein-Uhlenbeck process
(Uhlenbeck and Ornstein, 1930)

dInoise

dt
= −

Inoise

τnoise
+ σN(t) (3)

where N(t) is a random number drawn from a Gaussian
distribution with average 0 and unit variance. The amplitude
of weak noise Inoise is controlled by the scaling parameter σ

(Destexhe et al., 2001; Prescott and Sejnowski, 2008; Prescott
et al., 2008a,b), which could vary from 0µA/cm2 to 3µA/cm2

in our study. The time constant is τnoise = 5ms (Prescott and
Sejnowski, 2008; Prescott et al., 2008b).Whenwe determine spike
threshold, phase response curve (PRC) and bifurcation patterns,
the noisy current is removed from the neuron.

Method to Calculate Spike Threshold
The spike threshold for different values of dV/dt is determined
by a novel approach proposed by Wester and Contreras (2013).
According to their description, we use Iin to produce a cluster of
ramps to stimulate the neuron, so

Iin =

{

Kt (0 ≤ t ≤ t0)
0 (t > t0)

(4)

The ramp slope K controls the values of dV/dt leading to the
spike initiation. With a larger value of K, the membrane potential
V is forced to approach the threshold potential at a faster speed,
which corresponds to a bigger value of dV/dt. The stimulation
duration is controlled by t0. For a given slope K, the membrane
potential V will gradually approach the threshold as t0 increases.
When membrane potential V is around the threshold potential,
we stepwise extend ramp duration t0 to make each step result
in about additional 0.1mV depolarization in V until an action
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potential is initiated in the neuron. In this way, if V is driven to
cross spike threshold at the time of ramp offset, there will be a
spike generated after removing ramp (i.e., t > t0). Conversely, the
neuron fails to initiate a spike if V does not reach the threshold
potential at the time of ramp offset. Then, we empirically increase
ramp duration t0 to seek such a special membrane potential V∗:
0.1mV hyperpolarized to V∗ is subthreshold and neuron fails
to initiate a spike at the time of ramp offset, whereas 0.1mV
depolarized to V∗ is suprathreshold and neuron could initiate a
spike at the time of ramp offset. We define this special membrane
potential V∗ as the spike threshold of the neuron. In this manner,
the upstroke of the spike is purely due to the sufficient activation
of Na+ current, which has nothing to do with the current ramp.
This method allows us to measure the spike threshold with a high
precision less than 0.1mV.

Phase Response Curve Calculation
The PRC measures the phase shift of a periodically oscillating
neuron in response to a brief current pulse delivered at different
phases of the oscillation cycle (Ermentrout, 1996; Izhikevich,
2005; Smeal et al., 2010; Fink et al., 2011; Schultheiss et al., 2012).
The PRC of the neuron can be defined as (Ermentrout, 1996;
Izhikevich, 2005; Smeal et al., 2010; Schultheiss et al., 2012)

PRC(ϑ) = 1− T′(ϑ)/T (5)

where T is the oscillation period of the neuron without
perturbation (i.e., 1/T represents natural oscillation frequency),
and T′(ϑ) is the oscillation period when the neuron is stimulated
at phase ϑ . A positive value of PRC indicates there is a phase
advance, and a negative value indicates a phase delay. If the
amplitude of current pulse is sufficiently small and its duration is
sufficiently brief, the PRC becomes the infinitesimal PRC, which
could reflect the intrinsic dynamics of the oscillator (Ermentrout,
1996; Smeal et al., 2010; Fink et al., 2011; Schultheiss et al.,
2012). In the following, we use “PRC” to refer to the infinitesimal
PRC. Further, the PRCs of neural oscillator have often been
classified into two categories: Type I that respond with only phase
advances to excitatory stimuli, and Type II that display both
phase advances and delays (Hansel et al., 1995; Smeal et al., 2010;
Fink et al., 2011).

Method to Determine Energy Consumption in
Two-Dimensional Model
We use the method proposed byMoujahid et al. (2011, 2014) and
Moujahid and D’Anjou (2012) to determine the electrochemical
energy involved in the modified Morris-Lecar model. The model
in Equation (1) can be regarded as an electrical circuit, which
consists of membrane capacitance C, Na+, K+ and leak ionic
channels. According to the description by Moujahid et al. (2011,
2014) and Moujahid and D’Anjou (2012), the total electrical
energy accumulated in this circuit at a given time can be
expressed by

E(t) =
1

2
CV2

+ ENa + EK + EL (6)

Here, 12CV
2 is the electrical energy accumulated in themembrane

capacitance. ENa, EK , and EL are the energies in the batteries

needed to create the concentration jumps in Na+, K+ and
chloride, respectively. These energies could be supplied by
external stimuli, i.e., Iin or Inoise. The first-order derivative with
respect to time of the Equation (6) is

dE

dt
= CV

dV

dt
+ INaVNa + IKVK + ILVL (7)

Substituting dV
dt

with Equation (1), the energy rate δ (i.e., dE
dt
) in

the circuit can be written as

δ = (Iin+Inoise)V−INa(V−VNa)−IK(V−VK)−IL(V−VL) (8)

where (Iin+Inoise)V is the energy power supplied by stimulus. The
last three terms on the right hand of Equation (8) represent the
energy consumption rate of the ionic channels. If we substitute
INa, IK , and IL with their expressions, we can deduce the energy
rate of each ionic channel

δNa = gNam∞(V)(V − VNa)
2 (9)

δK = gKn(V − VK)
2 (10)

δL = gL(V − VL)
2 (11)

It is easy to see that this method is not based on the stoichiometry
of the ions. Thus, it requires no hypothesis about the overlapping
between Na+ and K+ ions, and then avoids the overestimate
values of energy (Moujahid et al., 2011, 2014; Moujahid and
D’Anjou, 2012).

Numerical Stimulation
The differential equations of the entire system are numerically
integrated with MATLAB. The bifurcation analysis is performed
with XPPAUT (Ermentrout, 2002) following the standard
procedures. In bifurcation analysis, we use Iin to produce step
currents to stimulate the neuron and systematically vary its
intensity to determine at what point the neuron qualitatively
changes its dynamical behavior, such as, starting or ceasing
repetitive spiking. This special point corresponds to a bifurcation.
Further, the PRC is also calculated by XPPAUT.

Results

In this section, we first adjust parameter βn that controls the
half-activation voltage of K+ channel to produce the spike
threshold that has different sensitivity to the preceding dV/dt,
as shown in Figures 1A,B. One can find that the spike threshold
becomes more depolarized as we shift βn alone from −5
to −15mV in steps of −2mV (Figure 1B). For three cases of
βn = −5,−7, and−9mV, the spike thresholds are all insensitive
to dV/dt, and there is always no inverse relationship between
spike threshold and dV/dt. On the contrary, the spike threshold
shows relatively large variations and becomes sensitive to dV/dt
with βn = −11,−13, and −15mV. In these three cases, the
spike threshold varies inversely with the preceding dV/dt, and
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FIGURE 1 | f − Iin curves associated with different threshold

dynamics induced by adjusting βn. (A) The half-activation voltage

βn of activation variable n is hyperpolarized from −5 to −15mV with a

step of −2mV. (B) Spike threshold as a function of dV/dt with

different values of βn. The range of dV/dt is from 0.45 to 4.5mV/ms.

(C) f − Iin curves generated by the neuron with different threshold

dynamics for three levels of noise. The noise amplitude is σ = 0,0.5,

and 3µA/cm2, respectively.

simultaneously the inverse relationship becomesmore significant
as βn decreases. The range of dV/dt in Figure 1B is from
0.45 to 4.5mV/ms, which is achieved by increasing ramp
slope K in Equation (4). This range is selected in accordance
with previous modeling (Wester and Contreras, 2013) and
experimental (Wilent and Contreras, 2005) studies. In the
following, we respectively explore neuronal input-output relation
and energy efficiency in these six cases.

Input-Output Property of the Neuron with
Different Threshold Dynamics
For different sensitivity of spike threshold to dV/dt, we
respectively investigate how neuron responds to constant current
in the cases of no noise (σ = 0µA/cm2), low noise (σ =

0.5µA/cm2) and high noise (σ = 3µA/cm2). To achieve this
goal, we use Iin to produce step current to stimulate the neuron
and systematically alter its intensity to determine neuronal spike
frequency f .

Figure 1C gives neuronal spike frequency f as a function of
input current Iin (i.e., f − Iin curve) in six cases of threshold
dynamic. For three levels of noise, one can observe that the
depolarization of spike threshold slightly reduces the slope
of f − Iin curve at the low firing rates and obviously shifts
the curve to the right, which corresponds to increasing the
minimal current intensity used for triggering repetitive spike (i.e.,
current threshold). If spike threshold is insensitive to dV/dt (i.e.,
βn = −5, −7, and −9mV), the neuron could spike repetitively
at very low frequencies in all levels of noise, which endows it
with a continuous f − Iin curve. However, when spike threshold
is sensitive to dV/dt (i.e., βn = −11, −13, and −15mV), the

neuron is unable to maintain repetitive spike at low rates and
produces a discontinuous f − Iin curve in the cases of no or low
noise levels (Figure 1C). This discontinuous f − Iin curve could
be switched to continuous by high level of noise.

Since noise is another ubiquitous feature of the nervous
system with myriad effects on neural coding (Tuckwell, 1989;
Gerstner and Kistler, 2002; Tuckwell et al., 2009; Tuckwell and
Jost, 2010), we further investigate how noise modulates spike
trains of the neuron with different spike threshold dynamics,
as shown in Figures 2, 3. It is observed that no matter there
is an inverse relationship between spike threshold and dV/dt
or not, the spike number always increases monotonically from
0 as noise amplitude σ increases when Iin is less than the
bifurcation value I∗in. For Iin just beyond I∗in, the noise could
inhibit or even terminate the repetitive spiking of neuron when
its spike threshold is sensitive to dV/dt (Figures 2D–F). In this
case, the neuron is able to generate repetitive spike without
noise (i.e., σ = 0µA/cm2), since Iin has already exceeded
bifurcation value I∗in. Introducing synaptic noise makes the spike
trains become irregular. Unexpectedly, weak noise (such as, σ =

0.2µA/cm2) has an obvious inhibitory effect on neuronal spiking
behavior, which even terminates repetitive spiking for a long
time. When noise amplitude is increased to σ = 1.5µA/cm2

or even higher, there will be more spikes evoked again. That is,
when Iin is in the vicinity of I∗in, small noise could noticeably
inhibit neuronal spiking and there is a minimum in the mean
spike number as σ goes up (Figures 3D–F). Meanwhile, as the
inverse relationship between spike threshold and dV/dt gets
pronounced, the inhibitory effect induced by small noise becomes
stronger. However, this inhibitory effect does not appear in the
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FIGURE 2 | Effects of weak noise on spiking trains around the

bifurcation. The input current is (A) Iin = 37.3µA/cm2, (B) Iin = 37.8µA/cm2,

(C) Iin = 38.72µA/cm2, (D) Iin = 40.2µA/cm2, (E) Iin = 42.2µA/cm2, and (F)

Iin = 45.8µA/cm2. The values of noise amplitude σ have been indicated in

each panel.

neuron with an insensitive spike threshold to dV/dt (left panels,
Figures 2, 3). In this case, the noise only disturbs its spike trains
and makes them become irregular, which is unable to terminate
repetitive spiking (Figures 2A–C).

Phase Response Curves of the Neuron with
Different Threshold Dynamics
In previous section, we have found that different sensitivity
of spike threshold to dV/dt could result in distinct (i.e.,
discontinuous or continuous) f − Iin curves in the case of no
or low noise. In this section, we use PRC theory to further
characterize neuronal response properties in the case of different
threshold dynamics.

Figure 4 displays the PRCs of the neuron model in six cases of
spike threshold dynamic. It is found that the PRC is dependent
on the natural oscillation frequency of neuron, and increasing
it could attenuate the amplitude of phase shift. When spike
threshold is insensitive to dV/dt, the neuron generates type I

FIGURE 3 | Mean numbers of spikes as a function of noise amplitude

for each threshold dynamic. (A–F) respectively give the mean spike number

N (40 trials) as noise amplitude σ is increased in the neuron for 1000ms time

interval with different values of βn. The value of Iin indicated by blue line is

below the bifurcation point I*
in
and there is no repetitive spiking generated in

the neuron without noise, while the values of Iin indicated by three other colors

are above the bifurcation point I*
in
.

PRC, which exclusively displays phase advances (i.e., positive
values) to excitatory brief pulse (Figure 4A). However, when
spike threshold has an obvious inverse relation with dV/dt,
the neuron shows phase delays (i.e., negative values) at earlier
phases and phase advances at later phases (Figure 4B), which
is manifested as a type II PRC. It has been proposed that type
I PRC corresponds to a continuous f − Iin curve and type II
PRC corresponds to a discontinuous f − Iin curve (Ermentrout,
1996; Izhikevich, 2005; Smeal et al., 2010; Fink et al., 2011).
Our simulation results in Figures 1C, 4 are in accordance with
this proposal. Further, it is worth pointing out that there are
very small negative regions at the earlier phases of type I PRCs
(Figure 4A). This is because the action potentials generated in
Morris-Lecar like model consume a much larger portion of
interspike interval than other models (Rinzel and Ermentrout,
1998; Fink et al., 2011). But according to the descriptions of Fink
et al. (2011), we could ignore these early small phase delays in
type I PRCs.

Biophysical Basis of the Spike Initiation
Associated with Different Threshold Dynamics
By varying parameter βn, we have identified the input-output
property associated with each spike threshold dynamic. Our
next step is to explore why the neuron with distinct threshold
dynamics produces different input-output properties. It has been
known that the membrane currents with opposite directions play
different roles in spike generation. The currents flowing into
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FIGURE 4 | PRCs of the neuron with different threshold dynamics. The

neurons in (A) have an insensitive spike threshold to dV/dt, and in (B) have a

sensitive threshold to dV/dt. For each threshold dynamic, we compute

neuronal PRC at three different natural firing frequencies. The corresponding

stimulation current is: Iin = 37.52, 39.31, and 40.87µA/cm2 for βn = −5mV;

Iin = 37.966, 39.70, and 41.33µA/cm2 for βn = −7mV; Iin = 38.74, 40.28,

and 41.94µA/cm2 for βn = −9mV; Iin = 41.17, 41.81, and 42.87µA/cm2 for

βn = −11mV; Iin = 42.63, 43.20, and 44.25µA/cm2 for βn = −13mV;

Iin = 45.478, 45.688, and 46.5µA/cm2 for βn = −15mV. All PRCs are

computed in the case of no noise, i.e., σ = 0µA/cm2.

the cell mainly depolarize membrane voltage to produce the
rapid upstroke of the spike (i.e., positive feedback), whereas the
currents flowing out of the cell mainly hyperpolarize membrane
voltage which are responsible for the repolarization and produce
the downstroke of the spike (i.e., negative feedback) (Izhikevich,
2005; Prescott et al., 2008a,b; Yi et al., 2014a). Here, we investigate
how the opposite currents interact at the perithreshold potentials
to determine neuronal response property in six cases of spike
threshold dynamic.

Reducing parameter βn from −5 to −15mV results in a
hyperpolarizing shift in the half-activation voltage of outward
K+ current IK (Figure 1A), which causes IK to be more strongly
activated by the perithreshold depolarization (Figure 5A). For
three cases that the spike threshold is insensitive to dV/dt (i.e.,
βn = −5, −7, and −9mV), the outward IK activates at a higher
potential than inward INa (Figure 5A), which indicates that the
slow outward current IK does not become activated until after the
spike is initiated. In these three cases, the relationship between
steady-state net membrane current ISS and membrane voltage
V (i.e., ISS − V curve) is always non-monotonic (Figure 5B),
which has a region of negative slope. At the local maximum of
ISS − V curve, the inward INa balances outward unactivated IK

FIGURE 5 | Biophysical basis of the spike initiation for different

threshold dynamics. (A) shows the individual steady-state membrane

currents at the subthreshold potentials. Decreasing βn has no effects on the

activations of inward INa and outward IL, while it causes outward IK to be

more strongly activated by perithreshold depolarization. (B) gives the

relationship between steady-state net membrane current ISS and membrane

potential V (i.e., ISS − V curve). ISS is computed as the sum of three individual

currents, i.e., ISS = INa + IK + IL. (C,D) summarize the bifurcation diagram

associated with each spike threshold dynamic. The stable equilibrium is

indicated by orange solid line and unstable is orange dotted line. The stable

limit cycle is indicated by green solid line and unstable is purple dotted line.

and outward IL. Then, any further depolarization could result
in the progress activation of INa and make it become self-
sustaining to generate the upstroke of the spike. In other words,
the bifurcation occurs at this voltage, i.e., ∂ISS/∂V = 0. Since
the depolarizing current INa faces no restraint of hyperpolarizing
current at the perithreshold potentials, the membrane potential
V could be driven to slowly pass through spike threshold. Thus,
the neuron is able to spike repetitively at low frequencies and
produce a continuous f−Iin curve. This continuous input-output
property is generated through a SNIC bifurcation (Figure 5C),
which corresponds to a non-monotonic ISS−V curve (Izhikevich,
2005; Prescott et al., 2008a,b; Yi et al., 2014a). Further, because
inward INa dominates spike initiation without the restraint of IK
at the perithresholds, a brief, excitatory stimulus only leads to
advances in oscillation cycle and positive values of phase shift,
which corresponds to a type I PRC.

For the other three cases that the spike threshold is sensitive
to dV/dt (i.e., βn = −11, −13, and −15mV), the outward
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IK activates at roughly the same V with inward INa or at a
slightly lower V than INa (Figure 5A). The activation of IK at
low potentials makes the outward currents become so strong that
the inward INa is unable to balance them at the perithreshold
potentials, which results in a monotonic ISS − V curve without
local maximum (Figure 5B). To initiate action potentials, the
inward INa must exploit its fast kinetic to activate faster than
slow outward IK , and drives V through threshold potential with
a sufficient speed that the outward IK cannot catch up. Only in
this way can the positive feedback outrun negative feedback to
produce the upstroke of the spike. Since the V trajectory between
two spikes must be more rapid than IK , the neuron is unable
to spike repetitively at low frequencies, which endows it with
a discontinuous f − Iin curve. This discontinuous input-output
property is generated through a Hopf bifurcation (Figure 5D),
which corresponds to a monotonic ISS − V curve (Izhikevich,
2005; Prescott et al., 2008a,b; Yi et al., 2014a). Further, in this
case there is a special subthreshold region where the activation
of low-threshold IK is greater than inward INa. When voltage
trajectory pass through this region, an excitatory pulse will
evoke a larger response from outward IK than from inward INa,
which leads to negative PRC values at early phases. At higher
membrane potential later in this special subthreshold region,
the fast activating INa dominates neuronal response to brief
excitatory pulse, which leads to the positive PRC values at later
phases. Then, the neuron generates a type II PRC that has both
phase delays and advances in these three cases.

Further, as spike threshold gets depolarized, the outward IK
becomes more strongly activated at the perithreshold potentials,
which increases the net current ISS and makes it reach a higher
outward level prior to spike initiation. Since the outward current
hyperpolarizes membrane potential V and prohibits action
potential, there should be stronger step current Iin to counteract
outward current and activate inward INa to generate spike. Then,
the current threshold for triggering neuronal repetitive spiking
increases as spike threshold gets depolarized.

Finally, whenHopf bifurcation occurs (i.e., the spike threshold
is sensitive to dV/dt), there is a narrow bistable region in the
vicinity of bifurcation, where stable resting state and stable limit
cycle coexist (Figure 5D). Then, synaptic noise could switch
voltage trajectory from one attractor, a stable limit cycle, to
another, a stable resting point (Tuckwell et al., 2009; Tuckwell
and Jost, 2010, 2011, 2012; Guo, 2011). This is the basis
of the inhibitory effects of weak noise on spiking behavior.
Meanwhile, the bistable region widens as the relationship
between spike threshold and dV/dt gets pronounced, which
causes the inhibitory effects of weak noise on repetitive spiking
to become stronger. On the contrary, there is no bistable region
in the case of SNIC bifurcation (Figure 5C), so the noise is unable
to inhibit or terminate neuronal spiking in this case, i.e., the spike
threshold is insensitive to dV/dt.

Energy Efficiency in the Neuron with Different
Threshold Dynamics
We have identified the input-output property and spike initiation
mechanism associated with each threshold dynamic. Here, we

characterize the energy efficiency consumed by the neuron in six
cases of threshold dynamic.

We first describe how ionic currents and their energy
consumption evolve during the generation of a spike. Figure 6A
shows an action potential generated in the neuron with
βn = −5mV to Iin = 37.5µA/cm2 in the case of no noise (i.e.,
σ = 0µA/cm2). At this value of Iin and σ, the neuron spikes
repetitively at about 23.5Hz. Figure 6B gives the Na+, K+ and
leak currents corresponding to the spike waveform described in
Figure 6A. The Na+ current flows into the cell and has a negative
sign, but we plot it with a positive sign for a better visualization of
the overlap between Na+ and K+ currents. During the upstroke,
the Na+ current first activates and drives membrane voltage to
quickly depolarize. Then, the outward K+ current activates which
hyperpolarizes membrane voltage and leads to the downstroke.
The energy consumption rates of the three ions are shown in
Figure 6C, which are computed according to Equations (9)–
(11). They represent the instantaneous energy consumption per
second by corresponding ionic channel, which are all positive.
One can observe that there are overlaps between Na+ and K+

energy, especially during the downstroke (Figure 6C). Figure 6D
gives the total energy rate δ consumed by all the ionic currents,
which is used to generate the action potential in Figure 6A.
In order to maintain the spiking activity of the neuron, this
energy consumption must be replenished by the ion pumps and
metabolically supplied by the hydrolysis of ATP molecules.

The left panels in Figure 7 give the average energy
consumption rate δ as a function of input current Iin (i.e., δ − Iin
curve) in six cases of spike threshold dynamics for three levels
of noise. It can be found that the energy consumption rate δ

in quiescent state is much lower than that in spiking state. This
is because the increase of supplied energy to the neuron, i.e.,
increasing step current, promotes the ionic to pass through cell
membranes, and makes them consumemore energy. When spike
threshold is insensitive to dV/dt (i.e., βn = −5,−7, and−9mV),
the δ − Iin curve is always continuous for three levels of noise.
However, if there is an obvious inverse relation between threshold
and dV/dt (i.e., βn = −11, −13, and −15mV), the δ − Iin curve
is discontinuous in the cases of no or low noise and continuous
for high level of noise. Thus, the energy consumption rate of
the neuron during the transition from quiescent state to spiking
regime is dependent on its firing rates, which is displayed in
Figure 1C. As spike threshold gets depolarized, the δ − Iin curve
in firing regime shifts to the right and the corresponding average
energy consumption rate δ of the neuron decreases.

The right panels in Figure 7 show the total energy
consumption in nJ per cm2 calculated as the integral over long
period of time of the area under the instantaneous ionic channel
energy curve [i.e., the sum of the energy rates given by Equations
(9)–(11)] divided by the number of spikes, which gives the energy
consumption of a single spike. As step current Iin increases,
the energy consumed in one spike first quickly decreases, and
then has a very slight increase (about 0.1nJ/cm2 per 1µA/cm2).
As threshold gets depolarized, the energy consumption in one
action potential becomes larger with some low Iin values, and the
synaptic noise obviously increases this consumption. However,
with high values of Iin, the energy demand for a spike gets smaller
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FIGURE 6 | Ionic currents and energy consumption involved in a spike.

(A) shows an action potential generated in the neuron with βn = −5mV. (B)

gives the Na+, K+ and leak currents in this action potential. The Na+ current is

negative but we plot it with a positive sign. (C) shows the energy consumption

rate for each ionic current, and (D) gives the total energy consumption rate of

the action potential. The stimulus is Iin = 37.5µA/cm2 and σ = 0µA/cm2. In

this case, the neuron generates repetitive spiking at about 23.5Hz.

as spike threshold depolarizes, and increasing synaptic noise
produces little effects on this consumption. That is, depolarizing
spike threshold increases the energy utilization efficiency of
the neuron in high firing rates. The lower values of energy
consumption in one spike are achieved at more depolarized spike
threshold and high stimulus current.

From the results in Figures 6B,C, it can be found that there
are overlaps between Na+ and K+ currents in an action potential.
These two positive charges flow in opposite directions as they
pass through cell membrane, so that they can neutralize each

other during the overlap. The overlap charge could be computed
as the integral of Na+ current during the hyperpolarized phase of
the spike (Moujahid et al., 2011, 2014; Moujahid and D’Anjou,
2012), which is the inward Na+ that is counterbalanced by
outward K+. Previous studies (Alle et al., 2009; Carter and Bean,
2009; Sengupta et al., 2010, 2013; Moujahid and D’Anjou, 2012;
Moujahid et al., 2014) have shown that reducing this overlap load
could decrease the energy demands for spike generation. From
Figure 8A, one can find that the overlap Na+ indeed undergoes
a reduction as spike threshold gets depolarized in the case of
high Iin values. The efficient use of inward Na+ could decrease
the energy consumption in an action potential and enhance the
energy efficiency of the neuron (Figure 8B).

Discussion

Our results demonstrate there is a fundamental connection
between spike threshold dynamics and neuronal input-output
properties. When spike threshold is insensitive to dV/dt, the
f − Iin curve is continuous and weak noise is unable to produce
inhibitory effects on spiking rhythms. In this case, the neuron
generates a type I PRC that exclusively displays phase advances.
However, when spike threshold is sensitive to dV/dt, the neuron
generates a discontinuous f − Iin curve and a type II PRC in the
cases of no or low noise. Increasing noise amplitude switches the
f − Iin curve from discontinuous to continuous. Simultaneously,
weak synaptic noise obviously prohibits spiking rhythms when
Iin is near and above the bifurcation point I∗in. In this case,
as the inverse relationship between spike threshold and dV/dt
gets pronounced, the inhibitory effects of weak noise on spiking
rhythms and the discontinuity of f − Iin curve both become more
significant. Further, the depolarization of the spike threshold
shifts the f − Iin curve to the right, alters the slope of f − Iin
curve at low spike rates, and increases the current threshold for
evoking neuronal repetitive spiking. These results indicate that
the spike threshold properties, such as, whether it is sensitive
to dV/dt, the inverse degree of it depends on dV/dt, or even
the values of threshold potential could all obviously influence
neuronal input-output relations.

All these input-output properties associated with each spike
threshold dynamic are derived from the distinct nonlinear
interactions between inward (depolarizing) and outward
(hyperpolarizing) currents at the perithreshold potentials. When
spike threshold is insensitive to dV/dt, the outward IK does
not activate prior to spike threshold, which leads inward INa
to dominate spike initiation without the restraint of IK . Due
to the absent of outward IK , the inward INa is able to balance
weak outward currents at the perithreshold potentials, which
results in a non-monotonic ISS − V curve, a type I PRC, and a
SNIC bifurcation. Under these conditions, V could be forced to
slowly pass through threshold potential and the neuron is able
to spike at low frequencies, thus producing a continuous f − Iin
curve. Since the SNIC bifurcation does not have the bistable
region, the inhibitory effects of weak noise on spiking rhythms
is missing in this case. When spike threshold is sensitive to
dV/dt, the outward IK is able to activate at the subthresholds,
and could become sufficiently strong prior to spike initiation.
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FIGURE 7 | Energy consumption as a function of Iin associated with

each threshold dynamic. Left panels give the average energy consumption

rate of the neuron with different spike threshold dynamics for three levels of

noise. The energy consumption rate is averaged over the 7000ms time

interval. Right panels are the total electrochemical energy consumed by an

action potential related to each spike threshold dynamic and input current Iin.

The noise amplitude is (A) σ = 0µA/cm2, (B) σ = 0.5µA/cm2, and (C)

σ = 3µA/cm2.

Then, inward INa is unable to balance it at the perithreshold
potentials, which leads to a monotonic ISS − V curve, a type
II PRC and a Hopf bifurcation. The action potential could be
successfully initiated because inward INa activates quickly to
drive V through threshold with a sufficient speed that slow
outward IK cannot overtake. This means the neuron is unable
to spike at low rates, which corresponds to a discontinuous
f − Iin curve. Since the neuron generates a narrow bistable
region when Hopf bifurcation occurs, the weak noise could
convert its state from stable limit cycle to resting and then
prohibit repetitive spiking. Further, the increase of current
threshold for evoking repetitive spiking is also due to the
intensity of net outward current becomes stronger as threshold
gets depolarized.

The biophysical explanation about how the activation
properties of intrinsic membrane currents contribute to the spike
threshold dynamic with the preceding dV/dt has been reported
in many experimental and modeling studies (Hodgkin and
Huxley, 1952; Storm, 1988; Azouz and Gray, 2000, 2003; Bekkers
and Delaney, 2001; Henze and Buzsáki, 2001; Dodson et al.,
2002; Wilent and Contreras, 2005; Guan et al., 2007; Goldberg
et al., 2008; Higgs and Spain, 2011; Wester and Contreras, 2013;
Fontaine et al., 2014). Meanwhile, the biophysical basis of how
different dynamical mechanisms of spike initiation (i.e., SNIC
and Hopf bifurcation) generate distinct input-output relations,
such as Hodgkin class 1 and class 2 excitability (Koch, 1999;
Izhikevich, 2005; Prescott and Sejnowski, 2008; Prescott et al.,
2008a,b; Yi et al., 2014a) or type I and type II PRC (Ermentrout,
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FIGURE 8 | Depolarizing spike threshold increases energy efficiency

by reducing overlaps between Na+ and K+ currents. (A) shows the

overlap Na+ load for different spike threshold dynamics in the case of high

stimulus. (B) gives the corresponding total energy required by a spike for

each spike threshold dynamic. The stimulus current is Iin = 60µA/cm2 and

Iin = 70µA/cm2, the noise amplitude is σ = 0µA/cm2.

1996; Smeal et al., 2010; Fink et al., 2011), has also been well
established. However, none of them has explored how spike
threshold dynamic modulates neuronal input-output relation.
With a simple biophysical model, we have successfully identified
a fundamental connection between spike threshold dynamic
and input-output property in this study. We also provided a
biophysical interpretation about how the nonlinear interactions
between inward and outward currents at the perithersholds
contribute to such connection. The powerful predictive ability
of subthreshold biophysical properties is further attested in our
work, which may be conducive to increase its future applications
in neural coding.

Since the stochasticity is a prominent feature of neural
system (Tuckwell, 1989; Gerstner and Kistler, 2002; Tuckwell
and Jost, 2010), much effort has been devoted to exploring
what effects of noise may produce on neuronal activity. A
lot of modeling and experimental studies have reported that
noise is able to enrich neuronal stochastic dynamics and trigger
many complex behaviors near different bifurcation points. For
example, it may induce stochastic firing patterns and enhance
neuronal information transmission capability through coherence
resonance near SNIC bifurcation (Gu et al., 2011; Jia et al., 2011;
Jia and Gu, 2012), inhibit repetitive spiking through inverse
stochastic resonance near Hopf bifurcation (Paydarfar et al.,

2006; Tuckwell et al., 2009; Tuckwell and Jost, 2010, 2011,
2012; Guo, 2011), or completely destroy bifurcation scenarios
and make neuronal response present a reliable feature (Tateno
and Pakdaman, 2004). However, most of these studies focus
on the phenomenological description of how noise impacts
spiking behavior, while do not provide a satisfying explanation
about the relation between neuronal intrinsic property and noisy
effects. Unlike them, the present study associates noisy effects
on spiking rhythms with neuronal intrinsic threshold dynamic.
What is more, we provide a plausible biophysical interpretation
for the observed noisy effects by relating them to the dynamical
mechanism of spike initiation. All these investigations could
provide a great insight into how noise participates in neural
coding.

In addition, we adopt a novel approach proposed byMoujahid
et al. (2011, 2014) and Moujahid and D’Anjou (2012) to
characterize the electrochemical energy of the neuron with
different spike threshold dynamics. This approach is based on
the biophysical considerations about the nature of neuronmodel,
which allows one to deduce an analytical expression of the
electrochemical energy involved in the dynamics of the model.
Contrary to the ion counting approach, this method does not
need to calculate the number of Na+ required to depolarize
membrane when estimating energy consumption, and also it
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requires no hypothesis about the extent of the overlapping
between Na+ and K+ (Moujahid et al., 2011, 2014; Moujahid
and D’Anjou, 2012). Thus, it could avoid the overestimate value
of energy that results from the ionic-counting based method
(Attwell and Laughlin, 2001; Alle et al., 2009; Hertz et al.,
2013). With this approach, we have found a basic link between
spike threshold, energy efficiency, and spiking frequency. It
is shown that the average energy consumption rate increases
with spiking frequency and could detect the transition of the
neuron from quiescence to firing state, whereas the energy
demand of a single spike decreases with spiking frequency. This
relation between energy consumption and spiking frequency is
consistent with that observed in the neocortex, hippocampus,
thalamus, and squid axon (Moujahid and D’Anjou, 2012;
Moujahid et al., 2014). As spike threshold gets depolarized,
the average energy consumption rate gets smaller. Meanwhile,
the energy demand for generating an action potential in the
case of high stimulus also decreases. This demonstrates that
depolarizing spike threshold could increase the energy efficiency
of the neuron. We further show that the more efficient use of
electrochemical energy in the case of more depolarized threshold
is mainly due to the reduced overlap load between inward Na+

and outward K+ currents. Previous reports (Alle et al., 2009;
Carter and Bean, 2009; Sengupta et al., 2010, 2013; Moujahid
and D’Anjou, 2012; Moujahid et al., 2014) have proposed that if
the Na+ and K+ currents have the substantially reduced overlap,
the corresponding action potential is more energy efficient.
Our stimulation results are consistent with this proposal. All
these experimental and modeling observations suggest that the
interactions between inward and outward currents could also
determine the electrochemical energy required by the neuron to
generate action potentials.

Conclusion

A dynamic spike threshold dependent on dV/dt plays a vital role
in neural coding and spike initiation, which requires a number of
metabolic energy. In this work, we have used a modified Morris-
Lecar model to systematically investigate the input-output
property and energy efficiency of the neuron with different
spike threshold dynamics. To the best of our knowledge, this is
the first study that links spike threshold dynamics, biophysical
properties, spike initiation, input-output relations and energy
efficiency together. The predictions and relevant mechanistic
explanations could be tested by intracellular recording in vivo,
and simultaneously more biophysically realistic simulations
will be required if we want to replicate these biological
effects more accurately. The systematic investigation about
how spike threshold dynamics modulates neural input-output
properties and energy efficiency is a useful stepwise method
for exploring how spike threshold participates in neural coding.
Moreover, translating the phenomenological descriptions into
biophysical interpretation is crucial for revealing howmembrane
biophysics impacts neural coding. Thus, our stimulations could
contribute to uncover the functional significance of spike
threshold as well as biophysical properties in neural coding
mechanism.
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