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Given the non-linearities of the neural circuitry’s elements, we would expect cortical

circuits to respond non-linearly when activated. Surprisingly, when two points in the

motor cortex are activated simultaneously, the EMG responses are the linear sum of

the responses evoked by each of the points activated separately. Additionally, the

corticospinal transfer function is close to linear, implying that the synaptic interactions

in motor cortex must be effectively linear. To account for this, here we develop a

model of motor cortex composed of multiple interconnected points, each comprised of

reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in

neuronal transfer functions are eschewed by strong synaptic interactions within each

point. Consequently, the simultaneous activation of multiple points results in a linear

summation of their respective outputs. We also consider the effects of reduction of

inhibition at a cortical point when one or more surrounding points are active. The network

response in this condition is linear over an approximately two- to three-fold decrease of

inhibitory feedback strength. This result supports the idea that focal disinhibition allows

linear coupling of motor cortical points to generate movement related muscle activation

patterns; albeit with a limitation on gain control. The model also explains why neural

activity does not spread as far out as the axonal connectivity allows, whilst also explaining

why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition.

Finally, we discuss the advantages that linear interactions at the cortical level afford to

motor command synthesis.

Keywords: motor cortex, balanced networks, linear summation, neural transfer functions, rate models, spiking

models

Introduction

Microstimulation of a motor cortical point can evoke EMG output in several muscles. This can
be quantified as a response vector. When two such points are simultaneously microstimulated,
the evoked EMG vector is the linear sum of the EMG vectors evoked by microstimulation
of each point on its own (Ethier et al., 2006). The result was unexpected and puzzling,
given non-linearities in synaptic transmission and neural transfer functions. Additionally, the
corticospinal transfer function—the relation between unit activity in the motor cortex (MCx)
and motoneuron activation—is close to linear (Townsend et al., 2006; Capaday et al., 2013).
This implies that the neural interactions within the motor MCx may be effectively linear.
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However, another possible explanation is that the distance
between paired points studied by Ethier et al. (2006) was
greater than the distance over which they interact. Several
experimental observations make this suggestion unlikely. The
distances between pairs of points studied by Ethier et al. (2006)
ranged between 0.66 and 5.7mm (mean = 2.65mm, SD =

1.52mm). The axon collaterals of motor cortical neurons extend
up to 6–7mm away from their soma and are studded with
synaptic boutons all along their course (Capaday et al., 2009).
Spiking at a motor cortical point ∼0.4mm in radius induces
spiking in a surrounding area of ∼1.5mm in radius (Capaday
et al., 2011). Thus, two points up to 3mm apart, or perhaps
more, share an overlapping territory. It follows that the distance
between cortical points studied by Ethier et al. (2006) was on
average within that over which they do interact. Taken together,
these considerations suggest the more interesting possibility.
The MCx circuitry may be wired to produce linear interactions
between cortical points (Capaday et al., 2013).

Balanced neural networks as originally proposed by van
Vreeswijk and Sompolinsky (1996, 1998) involve a feedback
dependent balance between synaptic excitation and inhibition
such that, despite non-linear unit properties, the population
output is a linear function of the input (Figure 1A). The
population also responds to inputs with a time constant that is
much shorter than that of the single units. In a balanced neural
network the sum of the excitatory currents from external inputs,
as well as from the activity of intrinsic circuit neurons, is balanced
nearly exactly by the recurrent inhibitory currents. The basic idea
of the balanced neural network is not unlike the principle used
in operational amplifiers, where negative feedback of a portion of
the output results in a device with linear input–output properties.
The balanced network configuration also explains spike time
variability. Spiking occurs at times when noise-like fluctuations
generated by the dynamics of the circuitry exceed threshold.
Spike timing is thus irregular and in fact asynchronous, even if
the external input is temporally constant.

Here we present a model of MCx based on interconnected
points that operate in a balanced state. The model explains

FIGURE 1 | (A) The basic balanced neural network model of a single motor

cortical point. (B) The f/I curve of a 2-C conductance based integrate and fire

neuron model.

how simultaneously active cortical points having non-linear
unit properties can sum their outputs linearly and we discuss
how this may simplify the synthesis of motor commands. We
have chosen a level of mathematical description which avoids
detailed, uncertain, or unavailable physiological measurements.
The emphasis, nonetheless, is on keeping a close correspondence
between the Mathematics and the Neurophysiology so as
to obtain mechanistic explanations and testable physiological
predictions. The model also allows us to understand the
consequences of controlling the response gain of a cortical point
by disinhibition and the mechanism that limits the spatial spread
of activity. We also show that conduction and synaptic time
delays do not destabilize the asynchronous state—i.e., time delays
do not lead to synchronized activity. This extends the principles
of balanced network operation.

Materials and Methods

There is considerable knowledge of the intrinsic, cable and
repetitive firing properties of layer five neurons in the MCx
(e.g., Crill and Schwindt, 1983; Stafstrom et al., 1984a,b). By
contrast, little is known about the properties of neurons in
other layers and in particular, those of inhibitory neurons.
Similarly, the dynamics of synaptic transmission in the MCx
in vivo, or in vitro, have not been investigated in sufficient
detail. Here, we assume that synaptic transmission efficacy, that
is the balance of synaptic facilitation and depression, is at steady-
state over the time interval of movement duration (Abbott and
Regehr, 2004). Taken together, the above considerations led us
to use rate models as a simple description which allows us to
understand the mechanisms of linear summation analytically.
Rate models require fewer assumptions and many parameters,
such as synaptic strengths, can be derived self-consistently (e.g.,
see Wilson, 1999). However, rate models cannot capture the fine
structure of single unit spike timing and do not account for all
types of spike synchronization. Therefore, we also simulated key
aspects using networks of spiking model neurons.

In the models we will present, a cortical point consists
of a population e of excitatory neurons and a population i
of inhibitory neurons (Figure 1A). The two populations are
reciprocally connected and each receives an external input
representing a motor command. Additionally, each population is
recurrently connected to itself. That is, the excitatory population
is auto excited and the inhibitory one auto inhibited. Importantly,
both neuron populations are driven by simultaneous excitatory
and inhibitory currents, as has been shown in physiological
experiments (e.g., Haider et al., 2006; Okun and Lampl, 2008).
We will analyze the interactions of several such points that
are fully interconnected by e-cell collaterals. As a first step, to
uncover the basic mechanism by which the balanced network
configuration leads to linearization of non-linear unit properties,
we first consider in detail the operations of an isolated point.

Basics of our Rate Model
We explain how temporal changes of firing rate depend on the
input current. The firing rate ra of a given neuron population
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a (a = e for the excitatory population, or i for the inhibitory
population) is given by

τa
dra

dt
= −ra + fa (Ia) , (1)

where τa is the time constant, Ia is the total input current and
fa (Ia) represents the frequency/current (f/I) relation, or transfer
function (e.g., see Shriki et al., 2003; Sompolinsky and White,
2004). We constrained the function fa (Ia) of each population
to that obtained in vitro from neurons of the cat motor cortex
(Stafstrom et al., 1984b). This also constrains the range of
synaptic connectivity strengths. Thus, the spike rate dynamics
of a population of n recurrently connected neurons is reduced
to a single system described by Equation (1) having the same
effective synaptic strengths, and whose firing rate represents the
population average. In our model, the activity of the excitatory
neuron population represents the corticospinal output.

We considered the following two points to obtain the form
of the fa (Ia) relation. First, that the neurons constituting a given
cortical point have an activation threshold and second, a non-
linear transfer function. In this report, we use a transfer function
motivated by our study of the neural mechanisms that allow
modulation of a single neuron’s firing rate gain by feedforward
inputs (Capaday and van Vreeswijk, 2006). There we showed
that, considering a two compartments (2-C) model, the firing
rate gain can be modulated by a mixture of excitatory and
inhibitory conductances in the dendritic compartment. Of equal
importance, our analysis demonstrated that the transfer function
of any spatially extended neuron model must be non-linear. To
a first order approximation, the equation relating the synaptic
input current at the soma Is and dendrite Id to the firing rate r
of our 2-C model is given by

r =
1

Cm (VT − Vr)

[

IS +
gc

gc + gD
ID

]

, (2)

where Cm is the membrane capacitance,VT the spiking threshold
and Vr the resting potential. Note how the dendritic synaptic
current ID is attenuated by a factor gc/

(

gc + gD
)

, where gc is the
conductance coupling the dendritic compartment to the somatic
compartment and gD is the dendritic conductance. Additionally,
note that the firing rate given by Equation (2) is a decelerating
function of the dendritic inputs (Figure 1B). We incorporate this
effect in the fa (Ia) relation of Equation (1) by a saturating transfer
function, namely a first order Rushton–Naka function

fa (Ia) =

∣

∣

∣

∣

∣

(

Ia − IT,a

)

I1/2,a +
(

Ia−IT,a

) rmax,a

∣

∣

∣

∣

∣

+.

(3)

This function relates the firing rate to the input current, where
I1/2,a is the current required to reach the half-saturation
rate rmax,a/2 and IT,a is the current threshold. Note the half
rectification symbol | |+, making fa (Ia) a positive valued
function. Following the result of Stafstrom et al. (1984b), rmax,a

was set to 250 Spk/s for both populations. From our analysis
of the 2-C model, I1/2,a, the half-saturation current, was

determined to be approximately 25 Spk/s. For the numerical
simulations we present here, IT,a was set to zero because in the
study by Ethier et al. (2006) all cortical points were stimulated
at supra-threshold intensities. This choice is without loss of
generality.

Model of a Single Cortical Point
Referring to Figure 1A, the net current Ie driving the excitatory
neurons is given by

Ie = qeoro + qeere−qeiri. (4)

While the net current driving the inhibitory population satisfies

Ii = qioro + qiere−qiiri. (5)

Here qab is the charge injected in population a per spike in
population b. The q-values thus represent the synaptic weights
and have units of charge/spike. Consequently, the product qabra
is a synaptic current (charge/s). Note that these synaptic weights
represent the combined effects of all neurons in population
b on a typical neuron in population a. Now, also take into
account that only a few tens of presynaptic spikes can bring the
postsynaptic neuron to threshold. Accordingly, because cortical
neurons receive inputs from thousands of others, the magnitude
of the synaptic currents Ia (a = e, or i)will be large relative to the
half-saturation current I1/2,a.

Rate Model of Interacting Cortical Points
To understand quantitatively the interaction between motor
cortical points we considered a fully interconnected three
point model, with each point described by a balanced network
(Figure 5). The connections between points are made by axon
collaterals of the e-cell population at each point. The connections
between the cortical points of the model correspond to the
recurrent long range connections identified in the cat MCx
(Capaday et al., 2009). Each point k receives an external input
ro,k

(

k = 1, 2, or3
)

. The output of the e-cell population at each
point projects to the e-cell and i-cell populations of all other
points. The inputs, Ie,k and Ii,k, to the excitatory and inhibitory
cells, respectively, of point k are given by

Ia,k = qaoro,k + qaere,k−qairi,k+
∑

l 6=k
wa,klre,l. (6)

where ro,k is the rate of the external input to point k, ra,k is
the rate of population a = e, or i at point k, and wa.kl is the
strength of the intracortical connections from the e-cells of point
l to the neurons in population a at point k. The first three terms
on the right hand side of Equation (6) correspond to the within
point currents of Equations (4) and (5). The terms under the
summation symbol are the inputs from the other points. The
synaptic strengths wa.kl decrease with the separation between
points, in keeping with the monotonic decrease of the density
of synaptic boutons projecting out of a motor cortical point
(Capaday et al., 2009). By contrast, the local (i.e., within point)
synaptic connection strengths (e.g., qee, qie, etc.) are identical
for all points. Importantly, inhibition remains local, that is the
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i-cells do not project to other cortical points. This is also in
keeping with a generally agreed upon organizational principle of
cortical architecture (e.g., Bacci et al., 2005; Markram, 2010; Fino
et al., 2013), notwithstanding that some inhibitory interneurons
may have longer range projections (e.g., Tomioka et al., 2005).
In addition, as previously suggested (Schneider et al., 2002) each
point contains a population of what we term master inhibitory
neurons (MI-neurons) whose function is to inhibit the local
i-cells that feedback inhibit the local e-cells (Figure 5). These
MI-neurons control, as we will show, the firing rate gain of a
cortical point. The presence of specificMI-neurons, specialized to
innervate other GABAergic interneurons, have been identified in
the hippocampus (Freund and Antal, 1988; Acsády et al., 1996).
Connections between various classes of inhibitory neurons is also
a prominent feature in the neocortex (e.g., Fino et al., 2013).
In particular, the recent finding that somatostatin expressing
interneurons of the visual cortex do not inhibit each other, yet
strongly inhibit all other inhibitory populations (Pfeffer et al.,
2013), supports well the idea of MI-neurons. The addition of
MI-neurons modifies the inhibitory feedback current onto the
e-cell population by scaling the transfer function of the i-cell
population according to the gain control mechanism described
above. Thus, the maximal firing rate of the i-cell population
rmax,i in Equation (3) was simply scaled by a factor Gi−cell, where
0 ≤ Gi−cell ≤ 1.

Spiking Model of Interacting Points with Delays
Rate models capture well the dynamics of neuronal populations,
as long as the units within a population do not synchronize
and the rate changes are not too rapid. For the single cortical
point model rapid rate changes are not an issue because we
are concerned with steady-state firing rates. However, our rate
analysis cannot accurately determine whether the interaction
between cortical points induces synchronous activity because
of conduction delays between the points. Furthermore, as
previously explained, rate models cannot capture the fine
structure of single unit spike timing and do not account for
all types of spike synchronization (e.g., see Roxin et al., 2005).
To investigate these issues we did simulations of a network
consisting of multiple points each of which contains populations
of excitatory and inhibitory spiking neurons. The standard
approach here would be to use networks of single compartment
model neurons, either integrate and fire, or conductance based.
But the f/I relationship of such cells is close to linear, particularly
at higher rates, as already discussed. Thus, linearization by
feedback via recurrent inhibitory connections is not meaningful
in such networks. Consequently, we modeled the excitatory
neurons as 2-C model neurons, consisting of a passive dendrite
coupled to a soma having integrate and fire dynamics following
Capaday and van Vreeswijk (2006). As shown there, these simple
model neurons have strongly non-linear input–output curves
when the input is a synaptic conductance change at the dendritic
compartment, or at both the dendritic and somatic compartment.
Recall that the firing rate of these 2-C model neurons is
approximately given by Equation (2). Inhibitory interneurons
tend to be electrotonically more compact. Accordingly we model

the inhibitory cells as single compartment integrate and fire
neurons.

Each cortical point consists of Ne = 8000 excitatory and
Ni = 2000 inhibitory model neurons. All excitatory and
inhibitory neurons in point k receive an external excitatory input
proportional to ro.k, the firing rate of the external population
that projects to the point. The neurons also receive recurrent
inputs from, on average, 1000 excitatory and 1000 inhibitory
neurons randomly chosen from the same point (van Vreeswijk
and Sompolinsky, 1998). Additionally, the neurons receive inputs
from excitatory cells in other points. The excitatory cells in point
k receive inputs from, on average, Ke

(

k, l
)

e-cells in point l,
while for the inhibitory neurons that number is Ki

(

k, l
)

. This
replicates the network connectivity of the rate model. To account
for the finite conduction speed, these inputs arrive with a delay
1kl. The distance between adjacent cortical points was 1mm,
consequently the conduction delay between points was set at
10ms, as experimentally determined (Capaday et al., 2011).

The parameters of the 2-C excitatory neurons were based on
electrophysiological measurements of cat layer five pyramidal
cells in vitro (Stafstrom et al., 1984a,b). The somatic and dendritic
membrane conductances were 0.06 and 0.12µS, respectively.
The coupling conductance between the two compartments was
0.06µS. The somatic and dendritic membrane capacitances were
0.175 and 0.525 nF. The inhibitory neurons were modeled as
single compartments having an input conductance of 0.1µS and
a membrane capacitance of 0.7 nF. For both model neurons
the threshold was set at −60mV, while the resting and reset
potentials were set at−75mV.

The synaptic inputs were modeled as instantaneous
conductance changes. For the e-cells, 80% of inputs of all
types were on the dendritic compartment. The reversal
potentials of the excitatory and inhibitory synapses were set at
0 and −85mV, respectively. A spike from the external inputs
causes conductance changes of 10.66 and 1.18 nS in the e-cells
and i-cells, respectively. Spikes from the e-cells in the network
induce conductance changes of 5.33 and 1.18 nS, respectively, in
the e-cell and i-cell population to which they are connected. The
i-cells produce a conductance change per spike of 56.0 nS in the
e-cells and 8.30 nS in the i-cells.

Results

The results are presented as follows. In the first section we
show that despite the non-linear f/I curves in the dynamic
equations describing a single cortical point, the balanced network
configuration produces nearly linear input–output curves. The
reasons are explained analytically in the subsequent section. In
the third section we demonstrate that the interactions between
synaptically connected cortical points remain nearly linear for
any combination of external or intracortical inputs, even when
the strength of the local feedback inhibition is reduced. The
response gain of a cortical point is also increased in the latter
condition. Additionally, we show that by such an increase of its
response gain, a cortical point which receives little or no effective
input from a distant point can, nonetheless, be functionally
coupled to it. An analytical treatment of the three point model
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explaining the mechanism of linear summation and its resilience
to reduction of feedback inhibition is presented in the following
section. Lastly, we demonstrate with the spiking model that
conduction delays between cortical points does not lead to spike
synchrony, or oscillations.

Input–Output Characteristics of the Single
Cortical Point Model
We reiterate the fact that when the e-cell and i-cell populations
are uncoupled (i.e., qie = qei = 0) and in the absence of
any auto-feedback (i.e., qee = qii = 0) the open-loop fa (Ia)
curve of each population is non-linear (Figure 1B), following the
Rushton–Naka transfer function Equation (3). Figure 2 shows
how the steady-state output of the balanced network described
by Equation (6) is related to the external input. The dashed curve
is the open-loop fa (Ia) curve of the e-cell, or i-cell, population
shown for reference. The salient outcome resulting from the
dynamic operation of the balanced network is that the fa (Ia)
curve of each population becomes markedly linear (Figure 2).
The gain is essentially constant over the range of external inputs,
but considerably lower at low rates (<50 Spk/s) compared to the
open-loop gain. Setting all inhibitory connection strengths to
zero (i.e., qei = qii = 0) results in a saturated near maximal
output, even for a minimal input (Figure 3). For the e-cell
population this is due to the strong recurrent excitatory feedback
qee unchecked by inhibition. For the i-cell population the effect
is due to the resulting strong drive by the e-cell population and
the absence of inhibitory auto-feedback. Themodel thus captures
the instability characteristic of focal ictal activity produced by
application of GABAA receptor antagonists (e.g., Capaday et al.,
2011). This observation and the fact that focal ictal activity can
occur in an isolated cortical slab strongly support the idea that
intracortical recurrent excitation must be strong and balanced
by commensurate inhibition. The model is thus in the class of
inhibition-stabilized networks (Vogels et al., 2005).

FIGURE 2 | Response of the single cortical point balanced network

model to external input. Note the near linear f (I) curves of the e-cell and

i-cell populations. By contrast, the dashed black curve depicts the non-linear

response of the output e-cell population in the open loop mode. Model

parameter values were qee = 0.67, qei = −1.7, qie = 1, and qii = −2.

In summary, the dynamics of the balanced network
linearized a non-linear system. The mechanisms underlying this
transformation are dealt with in the following section.

Analysis of the Single Cortical Point Model
Because the transfer functions of the excitatory and inhibitory
populations are non-linear we would not, a priori, expect them
to respond linearly with the external input. However, as we
will show, the negative feedback between the populations and,
importantly, the auto-inhibition of the inhibitory population
produces linearization of the response. If the external population
that drives the point fires with a constant rate ro, then after a
transient, the rates of the excitatory and inhibitory populations
reach a constant value. At this fixed point, the rates satisfy the
following equations

re =
∣

∣

∣

Ie−IT,e

I1/2,e + Ie−IT,e
rmax,e

∣

∣

∣

+,

ri =
∣

∣

∣

Ii−IT,i

I1/2,i + Ii−IT,i
rmax,i

∣

∣

∣

+,

(7)

where the inputs, Ie and Ii are given by

Ie = qeoro + qeere−qeiri and Ii = qioro+qiere−qiiri. (8)

One can actually solve the set of Equation (7) analytically for re
and ri, but this involves finding the roots of a quartic equation
whose form is not very revealing. Instead we will derive an
approximate solution, whichmuchmore clearly explains how the
linearization comes about. It also informs us on the conditions
which the network parameters have to satisfy to get linearization
of the response.

Under normal physiological conditions, the rates re and ri
should not be close to their maximum value for reasonable
external input rates ro. Looking at Equation (7) we can deduce
that this means that Ie and Ii should be small compared to
I1/2,e + IT,e and I1/2,i + IT,i, respectively. However, the synaptic

FIGURE 3 | Without feedback inhibition the cortical point is unstable,

firing at near maximal rate for a minimal input. Model parameter values

as in Figure 2, except that qei = 0 and qii = 0.
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strengths qab are large. Consequently, the total external input
qeor0, the total recurrent excitation qeere and the total recurrent
inhibition −qeiri of the excitatory population will all be much
larger in magnitude than I1/2,e + IT,e. The only way in which
the net input Ie can be sufficiently small is if the recurrent
inhibition approximately cancels the feedforward input and
recurrent excitation of the excitatory population. Thus, the rates
should be such that

qeoro + qeere ≈ qeiri (9)

Using the same argument for the inputs into the inhibitory
population, we obtain a second equation that the rates should
satisfy

qioro + qiere ≈ qiiri (10)

So we have two requirements that have to be approximately
satisfied. Combining the preceding two equations gives the
approximate solutions for re and ri, namely

re ≈
qeoqii−qioqei

qeiqie−qeeqii
ro=Aero, and ri ≈

qeoqie−qioqee

qeiqie−qeeqii
ro=Airo.

(11)

For a positive external input ro > 0, re and ri should be positive.
Thus, the weights qab should be such that Ae and Ai are positive.
The derivation makes the point that even though the transfer
functions of the two populations are non-linear, the recurrent
inputs make the response of the two populations approximately
linear with the external input rate. In fact, in this approximation
these rates do not depend on the properties of the open-loop
transfer function at all, but only on the synaptic weights, qab. This
is because the large q-values force the network to an operating
point where the total external input and excitatory recurrent
feedback are roughly balanced by the recurrent inhibition in both
the excitatory and inhibitory populations. In other words, at the
operating point Ie and Ii will be dynamically zero. Additionally,
Equations (11) imply that if we increase all qab-values by the
same factor (i.e., in proportion), the behavior of the differential
Equations (1) does not change, but it can be shown that the
linearization is improved.

We can use the fact that at the operating point of Equations (1)
Ie and Ii are ≈ 0 to derive their linear approximation. To do this
we calculate the JacobianmatrixDf of the system of Equations (1)
evaluated at Ie and Ii ≈ 0, the result is

Df =







rmax,eqee

τeI1/2,e

−rmax,eqei

τeI1/2,e
rmax,iqie

τiI1/2,i

−rmax,iqii

τiI1/2,i






. (12)

Inspection of the Jacobian shows that the linear approximation
has same synaptic weights as the non-linear system, except for
a scaling factor γa = rmax,a/τaI1/2,a (a = e, or i). We can thus
write the linear equivalent system as,

τe
dre

dt
= −re + γef (Ie) ,

τi
dri

dt
= −ri + γif (Ii) ,

(13)

where f (Ie) and f (Ii) are the linear functions given by
Equations (8).

Referring to Figure 4, it can be seen that the linear
approximation closely follows the output of the non-linear
balanced network model over the entire range of external
inputs. As expected, however, there is a deviation at high firing
rates because the linear approximation is not constrained by
rmax,a, whereas the non-linear system is. That is, in the linear
approximation rmax,a directly determines the scale factor γa =

rmax,a/I1/2,a. In the non-linear case, however, it is limiting
because of the form of the Rushton–Naka function.

As a last point on the analysis of the single cortical point
model we explain the conditions necessary to maintain stability
and robustness. For the cortical point model to be stable, the
eigenvalues λ1andλ2 of the Jacobian matrix must be negative.
By considering the trace and determinant of the Jacobian matrix,
it can be shown that stability requires qieqei > qeeqii and that,
γiqii > γeqee. In words, the product of the cross-feedback terms
must be greater than the product of the auto-feedback terms
and auto-inhibition should be sufficiently large compared to
auto-excitation. This can be understood in neurophysiological
terms as follows. Consider, for example, that qee is very strong,
this will drive the e-cells toward firing rate saturation. If qie
is weak, the i-cell population will not increase its firing rate
sufficiently to counteract the high activity level of the e-cells,
unless qei is very strong. This explains why it is the product qieqei
which is important. If instead, qii is strong, then again the e-
cell population will not receive sufficient inhibition unless either
qie, or qei are strong. The two terms are once more linked in a
multiplicative way. Note that this first requirement insures that
the network activity is not oscillatory (i.e., the two populations
firing in alternating bursts). The second stability requirement
that γiqii > γeqee insures that the feedback inhibition of
the e-cell population remains linear over the range of inputs.
This prevents the activity level of either population from
saturating.

FIGURE 4 | Comparisons of linearization produced by the dynamics of

the non-linear balanced network model vs. that of the linear system

approximation. Further details in the text. Model parameter values were

qee = 0.67, qei = −1.7, qie = 1, and qii = −2.
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FIGURE 5 | Each point k of the three point model receives an external

input ro,k (k = 1,2,3). The output of the e-cell population (E) at each point

projects to the e-cell and i-cell (I) populations of all other points, but the

synaptic strengths decrease with separation. Importantly, inhibition remains

local, i.e., the i-cells do not project to other cortical points. For clarity, only the

projections of point-1 to point-2 and -3 are shown (blue dashed curves). The

reader should keep in mind, however, that the three point model is fully

recurrent. Likewise, the local (within point) synaptic connection strength labels

(e.g., qee, qie, etc.) are shown only at point-1 and the MI-neuron only at

point-3. The value of the within point synaptic connections strengths are

identical for all points.

Summarizing, the cortical point model responds nearly
linearly to external inputs because the auto-inhibition of the
inhibitory population results in a linear transfer function for this
population and consequently linear feedback inhibition of the
excitatory population.

Input–Output Characteristics of Coupled Cortical
Points
The three point model afforded us the opportunity to determine
the details of linear summation of simultaneously active
cortical points and how this leads to linear summation of the
evoked EMG vectors. It also allowed us to understand the
consequences of controlling the response gain of a cortical point
by disinhibition and the mechanism that limits spatial spread of
activity. We begin with the details of linear summation.

Figure 6 shows the effects of activity at point-1 and point-2 on
the output of point-3. Importantly, in this example point-3 is not
driven by a direct external input, only by the activity of points
with which it is connected. The firing rate response of point-3, to
any combination of inputs from the other two points, lies on a
nearly perfect plane. This demonstrates, as should be expected
from the results of the previous section, that a given cortical
point responds linearly to intracortical inputs (i.e., to activity
from cortical points with which it is connected), in addition to
external inputs.Whatmay be less evident is that, because the long
range connections strengths between points are weaker than the
local within-point connections, a given cortical point operates on

FIGURE 6 | A given cortical point responds linearly to inputs from

surrounding points. In this example point-3′s firing rate increases nearly

linearly with inputs from point-1 and point-2. Note that inputs from point-1

have a minimal effect on the output of point-3 because the connections

between these points are weak. Such a small effect may go unnoticed in an

experiment. The connection strengths between the points were

we,31 = wi,31 = 0.02 and we,32 = wi,32 = 0.2. The color scale bar is in spikes

per second (Spk/s).

the strongly linear portion of its transfer function for intracortical
inputs. Note in Figure 6 how the output of point-3 is limited to
about 45 Spk/s for a maximal input from point-2 of 300 Spk/s. It
also responds weakly, but also linearly, to inputs from the more
distal point-1. Recalling that the points are fully interconnected,
the response of point-3 also depends on its feedback onto points 1
and 2. To summarize, a given cortical point’s gain for intracortical
inputs is smaller than its gain for external inputs. This makes it
operate on the strongly linear portion of the transfer function.
In general, a linear system is defined as follows. If one obtains a
response r1 to input I1 and a response r2 to input I2, then a linear
system is strictly defined by the following relation

aI1 + bI2 = ar1 + br2

for all pairs of inputs I1 and I2 and any combinations of
the constants a and b. From the aforementioned it should be
apparent that our three point model conforms to the definition
of linearity.

The reader will recall that in both of the above examples the
output is taken from a point which in physiological terms lies
in the surround fringe of the activated point (i.e., points that
are not directly activated). However, and importantly, it is the
firing of all cortical points, whether directly activated or part
of the indirectly activated fringe, that is transmitted down the
corticospinal tract. Now, as stated in the introduction, since the
corticospinal transfer function is essentially linear, it follows that
the cortical firing rate vector−→r is related to themuscle activation
vector−→m by the following simple model

−→m = W−→r (14)

where the matrix W contains the weighting coefficients. This
model states that each cortical point has fixed connection weights
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to one or more motoneuron pools and that each motoneuron
pool sums the inputs from one or more cortical points. The
simple linear summation of muscle responses occurs precisely
because the intracortical interactions are linear, this would
not occur otherwise. In the following section we present the
analysis that explains why the intracortical interactions are
linear.

Analysis of the Coupled Cortical Points Model
In the analysis of the effective linear response of the single
point model we saw that, because the coupling strengths qab
are large, the network evolves to a state in which the recurrent
inhibitory input almost perfectly cancels the external input and
the recurrent excitation for both the excitatory and inhibitory
populations. In the system of interacting cortical points the same
principle applies. The system evolves to a state in which, at each
cortical point k, the recurrent inhibition approximately cancels
the external input, the recurrent excitation, as well as the inputs
from other points. As in the single point model, this is true for
the e-cell and i-cell populations.

Requiring that the recurrent inhibition balances the various
excitatory inputs to the e-cells at point k yields, using Equation
(6), that the inhibitory current approximately satisfies

qeiri,k = qeoro,k + qeere,k +
∑

l 6=k
we,klre,l, (15)

while, from the balance of excitation and inhibition for the i-cells
in population k we obtain approximately

qiiri,k = qioro,k + qiere,k +
∑

l 6=k
wi,klre,l. (16)

Eliminating ri,k from these two equations we obtain

q̂eoro,k + q̂eere,k +
∑

l 6=k
ŵe,klre,l= 0, (17)

with,

q̂eo=qeo−
qei

qii
qio, q̂ee=qee−

qei

qii
qie, and ŵe,kl=we,kl−

qei

qii
wi,kl.

This set of equations can be rewritten in vector notation as

q̂eo
−→r o + M−→r e =

−→
0 , where −→r o and −→r e are vectors whose

k − th elements are ro.k and re,k, respectively. The effective
connectivity matrix’s elements are Mkk = q̂ee and Mkl = ŵe,kl,
for l 6= k. The rates of the excitatory populations are then simply
given by −→r e = −q̂eoM

−1−→r o. Thus, effectively, the rate of the
e-cell populations depend linearly on the external rates only. As
a result, the response of the system to simultaneous activation of
two or more points is just the sum of the responses to activation
of each point individually.

Local Control of Synaptic Inhibition and i-Cells
The more important insight gained from the coupled points
model pertains to the consequences of local control of inhibitory
synaptic strength and inhibitory feedback by the MI-neurons.
When a cortical point is stimulated and a second cortical

point disinhibited by focal iontophoretic release of a GABAA

antagonist, such as Bicuculline, the response is the same as
if both points were stimulated together (Schneider et al.,
2002; Ethier et al., 2006). Blocking of GABAA receptors is
equivalent to reducing qei and qii in the model. However,
we realized that, as the linear approximation Equations (11)
and (17) predict, changing the inhibitory synaptic strength
parameters in proportion does not change the responsiveness
of a cortical point to external or intrinsic inputs. Note that this
is only approximately true for the non-linear system as can
be appreciated from Figure 4. In any case, Equations (11) and
(17) predict that, for example, to increase the responsiveness
of a cortical point (i.e., its gain), qei must be decreased more
than qii. The consequences of this are shown in Figure 7.
In that example we demonstrate how local activity at point-
1 affects activity at the more distal point-3 as the strength of
the local inhibition qei at point-3 is reduced. In this condition
with the strength of local inhibition at point-3 set to a value
of qei = −1.85, inputs from point-1 have a minimal effect
on the output of point-3. As the strength of qei is reduced,
the firing rate gain of point-3 is increased. Note that because
the inhibitory coefficient qii was not changed, the qei/qii ratio
decreased. (i.e., differentially controlled). The conclusion is that
reduction of local inhibition allows for the functional coupling
between points in a graded manner only if the qei/qii ratio is
reduced. This has important implications for cortical Physiology
in general and, in particular, for the mechanism by which
iontophoretic release of GABAA receptor antagonists allows
cortical points to be coupled. These issues will be dealt with in
the discussion.

FIGURE 7 | In this example we show how local activity at cortical

point-1 affects activity at a the more distal point-3 as inhibition

strength at that point is reduced. The coupling strength between the two

points was set to we,31 = wi,31 = 0.02 and we,13 = wi,13 = 0.02. In this

condition, with the strength of the local feedback inhibition set at a value

qei = −1.85, inputs from point-1 have a minimal effect on the output of

point-3 (blue line). As qei is reduced at point-3, the firing rate gain of this point

is increased. Note, however, that the value of qii was not changed. As

explained in the text, functional coupling of two points by focal disinhibition

only works when qei and qii are changed differentially, not in proportion.
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Reduction of inhibitory synaptic strength as described in
the preceding section is non-specific, affecting both auto-
inhibition of i-cells and feedback inhibition of e-cells and thus
mimics GABAA receptor blockade. To link these experimental
observations to physiological function, we have suggested that
the feedback inhibition of e-cells by i-cells may be controlled
by MI-neurons (Schneider et al., 2002; Capaday, 2004; Capaday
et al., 2013). The idea is that these interneurons are specialized
at inhibiting the i-cell population thereby decreasing their
response gain and consequently increasing the gain of the e-cells
(Figure 5). In our model theMI-neuron population controls the
firing rate gain Gi−cell of the i-cell population to all inputs. This
gain control mechanism is based on our 2-C neuron models as
explained in the methods. In the example shown in Figure 8 we
demonstrate how control of the local i-cell population by MI-
neurons at point-2 modulates its response gain to inputs from
point-1. The coupling strength between the two points was set at
q12 = q21 = 0.2 and local inhibitory synaptic strengths, qii and
qei, as in previous examples. Note that when Gi−cell = 1 theMI-
neurons exert no effect on the local i-cell population. As Gi−cell

is reduced, so too is the effectiveness of the inhibitory feedback
on the e-cells and consequently the response gain increases. As
can be seen in the figure, point-2 responds linearly to inputs
from point-1, and with increasing gain as Gi−cell is reduced. At a
value nearing Gi−cell ≈ 0.5, a deviation from linearity is apparent
beyond ∼150 Spk/s. Thereafter, the response of point-2 follows
an accelerating function, as in the example with Gi−cell = 0.3.
Thus, gain modulation by the MI-neurons maintains response
linearity, but only over a limited range of 0.5 ≤ Gi−cell ≤ 1.
This effectively means no more than a gain doubling given the
parameters of our model. The essential reason for this limitation
is the maximum firing rate of the inhibitory population rmax,i,
limited to 300 Spk/s when Gi−cell = 1.

We end this section by presenting the conditions necessary to
maintain linearity whenMI-neurons modulate the response gain
of a cortical point. Considering Equation (7) in their linearized
version, meaning that Ia is much less than I1/2,a, we can write the
steady-state firing rate of the e-cell population as

re ≈
qeo

(

qii + αi
)

−qioqei

qeiqie −
(

qee−αe
) (

qii + αi
) ro,

where αe = I1/2,e/rmax,e and αi = I1/2,i/Gi−cellrmax,i.
One can appreciate that as Gi−cell is reduced, αi increases and
consequently the gain term in Equation (18) increases. This
linear approximation breaks downwhen the inhibitory rate rmax,i

approaches its maximum, as previously explained. The effect of
the MI-neurons is to decrease the maximum firing rate of the
i-cell population to Gi−cellrmax,i.

Spiking Model with Conduction Time Delays
In these simulations of spiking networks, 80% of the synaptic
inputs, of any kind, arrive on the dendritic compartment of the
e-cells and 20% on the soma. Figure 9A shows the response of
the network to a step input. The top panel shows a raster plot
indicating the spike times of 80 excitatory neurons (blue) and 20
inhibitory cells (red) chosen at random. The lower panel shows

FIGURE 8 | In this example we show how MI-neurons control of the

local i-cell population at point-2 modulates its response gain to inputs

from point-1. The coupling strength between the two points was set at

q12 = q21 = 0.2 and local inhibitory synaptic strengths, qii and qei , as in

previous examples. Note that when the MI-neurons exert no effect on the local

i-cell s, Gi−cell = 1. As Gi−cell is reduced, so to is the effectiveness of the

local inhibitory feedback and consequently the response gain increases. As

can be seen in the figure, point-2 responds linearly to inputs from point-1, and

with increasing gain as Gi−cell is reduced. At a value nearing Gi−cell ≈ 0.5, a

deviation from linearity is apparent beyond ∼150Spk/s. Thereafter, the

response of point-2 becomes an accelerating function, as in the example with

Gi−cell = 0.3. Thus, gain modulation by the MI-neurons maintains response

linearity, but as expected, only over a limited range of 0.5 ≤ Gi−cell ≤ 1. This

effectively means not much more than a gain doubling.

the population averaged firing rate determined from the spike
counts in 1ms bins. The raster plot shows that the neurons
fire irregularly and asynchronously. This is confirmed by the
population averaged rate. After the onset of the step input, the
average firing rates of the excitatory and inhibitory cells rapidly
increase to a new steady-state value. When this value is reached,
the number of spikes in each 1ms time bin only varies by a small
amount, indicating that activity is asynchronous. In Figure 9B

the average firing rate in the steady-state is plotted against the
strength of the step input for the excitatory (blue) and inhibitory
(red) population. The open loop response for the excitatory cells
(black) is also shown. Without local inhibitory feedback the
excitatory rate first rises rapidly, after which the slope decreases
progressively.With local inhibitory feedback the rates of both cell
populations vary near linearly with the input rate. Due to the
neuronal thresholds, the slope at the initial part of the curves is
slightly higher. Nevertheless, as in the rate model, the feedback
strongly linearizes the population output.

Next we simulated a network of three interacting cortical
points, with a distance of 1mm and a conduction delay of 10ms
between adjacent points. Figure 10A shows a raster plot of the
spiking activity of 80 excitatory and 20 inhibitory neurons in
each of the points when point-1 and -3 are activated by step
inputs. There is a strong response in points-1 and -3 and a weaker
response in point-2. Nevertheless, despite the conduction delays,
the activity is clearly asynchronous within and across points.
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FIGURE 9 | (A) The top panel shows a raster plot of the firing times of 80

excitatory and 20 inhibitory units over a time interval of 50ms. Note that

activity is irregular and asynchronous. The lower panel shows the averaged

population response to a step input from which it can also be inferred that the

population activity is not synchronized. (B) Shows how the balanced network

configuration linearizes and reduces the gain of the population transfer

function.

Additionally, the neurons in the e-cell and i-cell populations fire
irregularly. The three panels in Figure 10B show the firing rates
of the e-cells in the three points as a function of the strength of the
input when point-1 is activated (red), when point-3 is activated
(green) and when point-1 and -3 are equally activated (blue). In
all cases, the response of e-cell population at each of the points
varies nearly linearly with the input strength. Moreover, at each
of the points, the response when both point-1 and -3 are activated
is very close to the sum of responses to activation of these points
separately.

Discussion

We have demonstrated a mechanism by which motor cortical
points interact and respond to external command inputs linearly,
despite non-linear neuron transfer functions. The balanced
network configuration puts the motor cortical points in a
linear negative feedback regime, as follows. At any given
point, auto-inhibition of the i-cells effectively linearizes their
transfer functions. Consequently, the corresponding e-cells
receive linear negative feedback, which in turn linearizes their
response. The resulting linear intracortical interactions yield
linear summation of EMG output vectors, this would not
occur otherwise. These conclusions were derived from analysis

of a rate model. Additionally, numerical simulations of large
populations of spiking neurons were done. These were connected
according to the same balanced network principles. In this
way, we demonstrated that conduction and synaptic time delays
between cortical points does not lead to spike synchrony,
or oscillations. We have also described how MI-neurons can
control the response gain of a cortical point and thereby allow
spatially separate points to be functionally coupled. However, the
effectiveness of this mechanism appears limited to approximately
a doubling of the gain, beyond which the response becomes non-
linear. In summary, we have shown how the balanced network
configuration may contribute to one important operational
principle of MCx function, the linear summation of its outputs.

The results of a recent analysis of the behavior of excitatory
and inhibitory neurons in various cortical areas, including the
MCx, lend further support to our model (Dehghani et al.,
2014). The units were separated into putative excitatory or
inhibitory neurons based on their extracellular spike shape.
The temporal activity of the two populations was shown to be
strongly correlated in the way predicted by the balanced network
configuration and this over multiple time scales ranging from a
few milliseconds to tens of seconds.

Novel Features of the Model its Limitations and
Predictions
We introduced a network consisting of 2-C model neurons to
capture an important physiological non-linearity, the relation
between synaptic conductance and firing rate (Capaday and
van Vreeswijk, 2006). A simple first order Rushton–Naka
function describes well this relation derived from these 2-
C models. The original formulation of the balanced network
configuration by van Vreeswijk and Sompolinsky (1996) was
based on binary units, contained no propagation or synaptic
delays and the network is effectively a single cortical point.
Despite the simplicity of binary units, the mathematical analysis
of their interaction turned out to be involved (van Vreeswijk
and Sompolinsky, 1998). Here we used a rate model which
makes the mechanisms underlying linearization more apparent
and the mathematics more approachable. For example, the
conditions for stability of the network are more more easily
derived and conform to intuition. These stability requirements
make well-defined and testable experimental predictions that
should further our knowledge of cortical circuitry. What’s more,
we have extended the balanced network principle to a network
of interconnected cortical points whose interaction can be
controlled by master inhibitory neurons. Lastly, the original
balanced network formulation did not consider the effects of
conduction and synaptic delays on network stability. Here we
have shown that time delays do not destabilize the asynchronous
state—i.e., time delays do not lead to synchronized activity.
The reasons are that on the one hand, the delays to the e-
cell and i-cell populations are equal and that on the other
hand, the recurrent interactions within each point mitigate spike
synchronization. This extends the principles of balanced network
operation.

We had previously suggested that the muscle representations
in different cortical points could be coupled together by
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FIGURE 10 | (A) The raster plots show the spiking activity at points-1

and -3 when they are simultaneously activated by external inputs.

Note that point-2, which receives no direct input in this example,

responds more weakly. (B) The population response at each point

varies nearly linearly with the external input. Moreover, simultaneous

activation of, in this example, point-1 and -3 results in responses at

each of the points which is the sum of the responses to their

separate activation.

selective excitation and release from inhibition, so as to produce
movement related muscle activation patterns (Schneider et al.,
2002). The results presented here show that the mechanism
is plausible. Inhibition of the i-cells by the MI-neurons does
increase the response of the e-cells allowing the disinhibited
cortical point to be functionally coupled linearly with others.
However, our analysis reveals that for the interaction to remain
linear the gain increase must be modest, two to threefold
in the present model. Whether in fact this mechanism is
part of the process of motor command generation remains
to be determined. A more refined model, that takes into
account differential connectivity of i-cell population types, may
accommodate a greater range of gain control while maintaining
linearity. In any case, the range over which gain changes are
possible need to be determined experimentally.

Our last point in this section is to explicitly state our model’s
most important prediction. The population response of any given
motor cortical point will be the linear sum of its responses to
separate inputs. For example, if a cortical point receives input
from two different points, then the output of that point will be
the linear sum of its response to each input on its own.

Explanation of Related Experimental Results
Focal iontophoresis of GABAA receptor antagonists should
reduce the auto inhibition of i-cells to the same extent as the
feedback inhibition of the e-cells. Our model predicts that this
should only have a minimal effect on the firing rate of the e-
cell population. Consequently, coupling of cortical points by
disinhibition should not occur. Yet the experimental evidence
is clear, focal disinhibition of a cortical point allows it to
be functionally coupled to the activity of a distant cortical
point (Schneider et al., 2002). One possibility is that there is
indeed a differential effect of GABAA receptor antagonists on
qei and qii, as we have modeled it here. Speculating, one may

suggest that the binding affinities of receptor subtypes in the
two populations may be different, or that the antagonists may
have differential access to the receptors of each population.
A second possibility arises from the stability requirement that
γiqii > γeqee. At some concentration of GABAA receptor
antagonists, qii will become smaller than qee. The cortical
point will then become unstable and discharge in synchronized
periodic bursts. The consequences are different in each case.
In the first case, the response at the disinhibited point will
scale with the input as we have shown here. In the second
case we have a triggered effect, the input triggers the instability
and the point responds with a burst whose size is largely
independent of the input strength. Only further experiments can
unravel which of these mechanisms are involved. Nonetheless,
the model predicts that during the phase of increased excitability
when the neural activity is still asynchronous the disinhibited
point will respond proportionately to inputs. By contrast,
when the point is spontaneously bursting, the inputs will
only reset the burst phase with relatively little effect on burst
amplitude. Both possibilities can explain why the outputs of a
microstimulated point and a second point made spontaneously
active by focal disinhibition sum linearly (Ethier et al.,
2006).

A third experimental observation explained by our model is
why spike activity at one point does not spread over the full
length of the extant connections (Capaday et al., 2011). Yet, upon
disinhibition a more distal point can be recruited (Schneider
et al., 2002). A given point has a small gain to distal inputs,
consequently its response may be below threshold. When this
point is disinhibited, its response gain increases sufficiently to
respond to distal inputs with substantial spike activity leading
to a motor output. It should be noted that this explanation
is inconsistent with the long standing concept of surround
inhibition, which would lead to sublinear summation.
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Functional Advantage of Linearity for Motor
Command Generation
What functional advantage does linear summation at the cortical
level afford to the synthesis of motor commands? We propose
that linear summation of the muscle synergies represented
in different cortical points provides a simple prediction of
the consequences of their simultaneous activation. This may
simplify the generation of motor commands. Furthermore,
assuming that the movement modules represented in the MCx
are finite in number, interpolation is necessary to have a
continuous space of possible movements. If the interactions
within the MCx were non-linear, the interpolation process would
be more challenging. We make no claim that the musculo-
skeletal system is linear or controlled linearly, only that the
motor cortical commands themselves are derived by linear
combination. Results from a wide variety of approaches and
experimental preparations show that a given class of movements,
including locomotor movements and postural adjustments, are
controlled by a small set of muscle synergies (reviewed by
Bizzi and Cheung, 2013). Common to all the various theoretical
formulations (e.g., D’Avella et al., 2006) is the linear combination
of basic output modules. Neurophysiological evidence for the
existence of neural circuits underlying these modules have
been reported for pre-motoneuronal spinal networks and the

MCx (Bizzi et al., 1991; Giszter et al., 1993; Schneider et al.,
2001; Ethier et al., 2006; Graziano, 2006). What is more, the
spinal modules and cortical points combine their respective
outputs linearly (Mussa-Ivaldi et al., 1994; Ethier et al., 2006).
More recently, it was suggested that the MCx selects and
combines spinal modules temporally to produce the muscle
activation patterns of reaching movements (Overduin et al.,
2012).

Epilogue
It may be suggested that linearization can be effected by two
opposing non-linearities, one intracortical and one intraspinal.
By considering established physiological and anatomical
principles, we have provided evidence for an alternative
explanation. Two consecutive linear stages account for the
phenomenon.
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