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To learn and mimic how the brain processes information has been a major research

challenge for decades. Despite the efforts, little is known on how we encode, maintain

and retrieve information. One of the hypothesis assumes that transient states are

generated in our intricate network of neurons when the brain is stimulated by a sensory

input. Based on this idea, powerful computational schemes have been developed. These

schemes, known as machine-learning techniques, include artificial neural networks,

support vector machine and reservoir computing, among others. In this paper, we

concentrate on the reservoir computing (RC) technique using delay-coupled systems.

Unlike traditional RC, where the information is processed in large recurrent networks

of interconnected artificial neurons, we choose a minimal design, implemented via a

simple nonlinear dynamical system subject to a self-feedback loop with delay. This

design is not intended to represent an actual brain circuit, but aims at finding the

minimum ingredients that allow developing an efficient information processor. This

simple scheme not only allows us to address fundamental questions but also permits

simple hardware implementations. By reducing the neuro-inspired reservoir computing

approach to its bare essentials, we find that nonlinear transient responses of the simple

dynamical system enable the processing of information with excellent performance and at

unprecedented speed. We specifically explore different hardware implementations and,

by that, we learn about the role of nonlinearity, noise, system responses, connectivity

structure, and the quality of projection onto the required high-dimensional state space.

Besides the relevance for the understanding of basic mechanisms, this scheme opens

direct technological opportunities that could not be addressed with previous approaches.

Keywords: information processing, dynamical systems, delay, reservoir computing, pattern recognition, machine-

learning, hardware, photonics

1. Introduction

1.1. Introduction to Reservoir Computing
Recurrent neural networks (RNNs), characterized by the existence of closed loops, are ubiquitous
in the brain. Therefore, RNNs are being employed for a family of machine-learning approaches
that have been inspired by the way our brain seems to process information. The neuro-inspired
approach of RNNs relies on the property that these systems are able to learn from examples,
and to process information within a temporal and spatial context (Buonomano and Maass,
2009). RNNs have been proven very powerful to solve certain problems that are computationally
hard for standard computers. However, the optimization or training procedure typically involves
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the calibration of numerous parameters, including the
connections between network nodes and their weights.
This procedure, that typically depends on the task, is very
time-consuming.

In an early work of Buonomano and Merzenich (1995), a
new framework for neuronal computation was proposed to
perform temporal and spatiotemporal information processing.
This approach uses a hidden random recurrent network,
which is left untrained, and that is processed by a simple
classification/regression technique. Maass and coworkers
proposed a similar framework in 2002 (Maass et al., 2002),
with the aim of processing sensory inputs in real time by using
recurrent neural circuits. Their approach, known as liquid
state machine, offers a solution to reduce the complexity of
training RNNs, while keeping the capability to perform context-
dependent computations (Verstraeten et al., 2007; Lukoševičius
et al., 2012). Almost at the same time, a similar approach, known
as echo state networks, was independently developed by Jaeger
andHaas (2004). All these models make use of the transient states
generated by high-dimensional dynamical systems combined
with a simple learning procedure. The unification of echo
state networks and liquid state machine is nowadays known as
reservoir computing (Verstraeten et al., 2007).

The implementation of reservoir computing is generally
composed of three distinct parts: an input layer, the reservoir
and an output layer. Thus, the operating principle of reservoir
computing can be summarized as follows. The input sensory
information to be processed is connected via an input layer
to a RNN, in this context referred to as the reservoir. The
projection weights between the sensory input and the neurons
in the reservoir are often chosen randomly, although they can
also be optimized deterministically (Appeltant et al., 2014).
In the reservoir, the connections between neurons (or nodes)
are fixed and remain fixed with a certain coupling topology,
also often chosen at random. Due to the input signal, the
nodes of the reservoir remain in a transient state such that
each input is injected in the presence of the response to the
previous input. In this way, one benefits from the ability of
the system to analyze information with temporal context. The
activity of the neurons in the reservoir is read out via an output
layer, with connection weights that are trained for the specific
task. Adjusting these weights during the training/learning
procedure is typically performed by a simple linear regression,
i.e., using linear classifiers (Lukoševičius et al., 2012). Thus,
the training/learning procedure is drastically simplified. The
computational performance of the system as a whole relies on the
nonlinear mapping of the input signal onto the reservoir state,
its sufficiently-high dimensionality, and the ability to properly
adjust the readout weights.

The neuro-scientific reality of the reservoir computing has
already been envisioned in the work of Maass et al. (2002). The
basic principles of RC are indeed based on the way our brain
processes, or at least seems to process, information. Moreover,
subsequent studies exist that discuss the neurophysiological
reality of this scheme further. In 2007, Yamazaki and Tanaka
proposed a RC-like model for the cerebellum (Yamazaki and
Tanaka, 2007). In their model, the neurons of the granular layer

receive sensory inputs, and generate long sequences of active
neurons representing the passage of time. The activity of the
granular layers neurons was read out at the olive, modeled by
Purkinje cells. The functional role of the granular layers and
Purkinje cells was regarded as a liquid state machine.

Rabinovich et al. (2008) showed that transient states can be
useful to describe the neural network behavior. The idea of
information processing with transient states was contrasted to
processing with stable attractors. In the latter, the memory to a
certain input is regarded as a stable state reached by the neural
network after some transient behavior. However, the idea of
reaching a certain attractor is sometimes not plausible in real
and even artificial neural networks. Moreover, the experimental
observations of the dynamics in the olfactory system of the locust
support this alternative idea of computing with transient states
(Rabinovich et al., 2008).

The ability of cortical areas to exhibit properties of a reservoir
has been nicely demonstrated by Nikolić et al. (2009). In
experiments where the responses of the primary visual cortex
of anesthetized cats were recorded, it was found that a linear
classifier is sufficient to properly classify the information about
different stimuli. Furthermore, it was also found that new stimuli
do not erase the information about previous ones, which can
still be traced for several hundred milliseconds after they were
switched off. They demonstrated that the neuron activity can be
analyzed using linear classifiers and that the primary visual cortex
exhibits fading memory properties, that are key in the reservoir
computing paradigm.

More recently, Safaai and coworkers were exploring how
texture is collectively encoded by populations of neurons in the
barrel cortex of a rat (Safaai et al., 2013). They found that clusters
of a few neurons can extract texture identity through a simple
decoding scheme involving linear synaptic weighting, even in the
case where no individual neurons represent the stimuli.

In summary, several experiments have been carried out
during the last years, indicating how the brain acts as a
complex, self-organized system in which parallel and sequential
processing coexist in highly-interconnected networks. The
observed dynamics, the high dimensionality of cortical networks,
as well as the large amount of recurrent loops, might indeed
suggest that the brain behaves similarly to a reservoir computer
in the presence of sensory inputs (for review see Singer, 2013).

1.2. Hardware Implementations Employing
Delay-Based Reservoirs
In several applications, including handwriting recognition, time
series prediction and others, RC has been numerically shown to
outperform other computational approaches (Lukoševičius et al.,
2012). Finding suitable hardware for this scheme is crucial to
better exploit the advantages of RC. Moreover, exploring the
implications of information-processing in an analog manner, in
particular in the presence of non-negligible noise, would advance
our understanding of information-processing fundamentally.
For this reason, hardware implementations are desired. However,
traditional RC requires the realization of a network composed
by a large number of interconnected neurons. Although the
fixed connectivity structure of the recurrent network can be
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an advantage, a realistic hardware implementations remains
challenging. In a pioneering work, Vandoorne et al. (2008)
suggested RC as an appealing unconventional method to perform
photonic information processing. The authors proposed the use
of a network of semiconductor optical amplifiers. Although
highly attractive, the technological requirements for this proposal
are still very demanding. Instead, we present a radically
different approach, based on delay-coupled dynamical systems,
which simplifies the fundamental concept and its hardware
implementations enormously without loosing performance.

In traditional reservoir computing, the network (or reservoir)
is typically composed of spatially distributed nonlinear nodes
with recurrent connections. However, other possibilities exist to
emulate such a network. A powerful approach to achieve this is
to replace the spatial distribution of nonlinear nodes by a single
dynamical node with delayed self-feedback. Employing time-
multiplexing, a network can be emulated, facilitating its hardware
implementation as well as its fundamental understanding
(Appeltant et al., 2011). Figure 1 depicts the general concept of
this approach, including the three layers required for reservoir
computing: the input layer, the delay-based reservoir and
the output layer. In the delay-based reservoir, the recurrent
connections are introduced by the self-feedback loop. Here,
virtual nodes are defined as the states at equidistant temporal
positions along the feedback loop. These virtual nodes, which
are created via time-multiplexing, play a role analogous to the
spatially distributed nodes in a traditional reservoir.

The delay-based implementation of reservoir computing
fulfills the minimum requirements to perform information
processing, namely the capability to map input states onto a
high-dimensional state space, and to generate nonlinear transient
responses. More specifically, delay systems are mathematically
infinite-dimensional in the sense that any time-dependent
solution is not uniquely determined by its initial state but
depends on the continuous function of initial conditions in
the range t = [−τ, 0) (Erneux, 2009), where τ represents
the delay time. Therefore, for large delay times, a single
nonlinear dynamical node with delay can generate a sufficiently
wide range of different transient responses (Dambre et al.,
2012), which, at the same time, can be fully reproducible. The
hardware implementation of delay-based reservoir computing
is drastically simplified as compared to a realization of full

FIGURE 1 | Schematic arrangement of reservoir computing based on a

single nonlinear node with delay and time-multiplexing. Virtual nodes are

defined as temporal positions along the delay line. Figure has been adapted

from Appeltant et al. (2011).

networks. Consequently, the introduction of the delay-based
reservoir computing concept has enabled a rapid advancement
in the development of versatile hardware-based implementations
of this machine-learning paradigm (Duport et al., 2012; Larger
et al., 2012; Paquot et al., 2012; Brunner et al., 2013b).

2. Materials and Methods

2.1. Delay-Based Reservoir Computing
This minimal approach to information processing is based on
the emulation of a recurrent network via a single nonlinear
dynamical node subject to delayed feedback (Appeltant et al.,
2011). As shown in Figure 1, we define N equidistant virtual
nodes separated in time by θ = τ/N within one delay interval
of length τ . The states of the N virtual nodes are defined as
the values of the delayed variable at the corresponding temporal
positions. These states characterize the transient response of
the reservoir to a certain input at a given time. The temporal
separation θ among virtual nodes cannot be chosen arbitrarily. It
should neither be so long that the system reaches the steady state
during this time period, nor should it be so short that the system
has not been able to react to the perturbations. In fact, θ is a key
parameter to optimize the reservoir performance. We typically
choose 0.1T < θ < T, with T being the characteristic time scale
of the nonlinear dynamical node. Via this choice, the states of a
virtual node depends on the states of previous neighboring nodes.
Interconnected in this way, the virtual nodes emulate a network
serving as reservoir (Appeltant et al., 2011; Schumacher et al.,
2015).

The reservoir, formed by the virtual nodes, is subjected to
a time-continuous or time-discrete input stream, which can
be a time-varying scalar variable or vector of any dimension.
Individual virtual nodes are addressed by time-multiplexing the
input signal. Then, to emulate the weights from the input layer
to the reservoir in traditional RC, we introduce a mask. Figure 2
illustrates the masking procedure for a scalar input. First, the
input stream undergoes a sample and hold operation to define
a stream which is constant during one delay interval τ , before it
is updated. Every segment of length τ is multiplied by the mask.
Upon carrying out themultiplication of themask with the sample
at a certain time t0 of the input signal, we obtain aN dimensional
vector which represents the temporal input sequence within the
interval [t0, t0 + τ ) (Appeltant et al., 2011). After a time τ , each
virtual node in the delay line is updated.

More specifically, the dynamics of a reservoir composed by
a nonlinear node subject to delay feedback can be described as
(Appeltant et al., 2011; Schumacher et al., 2015)

ẋ(t) = −x(t)+ f (x(t − τ ), J(t)). (1)

In this equation x represents the dynamical variable of the
nonlinear node, x(t−τ ) is the delayed version of x at a certain past
time τ , f is a smooth-real nonlinear function, and J(t) represents
the input after pre-processing and time-multiplexing.

Once the input signal has been processed, a training algorithm
assigns an output weight ωjk to each virtual node xj (j = 1...N),
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FIGURE 2 | Illustration of the masking steps required for information processing in a delay-based reservoir computer. Figure has been adapted from

Appeltant et al. (2011).

such that the weighted sum of the states approximates the desired
target value yk as closely as possible,

yk =

N∑

j=1

ωjkxj. (2)

The training of the read-out weights follows the standard
procedure for RC (Jaeger, 2001), e.g., linear regression. The
testing is then performed using previously unseen input data of
the same kind as those used for training.

2.2. Relevance of the Input Mask
The input mask serves three purposes: to sequentialize the
input for the time-multiplexing, to maximize the (effectively
used) dimensionality of the response, and to define the effective
connectivity of the reservoir. In a traditional network approach,
all the nodes in the reservoir can be addressed directly via
direct connections from the input layer to the reservoir layer.
In the delayed feedback approach, the input signal is fed into
the nonlinear node, undergoes a nonlinear transformation, and
then propagates along the delay line to the virtual nodes. The
resulting connectivity resembles a ring-like topology with nearest
and next-nearest neighbor coupling, which also in its explicit
implementation has been shown to be very efficient for reservoir
computing (Rodan and Tino, 2011).

By means of time multiplexing, the input signal, properly
scaled, reaches the virtual nodes. Therefore, the input scaling
needs to be imprinted before the signal is injected (see Figure 2).
The input, after time multiplexing, consists of constant intervals
θ corresponding to the separation between the virtual nodes
in the delay line. Since different scaling factors are applied to
the different virtual nodes, the reservoir state space is optimally
explored.

When using a large number of virtual nodes, the mask
can often be chosen as random. For a small set of nodes
this choice can give rise to unsatisfactory results. Hence, a
procedure to reliably assign mask values, such that a maximum
diversity in reservoir states is created, is highly desired. Rodan
and Tino (2011) showed that using aperiodic sequences in

the input weights, deterministically generated from, e.g., a
chaotic time series, could outperform random drawings. More
targeted, Appeltant et al. (2014) outlined a procedure to reliably
construct an optimal binary mask pattern optimizing the general
reservoir response properties, derived from the concept of
maximum length sequences. Although binary masks can have
technical advantages in the context of delay-based reservoir
computing, it is worth mentioning that multi-valued masks
can improve the performance in some particular cases (Soriano
et al., 2013) and continuous analog masks can simplify hardware
implementations (Duport et al., 2014).

The precise timing between the inputmask and the delay τ has
a relevant impact on the ultimate performance of the reservoir.
Two different strategies have turned out to be successful.
Appeltant et al. (2011) proposed a mask length that matches
the delay time, such that the connectivity between neighbouring
virtual nodes is given by the inertia of the dynamical system.
This requires the distance between the virtual nodes to be shorter
than the characteristic time scale of the nonlinear dynamical
node. In contrast, Paquot et al. (2012) proposed a mask length
that is shorter than the delay time, such that the mismatch
between mask length and delay time creates the connectivity
between neighboring nodes. In consequence, the response of the
nonlinear node can be considered as instantaneous. While the
former method utilizes the given bandwidth of the system more
efficiently, the latter allows for the use of a static nonlinearity.

Since the input in delay-based reservoir computing is time-
multiplexed over the delay interval, the time within one delay
interval can be interpreted as a pseudo-space. This interpretation
is illustrated in Figure 3 for the case of a uni-dimensional input.
In Figure 3A, 10 samples of a periodic input signal are depicted.
Each sample is multiplied by an input mask and expanded over
50 virtual nodes. Figure 3B is a matrix representation of the
input signal multiplied by the input mask. In this spatio-temporal
matrix representation, the delay variable acts as a pseudo-space,
and the color encodes the amplitude. For clarity, the first column
in Figure 3B is shown in Figure 3C, where the mask (consisting

of randomly alternating +1,−1) has been multiplied by the first
sample of the input signal.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2015 | Volume 9 | Article 68

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Soriano et al. Minimal approach to information processing

FIGURE 3 | Illustration of the input encoding. (A) Temporal sequence of

the input signal. (B) Matrix representation of the input signal multiplied by the

mask, where the virtual nodes act as a pseudo-space. (C) Temporal sequence

of the first sample of the input signal multiplied by the mask, i.e., expanded

over the corresponding location of the virtual nodes.

2.3. Nonlinear Transient Dynamics
Delay-based reservoir computing has also been referred to
as nonlinear transient computing (Martinenghi et al., 2012;
Brunner et al., 2013a). The term nonlinear transient computing
puts emphasis on the origin of reservoir computing, namely
the context-sensitive complex motion in a high-dimensional
state space excited by the input signal. This interpretation
has tight links to neuroscience. In particular, the olfactory
network dynamics appears to classify different odors based on a
coding space characterized by different complex transient spatio-
temporal trajectories in the brain activity (Laurent, 2002). Key
to this interpretation of reservoir computing is the fact that
similar inputs create similar transient activity in the response
of the system, a property referred to as reliability (Mainen and
Sejnowski, 1995) or consistency (Uchida et al., 2004).

In order to illustrate the nonlinear transient dynamics in
delay-based reservoir computing, we present a simple example,

FIGURE 4 | Illustration of the nonlinear transient dynamics. (A) Temporal

sequence of the response to the signal depicted in Figure 3C. (B) Matrix

representation of the response signal to the input matrix depicted in

Figure 3B. Parameter values in Equation (3) are τ = 10, β = 0.7, and

φ = −π/4, respectively.

in which a sin2 function has been chosen as nonlinear function f
in Equation (1). The dynamical evolution of the nonlinear node
can then be described as follows,

ẋ(t) = −x(t)+ βsin2(x(t − τ )+ J(t)+ φ), (3)

where β is the nonlinearity gain and φ is the offset phase.
Figure 4A shows the transient response of this nonlinear node

to the input depicted in Figure 3C. In this example, the distance
θ between the virtual nodes is 1/5 of the characteristic time
scale T of the nonlinear node (T ≡ 1 in Equation 3, Larger
et al., 2012). Thus, the nonlinear node is kept in a transient state
and the value of a given virtual node depends on the values of
previous neighboring nodes. Figure 4B is the spatio-temporal
matrix representation of the response to the input depicted in
Figure 3B. This response matrix, also known as state matrix SM ,
is later used for the classification of the input signal.

3. Results

3.1. Role of the Nonlinearities
Reservoir computing based on a single dynamical node
with delay has been realized in different experimental
implementations, including electronic (Appeltant et al.,
2011), opto-electronic (Larger et al., 2012; Paquot et al., 2012)
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and all-optical (Duport et al., 2012; Brunner et al., 2013b)
hardware. Each of these realizations processes information
based on hardware nodes with different types of nonlinearities.
Electronic implementations have been based on a Mackey-Glass
nonlinearity, the opto-electronics version on an Ikeda-type sin2

nonlinearity, while all-optical RC includes semiconductor lasers
(Brunner et al., 2013b) and semiconductor optical amplifiers
(Duport et al., 2012) as nonlinear nodes.

The number of the various nonlinearities for which successful
RC has been implemented illustrates that the precise shape of the
nonlinearity is not as crucial as originally assumed (Vandoorne
et al., 2008). Nevertheless, depending on the specific task,
performance does vary with the dynamical characteristics of the
reservoir. Among the important properties of reservoir nodes
is their balance between linear and nonlinear response. This
dependence can be understood as follows: the more nonlinear
a system, the easier it will be to linearly separate different
input signals due to an increased dimensionality of its state
space. In addition, nonlinearity simultaneously influences the
autocorrelation properties of a delay system. Linear memory
of delay systems manifests itself in delay echoes appearing in
the autocorrelation function around multiples of the delay time
τ . For a mostly linear system, these delay echoes can remain
close to unity for l feedback delays with l>>1, illustrating
the linear memory provided. The impact of nonlinearity in a
delay-coupled system can be considered nontrivial (Porte et al.,
2014a,b). However, in general terms, nonlinearity can cause
the autocorrelation value to approach zero after only a small
number of delays τ , and, therefore, typically limits the linear
memory capacity (Jaeger, 2002). Computational performance
thus depends on the particular requirements each task poses,
highlighting the trade-off between memory and dimensionality
expansion in delay systems with a single delay line.

Nonetheless, this trade-off does not represent a hard limit.
Due to the simplicity of the delay systems, they can easily be
extended by one or even multiple additional delay loops with
different lengths. Experimentally, such a Reservoir Computer

has been realized opto-electronically (Martinenghi et al., 2012).
Following this approach, one can induce autocorrelation
revivals at the delay times τn of the added feedback lines,
significantly extending the linear memory capacity (Appeltant,
2012). Multiple delays therefore offer the possibility to tailor
the contributions of nonlinearity and memory independently,
allowing combinations which could not be achieved with the
single delay system. This approach can even be employed for
computational tasks which require memory for specific time
scales.

In the opto-electronic system of Larger et al. (2012), the
nonlinearity is based on the tunable interference between two
optical waves within aMach-Zehndermodulator, hence the opto-
electronic nonlinearity resembles a sin2 function. Using a DC-
bias, it is possible to modify the operating point (parameter φ

in Equation 3), changing the conditions from strongly nonlinear
around a local extrema of the sin2 function to predominantly
linear at the position centered between a local minimum and
a maximum. Therefore, by changing φ, one can evaluate the
influence of linear and nonlinear response and their impact
on computational performance for different tasks for otherwise
identical systems.

In Figure 5, we show the performance of a classification and
a prediction task for a delay-based reservoir computer with
an Ikeda-type sin2 nonlinear function f (see Equation 3). Blue
asterisks represent the error rate for spoken digit recognition
(classification), and red circles the standard deviation for the
one-step prediction of a chaotic timeseries. For spoken digit
classification, a subset of 500 isolated spoken digits were taken
from the NIST TI-46 corpus database (Doddington and Schalk,
1981; Liberman et al., 1993). This set of the database contains
ten spoken digits, from 0 to 9, which were recorded ten times
each by five female speakers. To extract the best features for the
classification, each sample was pre-processed using a cochlear
ear model (Lyon, 1982). Here, 475 digits are used for training
and 25 for the classification via cross validation. Using yk
values from Equation (2), the reservoir selects the class k (k =

FIGURE 5 | Results for a classification task (blue asterisks) and

a prediction task (red circles). (A) Performance of the system as

a function of the slope of the node-response curve at the operating

point. (B) Performance of the system as a function of the curvature

of the node response at the operating point. The prediction task

(SantaFe time series prediction) was evaluated via the normalized

mean square error. The classification task (spoken digit recognition)

was evaluated via the misclassification ratio. The results were

obtained with the opto-electronic system introduced in Larger et al.

(2012).
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0...9) of the predicted digit using the winner-take-all (WTA)
criterion. For the one-step prediction, the chaotic timeseries
corresponds to the timeseries used in the Santa Fe timeseries
prediction challenge (Weigend and Gershenfeld, 1991). The left
panel depicts the task performance dependence on the linear
response amplitude (local linear slope), and the right panel
the task performances depending on the response curvature
or nonlinearity around the operating point. In practice, the
local slope and curvature of the nonlinear node is changed
by controlling the phase offset φ of the sin2 nonlinearity. As
can be seen for the classification data in Figure 5, the system
performs well in classification tasks for a small linear response
(slope node response), while a small nonlinearity (curvature node
response) immediately leads to strong performance degradation.
As it is the case for spoken digit classification, some classification
tasks rely on a high-dimensional expansion of the injected
information (strong nonlinearity), but they do not require a
significant amount of memory (small linear response). Though
the overall dependence is slightly more complicated, one finds
that this dependency is inverted for the case of the chosen chaotic
timeseries prediction task. Much more than the dimensionality
expansion, chaotic timeseries prediction requires memory, and
consequently prediction fails for a small linear response (slope
node response) due to a reduction in reservoir memory.

3.2. Role of Noise
In contrast to digital computing, the optical and electronic
approaches described here compute in an analog manner, using
the continuous values of the light intensity or voltage to encode
data. This approach, thus, follows the ideas of alternative
information processing paradigms (Crutchfield et al., 2010).
In practical implementations of analog computing, the finite
signal-to-noise ratio (SNR) may be a major limiting factor
(Dambre et al., 2012). Several noise sources can be present at
the different layers of the information processing system: noise
can appear at the reservoir itself, and/or the input and output
layers. In hardware systems, noise at the output layer is typically
the strongest noise contribution to the signal (Soriano et al.,
2013). The noise at the output layer has contributions from
detection noise, measuring the response of the nonlinear node,
and quantization noise, when converting the signal into a digital
one.

Interestingly, classification tasks are relatively resilient against
a finite SNR. For a spoken digit recognition task, an all-optical
hardware system even outperformed software implementations
of reservoir computing in terms of speed and accuracy
(Brunner et al., 2013b). In contrast, the performance of other
computational tasks, e.g., time-series prediction, significantly
degrades when the SNR decreases (Soriano et al., 2013). In the
latter case, the sensitivity of the performance to noise can still be
minimized by using proper strategies.

Strategies to minimize the influence of noise can be
implemented at the input pre-processing by optimizing themask,
or by exploring the optimum operating conditions for a given
nonlinearity. In the case of mask optimization, input masks
with multiple amplitude values can create reservoir responses
that are easier to distinguish by the output layer, therefore

minimizing the influence of detection noise (Soriano et al.,
2013). In addition, some operating points are systematically more
robust to noise for prediction tasks (Soriano et al., 2015). This
enhanced robustness can be traced back to the properties of the
nonlinearity around the operating point, highlighting again the
relevant role of the nonlinearities. The combined use of these
strategies is, to some extent, able to mitigate the performance
degradation induced by noise. Such a performance degradation
is not observed in numerical simulations with nearly infinite
precision. This highlights the specific challenges when tackling
information processing in analog systems in the presence of
noise.

3.3. Understanding Basic Mechanisms
In order to solve a given computational task with reservoir
computing, the parameters of the nonlinear node can be
optimized recursively by trial and error or by using optimization
algorithms. Since these optimization procedures are typically
time-consuming, it is desirable to understand and quantify a
priori information processing requirements. Therefore, several
task-independent measures have been introduced to characterize
computational ability and the memory of the system.

Regarding computational ability, the measures of kernel
quality and generalization rank provide useful insights. For
measuring the kernel quality, the reservoir state matrix SM
is created for N different, random input vectors U =

{u1, u2, u3, . . . , uN} with a length of k timesteps each. Using
k − 1 timesteps for warmup, the kth column of state matrix
SM is concatenated for each of the N different input vectors,
creating a matrix of dimension N × N. The kernel quality of
the reservoir is then defined as the concatenated matrix rank
rkq. In other words, the kernel quality characterizes how well the
reservoir represents different input streams. As a computational
scheme based on a linear separation via a hyperplane, RC ideally
requires that the responses of the N different reservoir nodes are
linearly independent (Legenstein andMaass, 2007). A well-suited
reservoir is supposed to exhibit a rank of rkq → N, providing N
linearly independent dimensions.

Next to the kernel quality, another crucial property is the
ability to generalize (Legenstein and Maass, 2007). Ideally, the
performance of a RC system should not be susceptible to very
small differences, e.g., because of noise, as long as the general
input pattern belongs to the same category. Again, state matrix
SM is created for random input U ′ = {u′1, u

′
2, u

′
3, u

′
N}, each

vector u′i of length k. Crucially, for this test, the final l-elements
of each u′i are all replaced by the same random values X =

{x1, x2, x3, . . . , xl}, such that the last l values of each u′i are
identical. As before, we concatenate the N last columns of SM ,
creating a N × N matrix. The first k − l elements of the input
data emulate the impact of noise, and, in a good reservoir, the
last column of SM should be identical regardless of the previously
injected noise-emulation. Thus, the generalization rank, again
defined as the concatenated matrix rank rg , is supposed to be low
for a reservoir with good generalization properties.

A good reservoir is simultaneously characterized by a high
kernel quality rank and a low generalization rank, implying that
if two inputs differ by more than a certain margin, they should
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be classified as different output classes. In turn, if the difference
is inside this margin, they should be classified as the same class.
When shifting the operating point of the nonlinear node toward
regions where the separation to present inputs becomes larger,
the separation of past inputs becomes larger as well, rendering
the system less able to generalize. Therefore, it is desirable
to work in parameter regimes that strike a balance between
strong separation and sufficient generalization properties. To
have an indication of the optimal regime for processing, the
computational ability has been introduced as the difference
between kernel quality rank and generalization rank (Legenstein
and Maass, 2007; Appeltant, 2012). Thus, the computational
ability of a reservoir is defined as

rc = rkq − rg . (4)

Regarding the characterization of the memory of the system, the
linear memory capacity quantifies the maximum memory of the
system for random inputs. Using a random input sequence u(k),
the reservoir’s ith output yi is trained to reproduce the value of the
information injected i-timesteps in the past (u(k− i)). The linear
memory capacityµc is then defined as the sum of the normalized,
linear correlations between the shifted input information u(k− i)
and the reservoir’s trained classifier yi, letting i approach infinity
(Jaeger, 2002; Verstraeten et al., 2007):

mi = corr[yi(k), u(k− i)],

µc =

∞∑

1

mi. (5)

When using a reservoir of sizeN, the maximum possible memory
capacity equalsN, a value that can be reachedwhen using a purely
linear reservoir (Jaeger, 2002).

For a good performance, a compromise between the memory
capacity and the computational ability has to be found.
As an illustration of this compromise, the region of good
performance on the NARMA-10 task reported in Appeltant
et al. (2011) corresponds to the region where both, memory and
computational ability, score well (Appeltant, 2012).

Naturally, the size of the reservoir has a strong influence on
its computational performance. Figure 6 illustrates the evolution
of the classification error for the spoken digit recognition task
described in Section 3.1 as a function of the number of virtual
nodes in the reservoir, with the classification error decreasing
for an increasing N. More specifically, the blue line with
circle symbols corresponds to a system with N virtual nodes,
where all the node states are read out. In contrast, the green
line with square symbols corresponds to a system with 400
virtual nodes, where only N nodes are accessible to the output
layer. Interestingly, the results in Figure 6 suggest that a larger
reservoir, even if only a part of the nodes are accessible for
readout, performs better than a small reservoir. This finding
resembles neuroscientific experiments in which brain signals can
be reconstructed, even if only a reduced number of neurons are
accessible, see e.g., Nikolić et al. (2009).

FIGURE 6 | Classification error rate for a spoken digit recognition task

as a function of the reservoir size. The blue line with dots corresponds to a

reservoir of N nodes, while the green line with squares corresponds to a

reservoir of 400 nodes in which only N nodes are available. The error bars are

computed as the standard error over 10 realizations.

4. Discussion

4.1. Fundamental Aspects
Understanding information processing in the brain is one of
the most relevant challenges we face nowadays. The Human
Brain Project, funded by the European Union, and the Brain
initiative, funded by the USA, corroborate the importance and
relevance of joining efforts to learn more about our brain.
Remarkably, there is no broad consensus in the community
to what extent recurrent loops play a significant role in brain
circuits. Nevertheless, recurrent artificial neural networks have
been designed and used to solve certain tasks that are inherently
hard for traditional computers. Image and voice recognition,
time series prediction and biomedical signal classification are
only few examples of the successfully tackled tasks. Reservoir
computing has emerged as one of the most promising and
successful techniques for these tasks. Traditional reservoir
computing uses the transient responses that inputs generate in
a randomly-coupled neural network. This approach has certain
similarities with some neuronal systems, e.g., in the olfactory
system of the locust (Rabinovich et al., 2008) or the primary visual
cortex of cats subject to visual stimuli (Nikolić et al., 2009). In
reservoir computing, the transient responses, initially generated
by some known inputs (learning procedure), are used to extract
information from unknown input signals. Due to the complexity
of the network and the input and output procedures it is difficult
to gain insight into the basic mechanisms that allow such a
powerful computation. In this paper we systematically reduced
these ingredients to a simple system with the aim of uncovering
the basic mechanisms that regulate its behavior. This minimal
approach comprises a nonlinear node (a neuron) subject to a
delay feedback loop. Despite its simplicity, this configuration
offers remarkable results for certain tasks as pattern recognition
or time series prediction. From a fundamental point of view,
this approach opens perspectives to analyze and understand
the essential ingredients and underlying mechanisms to such
information processing concepts. Moreover, it allows to identify
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the role of important factors such as noise or heterogeneity, that
are often neglected in digital concepts, but play an important role
in the brain. The extension of the fundamental understanding,
how computation can be efficiently and reliably performed in a
heterogeneous and noisy environment, will be an important step
toward decoding how information is processed in the brain.

Similar to traditional reservoirs, the delay-based approach is
able to process information by means of its transient nonlinear
responses. In addition, the delayed feedback creates a fading
memory that allows to deal with context-dependent information.
The spatio-temporal dynamical properties of delay systems allow
for parallel and sequential information processing. A basic
requirement to achieve competitive performances is to operate
the system in a dynamical regime that generates reproducible and
consistent transient responses.

Altogether, the minimal implementation of this neuro-
inspired information processing approach offers an attractive
solution for fundamental questions, as well as technological
applications.

4.2. Applications and Technological Relevance
From a technological point of view, this minimal approach
provides opportunities for implementations in various
hardware platforms, either electronic, opto-electronic or
all-optical, to perform computationally hard tasks. For all-
optical implementations, channel equalization, radar, speech
processing, or nonlinear time series forecasting are among the
most attractive tasks (Duport et al., 2012; Brunner et al., 2013b).
At the same time, simple operations such as vector and matrix
multiplications are also feasible (Brunner et al., 2013a).

The software implementation counterpart of the single
dynamical node with delay also offers interesting applications
as a simple algorithm, for example to classify complex
biomedical signals. This concept has been successfully applied
to the detection of arrhythmias in electrocardiography signals
(Lainscsek and Sejnowski, 2013; Escalona-Morán et al., 2014;
Escalona-Morán et al., 2015).

4.3. Outlook
Employing a single dynamical node with delay is a simple,
although powerful, solution to perform information processing
and to understand the underlying mechanisms. In case the
simple architecture of a single dynamical node with delay is
not sufficiently powerful or fast enough to process complex
signals, it can be combined with a hierarchical time-multiplexing
structure (Zhang et al., 2014) or a combination of spatial- and
time-multiplexing.

A promising extension to enhance the performance of this
simple architecture is to introduce an additional feedback

connection from the output layer back into the reservoir
(Maass et al., 2007). This approach has been shown to increase
significantly the fading memory of the system and improve
its computational power. Moreover, connections between the
output layer and the reservoir allow for online learning by e.g.,
optimizing an inverse model (Waegeman et al., 2012).

Delay-based dynamical systems are not only excellent
platforms to implement the reservoir computing paradigm

but they can also be treated as fully trainable recurrent
neural networks using e.g., back-propagation methods (Hermans
et al., 2015). This extends the range of practical problems
in which the minimal approach can achieve state of the art
performance. In addition, an unsupervised reservoir adaptation
through various forms of synaptic plasticity, such as spike-time-
dependent plasticity, can also be implemented (Paugam-Moisy
et al., 2008). Adaptation to the task at hand is again a neuro-
inspired solution that can clearly improve the performance of the
system.

Finally, the Boolean world is also a candidate to implement
reservoir computing techniques (Snyder et al., 2013). In this case,
the Boolean logic is not used to implement standard sequential
programming but to define a random network of elements that
behave in an autonomous manner. Such applications are already
being developed in the sense of traditional reservoir computing
(Snyder et al., 2013) and delay-based reservoir computing
Haynes et al. (2015), respectively. These techniques appear as an
extension to the conventional use of Boolean systems, and their
possibilities are largely unexplored.

Altogether, we are convinced that the cross-fertilization
between neuroscience, machine learning and dynamical systems
offers a promising path, not only to build better information-
processing systems, but potentially to learn more about
how our brains perform many tasks in such a successful
manner.
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