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Experimental descriptions of the anatomy and physiology of individual components

of sensorimotor systems have revealed substantial complexity, making it difficult to

intuit how complete systems might work. This has led to increasing efforts to develop

and employ mathematical models to study the emergent properties of such systems.

Conversely, the development of such models tends to reveal shortcomings in the

experimental database upon which models must be constructed and validated. In both

cases models are most useful when they point up discrepancies between what we think

we know and possibilities that we may have overlooked. This overview considers those

components of complete sensorimotor systems that currently appear to be potentially

important but poorly understood. These are generally omitted completely from modeled

systems or buried in implicit assumptions that underlie the design of the model.

Keywords: sensorimotor control, sensorimotor learning, sensorimotor integration, sensorimotor systems

modeling, biological neural networks

Introduction

“When you can measure what you are speaking about, and express it in numbers, you know something

about it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind;

it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of

science.”

—William Thomson, 1st Baron Kelvin, 1883

Quantitative methodology has gradually replaced qualitative “butterfly collecting” in biology. Lord
Kelvin’s comment was motivated primarily by its importance for reductionistic science, whereby
hypotheses about deep and unobservable structure and function can be tested according to their
often subtle effects on measureable phenomena. More recently, the challenge of science has more
often been too much rather than too little quantitative data, and too many well-understood but
complex mechanisms whose interactions defy intuitive understanding of how complete systems
actually function. This problem combined with the rapid advance of computing power has led to
rapidly increasing interest in systems modeling. For the 21st century, one might replace “measure”
with “model” to update Lord Kelvin’s 19th century exhortation.

Modeling is a never-ending task. It is most useful when it reveals discrepancies between
what we think we know about a component or a complete system and how it actually behaves
experimentally. The existence of a model (whether explicit or implicit) is an inspiration to
experimentalists to identify phenomena or conditions for which the model predictions are
in error—the basic scientific method of hypothesis formation and falsification. Assuming the
experimental results are valid, the discrepancy can only be resolved by correcting and usually
complexifying the model to reflect better the properties of the physical system being modeled.
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Asmore experimental data become available, it becomes possible,
indeed necessary, to break complex systems into subsystems that
can be studied and modeled in relative isolation. This leads to
a proliferation of models of subsystems that must eventually be
combined but that may be at very different stages of development
and accuracy. This problem is amplified by the natural tendency
of scientists to focus on and further refine those subsystems that
have already yielded to their efforts. Put simply, we have a lot
of quantitative information incorporated into accurate models of
some subsystems but little or none about other subsystems that
are likely to be just as important to overall function or about most
of the connections between subsystems.

The nature of the modeling challenge depends on where
a subsystem is located in a system that is inherently
hierarchical (Figure 1). The subsystems in the spinal cord
and musculoskeletal system have mostly been studied in isolated
or highly reduced preparations. Such subsystems are amenable
to “bottom up” modeling strategies in which individual elements
are characterized and then combined into larger models.
Shortcomings in the constituent models tend to arise because it
is difficult for the experimenter to observe or create the full range
of natural conditions of use. The subsystems in the brain have
been studied mostly in intact, naturally behaving animals. Those
subsystems are generally modeled using “top-down” strategies
in which the form of the model is intuited from observable
phenomena of the whole system. Shortcomings in those models
tend to arise because the experimenter must make assumptions
about what is or is not happening in the other subsystems that
are present. This overview is not an encyclopedic review of
what models already exist. Rather it attempts to prioritize those
subsystems that currently appear to be both important and
relatively poorly modeled and to identify opportunities to rectify
this.

Systems Model Architecture

“It can scarcely be denied that the supreme goal of all theory is
to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation
of a single datum of experience.” (Frequently paraphrased as “A
scientific theory should be as simple as possible, but no simpler.”)

—Albert Einstein, 1933
Biological systems (and their models) tend to be much
more inherently complex than the physical systems that
Einstein had in mind. This is an inevitable consequence
of their gradual evolution over hundreds of millions of
years of intense competition with other species. Relatively
simple mechanisms such as actin-myosin binding for force
generation and a stretch reflex to stabilize posture can
have their essence captured by mathematical curve-fitting
(Hill’s equation) and engineering metaphor (servo-control),
respectively. Real organisms, however, achieve their competitive
performance by huge and disorderly elaborations of those
underlyingmechanisms. This poses a potential conflict of interest
between the modeler, who often aspires to simple and elegant
models, and the experimentalist, who needs to capture realistic
performance.

The modeler must decide what performance is to be modeled,
thereby defining the functional elements that must be included in
the model system. This is itself a form of modeling that is fraught
with opportunities for errors of omission. Figure 1 provides
one framework for the restricted set of learned, voluntary
sensorimotor behaviors such as manipulating objects. Smaller
and simpler models have been used with substantial success
to account for preprogrammed behaviors such as locomotion,
breathing, and mastication. Larger and more complex models
will be required to account for multimodal behaviors such as
eye-hand coordination.

The framework in Figure 1 can be divided hierarchically
and phylogenetically into brain, spinal cord and
peripheral/mechanical subsystems. The first organisms to
achieve motility evolved by steadily enhancing their abilities
to make movements that were environmentally responsive,
mechanically stable, and energetically efficient. Sensory
transduction and electromechanical activation were already
well on their evolutionary paths before there were recognizable
nervous systems at all. As organisms became larger and more
complex mechanically, coordination required centralization
of sensorimotor connections in invertebrate ganglia that
eventually coalesced into the vertebrate spinal cord. Systems-
level modeling is often applied to behaviors that are learned by
the brain but implemented by the “lower” but highly evolved
subsystems, whose intrinsic properties thereby define the control
problems that the brain must solve. Model systems that omit or
substantially simplify components are implicitly hypothesizing
that those components do not make a significant contribution
to the observed behavior, even though they are known to be
necessary and perhaps even sufficient for many other behaviors
of the same organisms. Unfortunately, such omissions more
often reflect the unavailability of computational models rather
than such a plausible hypothesis.

Explicit or implicit models that have been incorrectly
simplified lead to progressively more complex and implausible
models as they try to account for new data. This is analogous to
the problem of “the music of the spheres” in which an intuitive
and simple earth-centered universe requires ever more artificial
structure to account for the observed motion of the planets. Such
a problem may be starting to emerge in motor learning models
that assume that the motor cortex is directly responsible for
converting visual targets in extrapersonal space into sequences of
muscle activation that cause limbs to reach to those targets. Such
models often assume that the cortex learns an “internal model”
of the musculoskeletal plant and inverts that model to compute
the commands required to perform a given task. As Nikolai
Bernstein pointed out (Bernstein, 1967) (English translation of
1934 publication in Russian), such a computational problem is
ill-posed because of redundancy. There are usually more muscles
and degrees of freedom than required to perform the task, so the
computation requires either an arbitrary constraint on allowable
strategies (d’Avella et al., 2006) or an optimization criterion
such as minimizing effort that will result in a singular solution
(reviewed in Loeb, 2012). If there were a single internal model
in a single place subject to a single computational strategy, then
one would expect this to give rise to rather consistent patterns of

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2015 | Volume 9 | Article 70

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Loeb and Tsianos Gaps in models of sensorimotor systems

 

Peripheral & 

Mechanical 

Spinal 

Cord 

Framework for Modeling Sensorimotor Control 

Cerebral

Cortex 

Tectum Thalamus 

Cerebellum Brainstem 

Interneurons 

Presynap!c 

Modula!on 

αMNs γMNs 

MS Proprioceptors Energy 

Skin 

World 

Tac!le 

Brain 

FIGURE 1 | Schematic of major structures likely to be required for a

reasonably complete model of sensorimotor control of learned

voluntary behaviors. Gray elements denote well-modeled subsystems

(discussed herein only by reference); blue denotes substantial progress but

with important functional gaps; green denotes attempts to model based on

incomplete data; red denotes no quantitative models to date.

Musculoskeletal systems (MS) interact with the World via Skin interfaces that

contain large numbers of Tactile mechanoreceptors. Other sources of

neurally mediated feedback include large numbers of Proprioceptive

mechanoreceptors in muscles and various connective tissues plus

chemoreceptors that provide information related to Energy consumption,

fatigue, and injury. All of these somatosensory signals inform both the spinal

cord and the brain and are known to play critical roles in both learning and

performance of skilled motor behaviors. Various computational models have

been described for individual subsystems of the brain but these models do

not include specific models of how they interact with each other or with their

ascending and descending projections from and to the various subsystems

in the spinal cord.

sensorimotor adaptation and learning. Experiments on learning
and adaptation instead reveal many different “rules” whereby
subjects learn and forget how to deal with distortions in the
visual space, loads on the limb, and changes in posture and
muscle function and performance criteria, as well as interactions
among those variables (see Shadmehr and Mussa-Ivaldi, 1994;
Gandolfo et al., 1996; Krakauer et al., 2000, 2006; Baraduc and

Wolpert, 2002; Mattar and Ostry, 2007, 2010; Pearson et al., 2010;
Brayanov et al., 2012; Berniker et al., 2014). Substantial evidence
has shown, however, that internal representations of behavior
are neither intuitive nor simple (Brayanov et al., 2012) and
that sensorimotor learning generalizes poorly in many situations
(Gandolfo et al., 1996; Mattar and Ostry, 2007, 2010; de Rugy
et al., 2012b; Coelho et al., 2013; Berniker et al., 2014), which
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is inconsistent with the predictions of a singular internal model.
If these behaviors were actually the result of several different
sensorimotor subsystems, each with their own relatively simple
rules, the inferred models might actually be simpler as well as
more realistic. Such a collection of interacting subsystems is
known to subserve control of gaze, which consists of anatomically
distinct subsystems for classes of behavior such as voluntary and
involuntary saccades, smooth pursuit, and reflexive stabilization,
and the coordination of eye and headmovement to achieve them.
The anatomical structures responsible for gaze control include
the mesencephalic tectum, pontine, and other brainstem nuclei
and cerebellum as well as sensory and motor cortical areas, all of
which also have strong sensory and motor connections with the
limbs.

Gaps in Peripheral and Mechanical Models

Models of the musculoskeletal system include several different
types ofmodels thatmust be combined to generate their complete
input/output properties.

Musculoskeletal Dynamics
Control engineers divide any system into a plant and a controller
and describe the tasks to be performed using cost functions that
weight the relative importance of quantifiable state variables such
as accuracy, time to completion and energy consumption. The
job of the sensorimotor nervous system (controller) is to compute
and implement control signals that cause the musculoskeletal
system (plant) to achieve desired performance. The mechanical
dynamics of the plant obviously constrain the set of useful
solutions for the controller. More complex plants make it more
difficult for engineers to develop mathematical models that can
be used to compute solutions, but they do not necessarily make
the plant inherently more difficult to control. For example,
the complex intrinsic properties of muscles (e.g., dependency
of force output on instantaneous muscle length and velocity)
may provide rapid stabilizing effects that compensate in part
for the relatively long delays inherent in signal transmission
in a neural controller (Hogan, 1984; Loeb et al., 2002) but
see (Crevecoeur and Scott, 2014). Nevertheless, the mechanical
dynamics of multilinked skeletal segments such as a limb or
vertebral column are inherently complex and can result in highly
unstable conditions that must be prevented by a controller with
widely distributed inputs and outputs (Lackner and DiZio, 2000).

Sophisticated algorithms for solving the mechanical dynamics
of free-body systems with mechanical constraints have been
widely applied to the biomechanics of musculoskeletal systems.
These work reliably when the biological architecture lends itself
to decomposition into discrete and independent entities—the
inertial segments, joints, and actuators typical of most limbs.
Mechanical modeling becomes difficult and less reliable when the
discrete entities interact through distributed connective tissues.
In the hand, this arises when tendons from multiple muscles
insert onto capsular structures around finger joints rather than
directly onto individual bones and when separately controlled
neuromuscular compartments of multiheaded digit muscles are
loosely coupled to each other (Schieber and Santello, 2004).

Distributed viscoelasticity in the skin tends to dominate the
mechanics of the lightweight digits at low muscle recruitment.
In the neck and trunk, modeling challenges arise when the
length and/or pulling direction of one muscle depends on the
position or activation of other muscles (Richmond et al., 2001).
In the shoulder and hip, this occurs when muscles wrap over
and around other muscles (van der Helm, 1994). In theory,
these complexities can be approximated by decomposition into
multiple, discrete and classical entities. In practice, most of the
parameters that need to be specified to define such finite element
models are unavailable.

Models of the rapidly conducting proprioceptors (myelinated
nerve fiber groups I and II) are well-developed but they
must be driven by perhaps uncertain musculoskeletal dynamics
(muscle fascicle length and velocity for spindles and active
muscle force for Golgi tendon organs). Several other types of
mechanoreceptors have been described in muscles, ligaments,
and joint capsules (Grigg and Hoffman, 1984), but mathematical
models are not available and their functional roles are uncertain.

Non-stationarity of Muscle Physiology
Models of the contractile properties of mammalian skeletal
muscle are perhaps the most developed of all components.
They were developed initially to explore reductionist models
of contractile mechanisms under highly limited and generally
unphysiological operating conditions (e.g., isometric or isotonic
twitch or tetanus). They were extended to account fairly well for
the full range of kinematic conditions and contractile properties
of mammalian slow-twitch and fast-twitch muscle fibers at
various physiological levels of recruitment. More recently they
were extended to account for energy consumption (Tsianos et al.,
2012), which may be an important cost-function used by the
brain to improve performance during motor learning. What is
missing are models of how the properties of muscles change over
time as a result of patterns of use or disuse. The control strategies
learned by the brain must anticipate or at least cope well with
these changes. Understanding such changes is important when
modeling is used to account for performance in pathological
systems (see below).

In the short term, muscles are subject to fatigue—a reduction
in force output for a given set of operating conditions
(Enoka and Duchateau, 2008). Such reductions may arise from
changes in the many cellular processes involved in muscle
activation and deactivation. Models of muscle that are composed
of computational elements that correspond to the energy-
consuming processes (e.g., cross-bridge turn-over and calcium
flux) should make it possible to account for those changes, but
this remains to be modeled. The effort will require a great variety
of experimental data, much but perhaps not all of which is
already available in the literature. Many diseases and injuries
are associated with disuse atrophy of muscles, which tends to
increase greatly their susceptibility to fatigue, but the relative
contributions of the underlying processes may be different from
normal muscles.

Musculotendinous injuries account for the majority of
emergency medical treatment and long-term disabilities, so there
is a great deal of interest in how they occur, how they affect
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performance and how they heal. Structural engineering has
benefitted greatly from finite-element analytical modeling (FEM)
of complex structures. There have been a few attempts to develop
such models for muscle, which is essentially a composite material
consisting of contractile elements (muscle fibers) embedded in a
structurally critical matrix (endomysial collagen) (Trotter, 1993).

Muscle is particularly responsive to exercise, which results
in rapid and profound changes in key properties such as force-
output, speed of contraction and relaxation, and resistance to
fatigue. Quantitative models of these changes are becoming more
feasible as the cellular mechanisms responsible for signaling and
managing plasticity are starting to be revealed. Data from formal
physiological experimentation and the effects of athletic training
tend to emphasize covariances in physiological properties; e.g.,
intense but brief exercise tends to develop fast-twitch muscle
fibers with larger force output, faster rise and fall dynamics,
higher rates of maximal shortening (Vmax) and lower fatigue
resistance than slow-twitch muscle. Mathematical models that
represent explicitly the mechanisms underlying these properties
are a better starting point for models of plasticity because the
properties do not necessarily covary. Little systematic data are
available about the rates at which the individual properties other
than maximal isometric force change during normal training.
For example, muscles subject to disuse atrophy produce lower
force (typical of slow twitch fibers) but also have lower fatigue
resistance (typical of fast twitch fibers).

The anatomy and physiology of mature neuromusculoskeletal
systems are the result of myriad mechanisms that orchestrate
their development (Crawford and Horowits, 2011). Most
musculoskeletal models assume that the pinnation and
sarcomere lengths of muscle fascicles tend to be optimized
for the range of lengths that the muscles experience during
normal function and that the connective tissues that support
them are matched to the stresses that the contractile elements
apply during those functions. The trophic factors that drive
the deposition and structural properties of collagen in tendons,
aponeurosis, and endomysium are starting to be understood
qualitatively but quantitative models of their dynamics are not
yet available. Assumptions of covariance and optimality are likely
to breakdown if models are applied to pathological conditions.
For example, passive tensile properties of mammalian muscle
are dominated by the endomysial connective tissue, so do not
necessarily covary with active tension or force-length properties
that are determined by the myofilaments (Brown et al., 1996).

Tactile Mechanics and Sensory Transduction
Musculoskeletal systems interact with the world via contact
regions composed of skin and related epidermal structures (nails,
claws, teeth, hair, or fur). The mechanical compliance of skin
defines what happens during object manipulation, which is
essentially a series of collisions between the object and various
parts of the hand; the resulting deformations of the skin define
what information will be available to the CNS from tactile
mechanoreceptors, which are all essentially strain gauges. The
mechanical properties of these interfacial regions are starting to
be captured by finite element modeling (Kumar et al., 2015).
Such models can be added to classical free-body models to

describe accurately the mechanical events that occur during
collisions and manipulation between, for example, fingertips
and objects to be grasped, but the computational load is often
daunting. Modeling the tactile sensory signals that will result
from myriad, independent receptors in the soft tissues remains
challenging. Such sensory signals are known to be essential for
dexterity, which is severely impaired when skin is anesthetized
while proprioception and motor commands are left intact. The
histological structure and physiological responsiveness of the
receptor modalities are fairly well-understood, so it should be
possible, albeit computationally challenging, to integrate model
populations of cutaneous mechanoreceptors into finite element
models (Kumar et al., 2015).

Gaps in Spinal Cord Models

Fusimotor Control of Muscle Spindles
Muscle spindles have long figured prominently in theories of
sensorimotor control. The size and speed of their sensory
axons, their numbers, and distributions, and their highly evolved
structure and fusimotor control mechanisms all suggest that they
are functionally critical. All of these elements are well-described
in existing computational models (Mileusnic et al., 2006). The
problem is that only sparse information is available about how
their sensitivity is controlled by the fusimotor system during
natural behaviors (Loeb, 1984; Prochazka, 1999; Taylor et al.,
2000).

The fusimotor apparatus has undergone a huge elaboration
in mammals, including specializations within various parts of
the musculoskeletal system (Richmond et al., 1986). Servocontrol
models of sensorimotor control originally emphasized the role
of spindle afferents in the clinically prominent monosynaptic
stretch reflex, but this represents only a tiny fraction of their
central projections. Spindle afferents contribute to a multitude
of oligosynaptic circuits in spinal and brainstem interneurons
where they are combined with descending command signals.
They are also the dominant source of information about posture
and kinesthesia (Scott and Loeb, 1994; Gandevia, 1996), which
are necessary for high-level planning and evaluation of motor
strategies in cerebral cortex and cerebellum. Simplistic rules for
fusimotor control have been hypothesized [e.g., alpha-gamma
coactivation (Vallbo, 1974), optimal transducer programming
(Loeb and Marks, 1985)] but these are speculations rather than
known facts.

Connectivity of Spinal Interneurons
Signals from the brain and sensory afferents are mixed in spinal
interneurons that project to the alpha motoneurons (Pierrot-
Deseilligny and Burke, 2005). As a result, the influence of
brain activity on muscle contractions and movement depends
substantially on the connectivity of spinal interneurons. In the
past century, many neural pathways from sensory receptors
(cutaneous and proprioceptive) to alpha motoneurons have
been identified. These pathways include the monosynaptic Ia
excitation of alpha motoneurons and polysynaptic pathways
involving propriospinal, Renshaw, Ia, and Ib interneurons.
The pathways were identified mainly through electrophysiology
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techniques by perturbing sensory signals from one muscle
and investigating the timing of enhancement or depression
of alpha motoneuron activity of the same muscle as well as
muscles that were functional antagonists, synergists, or both (for
a recent review, see Loeb, 2014). Neural pathways involving
cutaneous receptors are poorly defined relative to those involving
proprioceptors because it is difficult to stimulate a large group
of afferents from a homogeneous type of cutaneous receptor.
In electrophysiology experiments, the connectivity of cutaneous
pathways is investigated typically by stimulating cutaneous
nerves or patches of skin, which contain neurons from many
different types of cutaneous receptors (Pierrot-Deseilligny and
Burke, 2005). Through this method, it is not possible to
distinguish the contribution of each type of receptor on the
resulting alpha motoneuron activity. Information from these
experiments, therefore, cannot be used to accurately predict the
effects of physiological activity of the various cutaneous receptor
afferents on interneuron or alpha motoneuron activity in the
spinal cord.

Neural pathways from cutaneous receptors and
proprioceptors to alpha motoneurons involving three synapses
or more are not well-defined because current experimental
techniques are limited. In electrophysiology experiments, if
one of the neurons in the polysynaptic chain is hyperpolarized
substantially via descending control, the whole chain will
be invisible to the experimenter. Even if the effect on alpha
motoneuron activity is observable, it will likely be highly variable
and even differ in sign across subjects and experiments because
descending control of each one of the neurons in the chain
will likely depend strongly on the conditions of the experiment
and physiological state of the subject. Furthermore, sensory
afferent collaterals may activate several pathways in parallel with
similar latencies, making them indistinguishable in the alpha
motoneuron signal.

Role of Presynaptic Modulation
Neurotransmitter release by the presynaptic neuron depends
not only action potential rate, but also on the level of
presynaptic inhibition/facilitation induced by interneurons
forming axoaxonic connections with the presynaptic neurons.
The activity of these interneurons are controlled by descending
projections as well as by sensory afferents, but this connectivity
is poorly understood (Rudomin and Schmidt, 1999). In theory,
presynaptic control could allow selective gating of signals
from different sensory modalities, muscles, and interneurons
depending on the task. It is not clear, however, what portion of the
presynaptic terminals the brain can control independently (Sirois
et al., 2013). Furthermore, it is not clear how presynaptic input
varies across tasks. There may be a set of presynaptic inputs that
are useful for a wide range of tasks (see Fink et al., 2014), thereby
reducing the number of control parameters the brain would have
to learn to perform new movements.

Status of Brain-level Models

Models of different parts of the brain tend to be abstract because
of the lack of specific knowledge of the neural circuits that process

signals from their input sources and the lack of knowledge
of the specific neural circuits that their output projections
influence. Spinal interneurons receive input from many parts
of the brain, including cerebral cortex, brain stem, and tectum.
The distribution of these inputs among spinal interneurons as
well as the specific source locations are poorly understood. New
tools for tracing and modulating connections based on genetic
engineering of specific cell-types are just starting to reveal the
functional relationships between brain and spinal cord circuits
(Akay et al., 2014; Azim et al., 2014; Esposito et al., 2014).

Cerebral Cortex
Voluntary motor control is usually assumed to reside in a small
set of frontal lobe cortical areas. Damage to these areas in
humans such as from stroke results in profound losses of such
behaviors. Top-down models often attribute to cortex most or all
of the control function involved in learning and executing these
behaviors. Cortex seems to be necessary for learning new motor
skills but may not be sufficient (see below) or even necessary for
their execution (Kawai et al., 2015).

It has long been known that the cerebral cortex is organized
in layers that are associated with specific types of neurons,
input sources and output destinations. These could provide the
substrate for bottom-up modeling. However, little is known
about the local connections among neurons from different layers
and even less about the connectivity among the thalamus and
distant cortical columns that span the many cortical areas
involved in sensorimotor control (Hooks et al., 2013; Kaneko,
2013). For this reason, circuit models tend to rely heavily on
correlations of activity between a very small subset of cortical
neurons either in behaving animals and/or in response to
electrical stimulation (Chadderdon et al., 2014). The apparent
circuits derived from these studies apply only to the small
number of neurons observed and may deviate substantially
from true circuitry because there are many pathways with
several interneurons between recording and stimulation sites;
these interneurons may block activity through some pathways.
Interneuron activity depends on experimental conditions so it
is likely that the net excitatory/inhibitory influence observed
during the highly constrained experiments does not apply to
many sensorimotor behaviors. The specific output pathways to
cerebellum and subcortical structures such as the brain stem
nuclei, propriospinal interneurons, and segmental interneurons
are also poorly understood.

The cerebral cortex has long been an attractive candidate
for computational models because of its obvious importance
for learning new tasks. The rise of digital logic in the 1940s
and 50s coincided with the development of electrophysiological
methods to study the activity of individual neurons, leading to
the compelling notion of neurons as logical and gates (McCulloch
and Pitts, 1943) and learning as rules for changing the weighting
of the inputs (Hebb, 1949). Models of cortical function have
mostly been elaborations of this basic scheme (Marr, 1970). The
problem is that the principal output cells of the cortex appear to
be vastly more complex in their computational functions. Each
of the numerous tiny spines that extend from their dendrites
appears to function as a sophisticated temporospatial signal
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processor whose output gain can be individually adjusted before
contributing to the all-or-none output of the neuron as a whole
(Polsky et al., 2004; Jadi et al., 2012). Ambitious attempts are
underway to develop computational models of cerebral cortex
based on exhaustive analysis of neural connectivity (Markram,
2006), but the computational algorithm for the individual cortical
neurons is now less clear than was originally assumed.

Basal Ganglia—Thalamus
The thalamus relays and processes information from the cerebral
cortex, cerebellum, brain stem, and spinal cord, and its output
neurons project to various areas of the cerebral cortex. Despite
its important role, the interneuron connectivity of the thalamus
and associated circuitry in the basal ganglia (Bosch-Bouju et al.,
2013) is poorly understood and it is commonly omitted inmodels
of sensorimotor control. Current models of this subsystem
(Nelson and Kreitzer, 2014) are still based on simplistic analogies
between neurons and electronic logic gates (McCulloch and Pitts,
1943), despite data demonstrating that their circuits and even
individual neurons generate complex patterns of spontaneous
activity (Llinas, 1988; Nakamura et al., 2014). Computational
models of individual neurons with such properties are in their
infancy. Incorporating them into large-scale systems requires
many more parameters and assumptions about their individual
properties and connectivity patterns, as well as much greater
computing power.

Midbrain Tectum
The tectum (superior and inferior colliculus in mammals) may
play a much larger role in sensorimotor interaction with external
objects than is generally acknowledged. The superior colliculus
has been intensively studied and modeled for its role in directing
saccadic eye movements to visual stimuli (Fecteau and Munoz,
2006). The inferior colliculus has been studied mostly as the
“relay” in which sound localization information from both ears
is conveyed to the auditory cortex (Slee and Young, 2014). But in
fish and amphibia, the analogous subsystem controls most of the
purposeful motor behaviors of the organisms, whichmust be fast,
accurate and well-coordinated. In all vertebrates, all exteroceptive
senses capable of providing localization information about an
external object (vision, hearing, and touch) converge on the
tectum. The tectal outputs project to brainstem nuclei and spinal
cord layers that control all of the muscles required to acquire
such targets, whether by saccadic gaze movements of eye and
head (and auricular pinnae in most species other than primates)
or reaching movements of the limbs (and jaws and tongue in
many species) (Saitoh et al., 2007; Kozlov et al., 2014; Philipp and
Hoffmann, 2014). The direct projections from retina to superior
colliculus are known to be the source of express saccades (Munoz
and Wurtz, 1992), accurately directed gaze movements that can
acquire targets about twice as fast as the transcortical loop (lateral
geniculate to occipital cortex and frontal eye fields) that actually
projects back to the superior colliculus, which appears to control
the metrics of the saccade. There have been several reports of
extremely short latency corrections of reaching movements to
visual targets that shift position (Gribble et al., 2002; Wilmut
et al., 2006; Perfiliev et al., 2010) and in avoidance of obstacles

to locomotion (Weerdesteyn et al., 2004), which would be
consistent with the tectum performing the same function in
limb movements as in gaze movements. If true, this would
affect profoundly the assumptionsmade about the computational
tasks of the motor and parietal cortical regions associated with
reaching in extrapersonal space, perhaps the most common task
for which top-down models have been constructed.

Cerebellum and Brainstem
The cerebellum makes an excellent poster child for the problem
of modeling any one of the many subsystems that subserve
sensorimotor function. Its cytoarchitecture and neurophysiology
is highly distinctive, relatively simple and homogeneous and
better documented than any other part of the central nervous
system. It is important enough to have been endowed with over
half of the neurons in almost any vertebrate. Lesions to the adult
cerebellum produce profound and distinctive motor deficits,
yet humans born with substantial cerebellar atresia function
surprisingly well (Walker, 1944). The cerebellum has attracted
several detailed computational models of its function (Albus,
1975; Marr and Thach, 1991; Kawato and Gomi, 1993; Kawato
and Samejima, 2007), yet it can be plausibly argued to subserve
either motor (Thach, 2014) or sensory (Bower, 1997) function, to
the virtual exclusion of the other.

Although the neurons of the cerebellum and their connectivity
are understood better than most structures in the brain, the
precise input sources and their target neurons as well as the
precise destinations of the output projections are not well-
known. For example, the climbing fibers from the inferior olivary
nucleus in the medulla provide a substantial portion of the input
to the cerebellum, but little is known about the inputs to the
inferior olive and how they are processed. Climbing fiber activity
is known to be influenced by the reticular formation and red
nucleus of the brain stem, several areas from the cerebral cortex,
as well as by signals from the periphery related to proprioception
and touch (Brown et al., 1977; Stecina et al., 2013). Specific
sources of these signals, how they are processed in the inferior
olive, and how the processed output affects cerebellar function is
not known. Another major source of input to the cerebellum is
the mossy fiber projections from the lateral reticular nucleus of
the reticular formation. There is a large degree of convergence
of afferent activity ascending from the spinal cord with activity
descending from the cerebral cortex, tectum, red nucleus and
other parts of the brain stem (Alstermark and Ekerot, 2013). The
precise source of these inputs as well as the interneuronal circuits
that integrate them is largely unknown.

The brain stem possesses many subdivisions including the
inferior olive, vestibular nuclei, reticular formation and red
nucleus with distinct set of inputs, outputs, and interneurons.
Although they have an important functional role for even simple
reach and grasp movements (Alstermark and Isa, 2012), the
connectivity of their neural circuits as well as the precise location
of their inputs and outputs are poorly understood (Kennedy,
1990; Kuchler et al., 2002). Much of the output of cerebellum is
targeted to these structures, which also receive the proprioceptive
and vestibular sensory signals required to coordinate movements
across the entire body. Most studies of motor behavior focus
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on the “prime mover” muscles most closely associated with the
task, but the freely mobile, multiarticulated structures of most
terrestrial animals are actually quite difficult to stabilize because
of intersegmental Coriolis forces (Lackner and DiZio, 2000).
For example, human subjects asked to flex and extend their
elbow tend to keep the wrist still without thinking, whereas a
similar weight connected by a hinge to a stick being wagged
up and down would flop uncontrollably. This problem could be
solved by simply cocontracting the muscles of the wrist to stiffen
the joint, but that would be energetically inefficient. Instead,
subjects deftly time the activation of the many different wrist
muscles to cancel the rapidly changing Coriolis forces. This
problem is greatly magnified when trying to maintain balance of
the whole body during any rapid movement of any body part,
a problem that is constantly changing as the musculoskeletal
system develops and ages. Perhaps the best studied model for
adaptive tuning of stabilizing reflex gains is the vestibulo-ocular
reflex, which involves changes in brainstem nuclei mediated by
cerebellar plasticity (Kawato and Gomi, 1992; Raymond et al.,
1996; Clopath et al., 2014). The details of these circuits and their
learning rules remain contentious and it is uncertain if they
generalize to other sensorimotor behaviors.

Use of Systems Models to Demonstrate
Competency

Many anatomical structures of the sensorimotor system have
been investigated to characterize their inputs, outputs, and
intermediate processing (although as explained above, many
important knowledge gaps remain). Their complexity often
makes it impossible to intuit their input-output transformation.
Neural networks within these structures, for example, have a
large number of neurons with various non-linear properties
and substantial convergent, divergent, and recurrent connections
that make it difficult to infer how they process a set of
incoming signals. Computational models are therefore essential
for predicting these non-intuitive interactions and provide
insight into the possible transformations that a neural network
can apply to a range of input signal patterns. Intuition is even less
useful for predicting the collective input-output transformation
of a system of interconnected neural networks formed by distinct
anatomical structures in the nervous system such as those
shown in Figure 1. Understanding such complex interactions is
necessary for determining the relative roles of these anatomical
structures in sensorimotor control and ultimately unraveling the
mechanisms involved.

The sparse knowledge of the anatomy and physiology
underlying the sensorimotor system precludes a complete
understanding of the mechanism of sensorimotor control.
This knowledge, however, can be exploited to understand the
competency of the known properties and suggest experimental
investigations for furthering our understanding and updating
the models. It can be tested, for example, if a set of known
properties of the sensorimotor system is sufficient for generating
specific behaviors. If the properties are sufficient for generating a
particular behavior then this would suggest that these properties
may play a significant role. It has been shown recently that

the known spinal circuits described above are sufficient for
generating the muscle dynamics of wrist (Raphael et al., 2010)
and arm movement (Tsianos et al., 2011, 2014), which has been
traditionally assumed to arise largely from commands issued
by the motor cortex. These results emphasize the possibility
that spinal circuits can make large contributions to voluntary
movement and encourage further experimental testing. It has
also been shown that descending commands to models of
known spinal circuitry can be linearly interpolated to generate
intermediate movements (Tsianos et al., 2014). Such simple
interpolation along with the modeled musculoskeletal system
and spinal circuitry properties were sufficient to reproduce the
extent of learning generalization observed experimentally for
similar tasks. This result suggests that much of the generalization
of learning observed experimentally may arise from simple
combinations of learned voluntary commands rather than
through the use of internal inverse models of the sensorimotor
system. This is consistent with the tendency of human subjects
to adapt to changes in the musculoskeletal system by relatively
simple scaling of the original motor programs rather than
computation of new programs that offered superior performance
(de Rugy et al., 2012a,b).

Use of Systems Models to Prove
Insufficiency

If modeled properties of the sensorimotor system are not
sufficient to explain a particular behavior, then these properties
must interact with other biological properties that are either
not modeled or not known. Other known properties can be
added to the model incrementally to test which configurations
are sufficient for reproducing the desired behavior. For example,
activation of muscles and feedback through spinal circuits
contribute to stable movements due to the relatively short time
delays involved; however, the contribution of spinal circuits is
limited for whole body tasks that require muscle coordination
between distant body parts. Spinal circuits coordinate activity
among a limited number of adjacent muscles and joints because
inputs to a given spinal interneuron originate from only a
few adjacent spinal segments. There are many relatively fast
circuits involving anatomical structures rostral to the spinal
cord such as the brain stem (Esposito et al., 2014), tectum
(Philipp and Hoffmann, 2014), cerebellum (Azim et al., 2014)
and even sensorimotor cortex (Scott, 2004, 2012; Nashed et al.,
2015) that receive afferent signals from throughout the body and
may therefore contribute to the dynamics and stability of such
movement. Known circuits from these anatomical structures
can be incorporated in models to test their sufficiency, which
would depend on their specific connectivity as well as the range
of input sources and their extent of convergence. If multiple
anatomical structures appear sufficient, then the modeled task
could be varied systematically to search for situations where
each one becomes uniquely competent. This would indicate
the types of sensorimotor tasks and conditions that each
anatomical structure might subserve in the biological system.
If known properties of a given anatomical structure cannot
account for the behavior, it could be that the model for the

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2015 | Volume 9 | Article 70

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Loeb and Tsianos Gaps in models of sensorimotor systems

structure is inadequate or that other structures are required.
Such negative results are particularly valuable in identifying
opportunities to advance understanding of the system as
a whole.

General Obstacles to Successful Modeling

It is always easy to end a scientific paper with a call for more
experiments to provide more data to fill in the missing pieces
of knowledge. This brief review has pointed out many places
where basic knowledge about neural connectivity is insufficient
to permit reductionist modeling. But there are also many places
where the connectivity is relatively well-known and detailed
models have been constructed, only to expose contentious
disagreements about what role the structure actually plays in a
given behavior.

As David Marr pointed out, models must start with a
top-level theory of computation—a division of function into
a sequence or hierarchy of tasks (Marr, 1982). Only then
can one contemplate the computational algorithms that might
subserve each of those tasks and, below that, the machinery that
performs each algorithm. The physiology and connectivity of
individual neurons provides information about the machinery

level, leaving the modeler to guess about the tasks and the
algorithms.

It used to be feasible for a researcher to become familiar with
most of the literature about most of the CNS and to construct
a systems level model of behaviors that considered both its
phylogenetic and ontological origins; for example, (Ayres, 1975).
Most researchers now spend a lifetime learning the details of and
formulating hypotheses about one or two of themany subsystems
that somehow contribute to sensorimotor behaviors. They tend
naturally to assume that the subsystem that they are studying is
primarily responsible for the behaviors that they employ in their
experimental designs. Their models of “their” subsystem must
nevertheless be reconciled with some current dogma about the
role of the other subsystems, as promulgated by other researchers
with equally narrow and parochial views.

“It was six men of Indostan To learning much inclined, Who
went to see the Elephant (Though all of them were blind), That
each by observation Might satisfy his mind...

And so these men of Indostan Disputed loud and long, Each in
his own opinion Exceeding stiff and strong, Though each was partly
in the right, And all were in the wrong!”

—From “Blind Men and the Elephant” by John Godfrey Saxe
(1816–1887).
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