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The brain is a self-organizing system, which has evolved such that neuronal responses and
related behavior are continuously adapted with respect to the external and internal context. This
powerful capability is achieved through the modulation of neuronal interactions depending on
the history of previously processed information. In particular, the brain updates its connections
as it learns successful versus unsuccessful strategies. The resulting connectivity changes, together
with stochastic processes (i.e., noise) influence ongoing neuronal dynamics. The role of such state-
dependent fluctuationsmay be one of the fundamental computational properties of the brain, being
pervasively present in human behavior and leaving a distinctive fingerprint in neuroscience data.
This development is captured by the present Frontiers Research Topic, “State-Dependent Brain
Computation.”

The Research Topic provides an account of prevailing concepts and theories plus recent
advances on the role of ongoing brain dynamics—reflecting experiences, global brain states, context
and noise—for task-related information processing. Works from the conceptual, experimental
and computational-modeling domains are show-cased, focusing on the following two issues: (1)

Generative mechanisms of ongoing neuronal dynamics, and (2) Principles of interaction between
ongoing dynamics and perceptual or motor processes.

A wide range of spatial and temporal scales encountered in brain dynamics are covered, i.e.,
frommicroscopic molecular to macroscopic population dynamics and from fast processes evolving
within milliseconds to slow ones taking hours or longer (Table 1). An overview article about state-
depended learning exemplifies the need for integration of different scales of processing (Ritter
et al., 2015). The role of ongoing alpha oscillations at the microscopic and macroscopic scale for
learning is illuminated in Sigala et al. (2014). In this study, the authors present empirical data along
with computational models that seek to unveil the underlying principles how oscillations interact
with synaptic plasticity. EEG dynamics are also explored in Betzel et al. (2012) where the authors
report fast synchronization dynamics—in the range of tens to hundreds of milliseconds—iterating
amongst a small set of core networks in the resting brain. The authors suggest that these dynamics
may be the neural correlate of resting state BOLD fluctuations. The ability of stochastic dynamic
causal modeling (DCM) for fMRI—a neural field formulation of cortical activity—is probed in
Daunizeau et al. (2012) where EEG spectral changes are predicted from BOLD signal Fast and high
spatial frequency modes as represented in EEG are enslaved by slow and slow spatial frequency
modes predominant in fMRI signals. Using an Ising spin model (Deco et al., 2012) demonstrate
that the dynamic repertoire of the brain, i.e., different spatio-temporal patterns of functional
connectivity, emerges naturally from the neuroanatomical connectivity. It is hypothesized that the
scale-free neuroanatomical architecture maximizes the dynamic repertoire and its accessibility in
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TABLE 1 | Different facets of state-dependent brain computation are illuminated in the present Research Topic.

Scale Article Animal Function States Empirical Model

Micro Banerjee et al., 2012 Macaque Arm

movement/reaching

task

LFP Spike trains, LFPs Parametric model

Fernandez-Ruiz and

Herreras, 2013

Rat Rest, stimulation LFP LFP –

Humble et al., 2012 – Memory Spike trains – Spiking neuron

models and STDP

Mark and Tsodyks,

2012

Rat Spontaneous,

sensory

stimulations

Different

synchrony levels

– Wilson-Cowan

rate model,

IF-neurons,

Realistic neuronal

network with

clustered

architecture

Palma et al., 2012 – Memory Neuromodulation – Spiking recurrent

networks

Quilichini and Bernard,

2012

Rat T-maze Neuromodulators Firing pattern –

Bridging micro to

macro

Ritter et al., 2015 Human, macaque,

rat, in vitro

Learning, rest Oscillatory

LFP

EEG

BOLD

Yes Yes

Sigala et al., 2014 Human/young

adults

Learning, rest Oscillatory

LFP

EEG

BOLD

Yes Yes

Macro Betzel et al., 2012 Human Rest EEG, 10–100ms EEG –

Daunizeau et al., 2012 Human/patients

with epilepsy

Rest, interictal

activity

EEG

BOLD

EEG, BOLD Neuronal field

model/stochastic

DCM, Heuristic

model

Deco et al., 2012 Human Rest BOLD Ising spin model

Heitmann et al., 2012 Human Motor LFP/EEG – Neuronal oscillator

model

Jirsa and Muller, 2013 Human Rest, eyes-closed,

eyes-open

EEG EEG generic oscillator

equations derived

from coupled full

brain network

Miller et al., 2012 Human Rest and

task/stimulation

Band-limited EEG

rhythms amplitude

modulation

EEG –

Protopapa et al., 2014 Human Motor and

visuo-spatial

working memory

EEG functional

connectivity

EEG –

Not specified Friston et al., 2012 Human, bird Sensory

stimulation, bird

song

Behavioral,

simulated neuronal

dynamics

– Generalized

Bayesian filtering,

generic generative

model

the human brain. Critical slowing caused by dynamical
instabilities that are triggered by perception is proposed to
enable the brain to process sensory perturbations (Friston et al.,

2012). Neuronal oscillator models with surround inhibition were
shown to generate bistable spatial patterns of activity (Heitmann
et al., 2012) and indicate that state-dependent computations
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may facilitate rapid switching between motor states, potentially
accommodating high speed rather than precision responses.
The cross-frequency coupling present in empirical EEG was
systematically simulated in a full human brain network model
of coupled neuronal oscillators (Jirsa and Muller, 2013) for eyes-
open and eyes-closed states of rest condition and the theoretical
implications for state-dependent processing discussed. Distinct
brain states linked to motor and perceptual visuo-spatial
working memory and accompanying specific mental processes
are characterized as spatio-temporal functional connectivity
patterns in EEG (Protopapa et al., 2014).

On the microscopic scale, spike trains and local field
potentials (LFP) dynamics are set in relation (Banerjee et al.,
2012) using parametric models with the goal to decode those
signals and infer related behaviors. In Fernandez-Ruiz and
Herreras (2013) it is pointed out that LFP’s are highly variable
over time and have flexible spectrums, i.e., the notion of
periodic oscillations commonly used to describe brain activity
is questioned. These authors propose a method to de-mix
LFPs of different sources to determine the true degree of
periodicity—a prerequisite for a mechanistic understanding of
information transfer in the brain. In a spiking neuronal model
with STDP (Humble et al., 2012) demonstrate that simple
networks of laterally connected excitatory neurons can self-
organize into spatio-temporal pattern recognizers. The potential
for representations of more complex nested patterns which
implies stronger computational memory capabilities is raised.
The flow of information depends on the degree of network
synchrony (Mark and Tsodyks, 2012) and an intermediate degree
of synchrony is most beneficial for information transfer. The

question whether rhythmic entrainment represents a general

mechanism of computation in the brain is raised and ways are
pointed out how to address this question through empirical
work in the future (Miller et al., 2012). The theoretical impact
of neuromodulation on memory formation in spiking recurrent
cortical networks is systematically evaluated (Palma et al., 2012).
In a perspective article, a systematic account is provided how
intrinsic properties of neurons and neuromodulation relates
to firing patterns, functional correlations and behavior in rats
(Quilichini and Bernard, 2012).

The degree of abstraction in the modeling work presented
in this Research Topic varies tremendously, ranging from
simplified but biophysically plausible network models to highly
detailed neuron models. By placing the different mathematical
and empirical aspects in this mutual context, this Research
Topic aims to elucidate the principle mechanisms of state-
dependent neuronal processing. Developing a framework to
link the multiple principles together is arguably the most
pressing challenge. With The Virtual Brain (thevirtualbrain.org)
simulation framework (Ritter et al., 2013; Sanz Leon et al., 2013)
we hope to contribute to this endeavor by enabling researchers
to use multiple modeling approaches in a unified framework
ensuring reproducibility and comparability of results.
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