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Although an action observation network andmirror neurons for understanding the actions

and intentions of others have been under deep, interdisciplinary consideration over recent

years, it remains largely unknown how the brain manages to map visually perceived

biological motion of others onto its own motor system. This paper shows how such

a mapping may be established, even if the biologically motion is visually perceived from a

new vantage point. We introduce a learning artificial neural network model and evaluate it

on full body motion tracking recordings. The model implements an embodied, predictive

inference approach. It first learns to correlate and segment multimodal sensory streams

of own bodily motion. In doing so, it becomes able to anticipate motion progression, to

complete missing modal information, and to self-generate learned motion sequences.

When biological motion of another person is observed, this self-knowledge is utilized

to recognize similar motion patterns and predict their progress. Due to the relative

encodings, the model shows strong robustness in recognition despite observing rather

large varieties of body morphology and posture dynamics. By additionally equipping the

model with the capability to rotate its visual frame of reference, it is able to deduce

the visual perspective onto the observed person, establishing full consistency to the

embodied self-motion encodings by means of active inference. In further support of

its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial

depth information is missing. In sum, the introduced neural model proposes a solution to

the problem of how the human brain may establish correspondence between observed

bodily motion and its own motor system, thus offering a mechanism that supports the

development of mirror neurons.

Keywords: biological motion, correspondence problem, predictive coding, active inference, perspective-taking,

embodiment, mirror neurons, neural networks

1. Introduction

Neuroscience has labeled a distributed network of brain regions that appears to be involved in
action understanding and social cognition the mirror neuron system (Rizzolatti and Craighero,
2004, 2005; Iacoboni andDapretto, 2006; Kilner et al., 2007; Iacoboni, 2009). Although the existence
of mirror neurons in the human brain as well as their primary role for action understanding is still
controversial (see e.g., the discussion after Lingnau et al., 2009), the existence of such a network
and the inclusion of our own motor system in this network is generally accepted. However, it is still
strongly disputed how this network may develop (Kilner and Lemon, 2013; Cook et al., 2014).
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The mirror neuron system is believed to strongly interact
with the Superior Temporal Sulcus (STS), forming an action
observation network (Kilner et al., 2007). STS is particularly well-
known for encoding biological motion patterns (Bruce et al.,
1981; Perrett et al., 1985; Oram and Perrett, 1994) and has been
considered as an important visual modality for the development
of attributes linked with the mirror neuron system (Grossman
et al., 2000; Gallese, 2001; Puce and Perrett, 2003; Ulloa and
Pineda, 2007; Pavlova, 2012; Cook et al., 2014). Themajor portion
of neurons in the posterior STS seems to encode viewer-centered
representations of specific movements to the effect that their
activation depends on the type of movement observed, as well
as on the observer’s current vantage point (Oram and Perrett,
1994; Perrett et al., 1985, 1989, 1991). Seeing that self-motions
and motions of others are co-encoded in STS (Molenberghs
et al., 2010), a correspondence problem arises (see Heyes, 2001;
Dautenhahn and Nehaniv, 2002): How does observed biological
motion, which is inevitably viewed from a perspective that does
not correspond to a self-perceptual perspective, activate the same
network of areas?

Besides the apparent integrative nature of STS, there is
evidence for an integration of visual and proprioceptive
information in monkeys in the parietal cortex (Graziano et al.,
2000). Functional imaging suggests that visual and motor
information are integrated in the human occipital-temporal
cortex (Orlov et al., 2010). Yet how are motor and proprioceptive
areas co-activated by visual perceptions of bodily motion
even when they are observed from previously unexperienced
vantage points? Considering human spatial abilities, several
candidate mechanisms have been identified in psychometric
studies (Lohman, 1979; McGee, 1979; Eliot and Smith, 1983;
Carroll, 1993; Hegarty and Waller, 2004). Amongst them, visuo-
spatial perspective-taking has been described as a progressive
ability to adopt the spatial point of view of another person
(Newcombe, 1989; Hegarty and Waller, 2004; Jackson et al.,
2006).

We put forward an artificial generative neural model that
offers a solution to the correspondence problem by employing
a spatial perspective adaptation mechanism. The model is able to
project visually perceived biological motion of others onto own
action encodings, resulting in the co-activation of corresponding
proprioceptive codes. Our model is embodied in the sense
that it learns during simulated self-perception a generative
model of biological motion by correlating corresponding relative
motion in visual and proprioceptive pathways. By neurally
deployed information preprocessing, the generative model
achieves a fundamental invariance to several spatio-temporal
transformations, including scale, translation, movement speed,
and body morphology. Similar invariance properties have been
observed in STS cells (Jellema and Perrett, 2006). Also in line with
encodings of biological motion in STS, our learning algorithm
is capable to encode visual motion redundantly in multiple
orientations. Those view-dependent encodings form perceptual
attractor states, which may be compared with attractors found
for object recognition, in which mental rotations are involved
(Palmer et al., 1981; Tarr and Pinker, 1989). In our case, an
observed view of biological motion is seamlessly (mentally)

rotated to the nearest orientation that was encoded during the
training. In effect, also corresponding proprioceptive activities
are coactivated, essentially simulating the observed motion with
the own proprioceptive, embodied encodings.

The perceptual adaptation is essentially enabled by predictive
coding schemes: The embodied, generative model of biological
motion projects top-down its view-dependent expectation about
the currently recognized motion. The mismatch between the
expected and observed motion is compensated by a neural
perspective-taking module: It continuously minimizes the error
signal by rotating the whole visual percept and thereby essentially
establishes the correspondence between different perspectives.
Naturally, having encoded a number of different views of
the same biological motion improves the performance of this
process.

In sum, we show that the correspondence problem can indeed
be solved by an embodied, generative neural network model that
is able to adapt to the individual perspectives of others. More
specifically, we show how bodilymotions perceived visually could
map to proprioceptive encodings regardless whether observed
or performed. Combined with other mechanisms, we suggest
that the model offers a solution to how a social, mirror neuron
network may develop and how this network may be activated
given visual motion information only.

We detail the neural architecture for learning, recognition,
and inference of biological motion in the next section. The model
is evaluated in several experimental setups in Section 3, showing
robust learning of one or multiple views of biological motion
and the flexible adaptation of the internal perspective upon the
presentation of novel views. Next, we discuss related modeling
approaches in Section 4. Finally, we summarize the results,
draw conclusions, and sketch-out future research perspectives in
Section 5.

2. Generative Neural Network Model
Description

Given streams of time series data from neurally processed
visual and proprioceptive pathways, the generative neural model
learns to (1) spatially correlate the data by predictive inference
principles, (2) segment the data into motion patterns, and (3)
temporally correlate the data by learning predictive transition
probabilities. In the following we detail how the model neurally
processes the data streams and how it learns to spatially
and temporally correlate and segment them. Moreover, the
adaptation of the internal perspective onto the visual information
is detailed as well as the continuous minimization of predictive
errors by neural activity adaptations.

The model essentially consists of a three-stage neural
processing cascade illustrated in Figure 1. Stage I preprocesses
relative information from vision and proprioception to account
for multiple invariances in translation, scale, speed, body
morphology, and spatial orientation. This is achieved by
transforming the data into the velocity domain, normalization,
and self-supervised perspective-taking. Stage II converts the
neural coding scheme into population encodings, which
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FIGURE 1 | Diagram of the 3-stage neural network model and the

processing paths. The model is driven by visual and proprioceptive

features. In Stage I, generalization over spatio-temporal transformations is

achieved. Stage II converts the coding scheme to population coding. Stage

III accounts for segmentation of the driving data into motion patterns and

learning of the temporal sequence of patterns.

account for directional motion signals. Then, a common
visuo-proprioceptive domain is created by incorporating all
visual and proprioceptive populations into a multimodal feature
pool. Stage III implements spatio-temporal segmentation in this
multimodal domain given a continuous stream of sensory signals,
which enables the predictive encoding of biological motion
patterns and sequences.

Technically, Stage III is akin to an extended, neural noise-
based adaptive resonance model (Grossberg, 1976). On the
one hand, it learns a set of motion patterns representing
recurring visuo-proprioceptive correlations, which serve both as
recognizers as well as predictors of currently observed motion.
On the other hand, each recognized pattern learns a lateral,
probabilistic influence on the subsequent recognition of other
patterns, effectively encoding whole sequences of recognized
patterns. As a result, the model privileges the recognition of
familiar motion pattern sequences when unfamiliar stimuli are
presented. Moreover, this enables the simulation of the same
sequences when no stimulus is present.

In the following, we detail the three neural processing
stages and the involved information processing and adaptation
techniques.

2.1. Stage I - Feature Processing
Our embodied model approach assumes that knowledge about
the own body dynamics is useful for understanding bodily

motion of others. When observing another person’s motion,
however, it is necessary to generalize self-generated motion to
similar, observed biological motion generated by others. An
observed person will most likely exhibit a slightly different
body morphology and, even more importantly, will be perceived
from a different vantage point, which results in a translation
and typically a rotation with respect to the observer’s frame of
reference. Also the speed and accelerations of the other person’s
motion dynamics will typically differ.

The neural information preprocessing in Stage I generates
normalized relative directional motion signals, yielding signals
that are generally invariant to scale, speed, body morphology,
and translation. The differences in orientation are eliminated by a
self-supervised, online rotation of perceived motion in the three-
dimensional, visual pathway. This perspective-takingmechanism
basically enables the establishment of correspondences between
executed and observed motion. Moreover, it enables the
derivation of the orientation of the observed person relative
to ones own perspective, rather than just encoding biological
motion view-independently.

The neural connectivity that results in this information
preprocessing is shown in Figure 3A. A legend for this and
the following connectivity diagrams is shown in Figure 2. The
model’s neural activity is driven bottom-up by sets of visual and
proprioceptive features. A visual input feature is defined by a
relative position between two bodily landmarks; for example, the
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FIGURE 2 | Legend for the neural connectivity schemes.

hand position relative to (minus) the elbow position or relative
to the center of the body. Proprioceptive inputs to the model are
defined by angles between relative positions1. We are assuming
that depth information is available and that the identification
of respective body parts has taken place beforehand. Thus,
especially the selection of relative bodily features is predefined
as is the assignment of the selected features to their respective
neural network inputs. The choice and number of bodily features
is not particularly relevant for the functionality of our model,
though, as long as the information is sufficiently expressive.
In the experiments, we also show that depth information is
not necessary for successful biological motion recognition. The
automatic selection of relative bodily features and the automatic
assignment of these features to the respective neural network
inputs, however, remains a challenge for future work.

In sum, the input to the network is driven by a number of both,
relative 3D positions in the visual pathway and 1D angles in the
proprioceptive pathway, each commonly denoted by a vector Exn.

2.1.1. General Neural and Synaptic Building Blocks
We formalize the general functionality of our neural network by
nesting potentially recurrent and non-linear functions (italic in
the following) of multiple action potentials into both the synaptic
and axonic responses of neurons. The output oj(t) of a neuron
indexed j in terms of the afferent firing rate is determined by the
product of an activation function fj(netj(t)) of the neuron’s net
input netj(t), with a gain control function aj(t):

oj(t) = aj(t) · fj(netj(t)) . (1)

The net input netj(t) to neuron j sums up all synaptic inputs to
the neuron. Each synaptic input is determined by a pre-synaptic
process function sIj(...) that consolidates interactions between

1The model can thus also process, but does not necessarily rely on joint angles.

pre-synaptic cells connected via the same synapse, and a synaptic
transfer factor wIj(t) that describes the local efficacy or weighting
of an axon-postsynaptic transmission. It is either a constant
factor or a function of time in case it is adapted by a learning rule.
In effect, the input to a neuron j via a single synapse is a weighted
function of the output of preceding neurons that are indexed in
the set I. In sum, this leads to the net input

netj(t) =
∑

I ∈Aj

sIj(oI1 (t), oI2 (t), ...) · wIj(t) , (2)

where Aj denotes the superset of all sets of neurons synaptically
connected to neuron j and thus afferently contributing to its
input. Each specific pre-synaptic function sIj(...) processes several
neural outputs in a systematic, potentially non-linear fashion. For
example, a pre-synaptic process function

sIj(oI1 (t), oI2 (t)) = oI1 (t) · oI2 (t) (3)

implements a gain-field multiplication (Andersen et al., 1985)
of the output of the neurons oI1 (t) and oI2 (t). However, other
functions are possible in our model depending on an abstract
extra-cellular connectivity. Also, a single neuron may determine
its net input via a number of different pre-synaptic process
functions.
Analogously to synaptic inputs, the modulation of a neuron’s
output by its gain control function is given by

aj(t) =
∏

I ∈�j

sIj(oI1 (t), oI2 (t), ...) · wIj(t) , (4)

where �j denotes the superset of all sets of neurons
postsynaptically connected to neuron j and thus controlling its
efferent signal. Here, we assume that postsynaptic modulation
of a neuron has a multiplicative influence on the neuron’s firing
rate. In this way, for example, shunting inhibition (Eccles,
1964) can be implemented. The rules for gradient descent by
backpropagation over pre- and post-synaptic connections can
be derived for the above formalism. Unless declared otherwise,
activation functions of the model’s neurons are linear, synaptic
weightings and gain control functions are neutral, and pre-
synaptic process functions at synapses are passing a single
preceding neuron’s output.

2.1.2. Ia—Scaling and Smoothing
The overall purpose of processing cascade Stage I is to encode the
motion direction of each relative feature considered. However,
it may occur that a feature does not have a velocity and thus
no direction, or a velocity with a magnitude below a certain
threshold and thus a direction with minor validity considering
potential noise in the data. To parameterize this threshold,
Stage Ia applies a constant scaling factor α to every visual or
proprioceptive input Exn using the gain control modulation ai(t)
of all input neurons of the network, here indexed by i:

neti(t) = xi(t) , (5)

ai(t) = α. (6)
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This later on decides whether a local feature (e.g., the position of
the hand) is considered as static or dynamic in a global movement
(see normalization in Stage Ib). Furthermore, a simple way to
avoid strong changes in the calculated direction is exponential
smoothing with an update-factor λ (cf. Sutton and Barto, 1981),
which is implemented via inert, pairwise connections from the
input layer i to the scaled and smoothed layer indexed by j (which
is equivalent to the smoothing layer between Stage Ia and Stage
Ib indicated in Figure 3A):

sij(t) = sij(t−1) · λ + oi(t) · (1−λ). (7)

2.1.3. Ib—Normalized Directional Velocity
Stage Ib calculates the normalized direction of the movement
of a relative feature. This means that only the motion direction
is regarded, while the magnitude of velocity is generalized
over2. In this step, the model gains invariance to several spatio-
temporal transformations in perceived biological motion: Since
the positions considered are relative to each other rather than
relative to a global reference point, a general invariance to
translation is accomplished. A specific, basic body structure
knowledge is provided, according to which the relativities are
selected. Furthermore, the direction of movements generalizes
over the magnitude of relative velocities, resulting in a spatial
scale invariance and an additional temporal invariance to the

2For an one-dimensional angular feature, this means that only the signum of the

angular change is considered.

timescale and overall speed of the observed movements. We
apply this feature processing to each single, relative feature that
is considered. Since this analogously results in scale invariance
for each single positional relativity, that is any limb length when
features are provided accordingly, the model is able to completely
generalize over the body morphology of an observed actor (cf.
Schrodt and Butz, 2014).

Stage Ib consists of three layers, whose neurons are indexed i,
j, and k, where i now corresponds to the neurons’ indices of the
scaled and smoothed output layer of Stage Ia, and j corresponds
to the velocity-layer of a feature indicated in Figure 3A. First, the
velocity calculated in layer j results from pre-synaptic processes
in a pairwise connection scheme with layer i. These pre-synaptic
process functions are implemented by time-delayed inhibition,
basically calculating the temporal difference of the preceding
neuron’s activation:

sij(t) = oi(t)− oi(t−1), (8)

Secondly, a real-time normalization is performed by pairwise
connections to the neurons of the stage’s output layer indexed by
k. Yet, each connectionmodulates the output of a velocity neuron
by a single, feature-specific normalizer neuron with index l. To
normalize the activities in layer k to length 1, its gain factor is
determined by the inverse length of the output vector of layer j.
This can be denoted by

A B

C

FIGURE 3 | Connectivity schemes of Stages I-III. (A) Neural connectivity in Stage I. (B) Population coding, simplified for 2D. (C) Pattern layer with lateral inhibition.

t: trained pattern, f: free pattern (green circle). Red circle: current winner pattern.
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s{j,l}k(oj(t), ol(t)) = oj(t) · ol(t), (9)

fl(netl(t)) = min

(

1
√

netl(t)
, 1

)

∈ (0, 1], (10)

sjl(oj(t)) = oj(t)
2. (11)

By Equation (10), it can be seen that each feature-specific
normalizer neuron l is limited to an inhibition of the input to
layer k, which means that only features with a velocity magnitude
> 1 are normalized to length 1. This is the case, if the length
of a hypothetical velocity vector of a feature fed into the model
is ≥ 1/α (see Equation 6). Otherwise, the length of the resulting
direction in layer k will be < 1. Although this means that the
model loses a bit of invariance to scale, translation, and speed,
this mechanism is important for the model’s robustness to small
motion signals, as explained in detail in Section 2.2.

2.1.4. Ic—Perspective-Taking
Interstage Ic accounts for the orientation invariance and thus—
together with the properties mentioned beforehand—for affine
invariance of the model’s three-dimensional visual perceptual
system. Since one-dimensional features are invariant to rotation
in general, a rotationmechanism in the proprioceptive pathway is
not necessary and thus not applied. Visual orientation invariance
is achieved by applying the same adequate rotation to every
visual, normalized velocity from Stage Ib. The rotation is realized
by a perspective-taking module, whose linear output neurons
directly map the elements of a rotation matrix originating from
the Euler rotation3 sequence z-y-x. Then, the neural connectivity

3Analogously, the rotation could be described by any possible extrinsic or intrinsic

Euler or Tait–Bryan rotation sequence, because the self-supervised adaptation

mechanism accounts for the correctness of the resulting axis, direction, and degree

of rotation.

between the input and output layers of Stage Ic reflects a gain-
field-like modulation of a full connection between input and
output layer of this sub-stage, as shown in Figure 3A. Note that
this systematic, triple-wise pre-synaptic connection scheme is
equivalent to a matrix-vector multiplication.

The neural perspective-taking module is exemplified in
Figure 4. It consists of three sub-modules Rx, Ry and Rz—
each representing an axis-specific rotation matrix—and an
intermediate module. Accordingly, the matrices of activation
functions for the three sub-modules are

Rx =





1 0 0
0 cosµx − sinµx

0 sinµx cosµx





Ry =





cosµy 0 sinµy

0 1 0
− sinµy 0 cosµy





Rz =





cosµz − sinµz 0
sinµz cosµz 0
0 0 1



 . (12)

Here, the respective pre-synaptic connection scheme is
completely equivalent to encapsulated matrix-matrix
multiplications, resulting in the activation function matrix
Rµ = RxRyRz of the module’s output. Thus, this output is again
a rotation matrix, restricting all transformations of motion
features performed in instances of this stage to the same,
length-preserving rotation. The magnitude of rotation about
each axis is determined by three adaptive bias neurons with
output µx, µy, and µz : As shown in Figure 4, the bias neurons
feed every neuron in their respective sub-module, while their
output is equivalent to a rotation angle about an Euclidean axis.

To solve the correspondence problem by taking the
perspective of an observed actor, the rotation of biological

FIGURE 4 | The connectivity pattern of the perspective-taking module is equivalent to multiple matrix-matrix multiplications. The module is driven by

three adaptive thresholds, each representing an Euler rotation angle applied to the visual pathway.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2015 | Volume 9 | Article 79

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Schrodt et al. Biological motion perception and inference

motion observed from an unknown vantage point is ideally
equivalent to the rotation to the next perspective-attractor
seen during the embodied training. However, the model has
no explicit knowledge about the correct rotation. Rather,
it is adapting the rotation dynamically according to a top-
down propagated error signal gathered from the predictions
of multimodal patters that encode visuo-proprioceptive
correlations, as described in Section 2.3. Resulting from the
connection scheme, top-down propagated feedback signals are
merged from all visual feature paths into the perspective-taking
module and are processed in a way that restricts the perceptual
adaptation to an angular momentum in a three-dimensional
Euclidean space. This is realized by adapting the biases of the
module according to on-line gradient descent with learning rate
ηµ and momentummµ.

From a psychological perspective, this rotation can be
considered to perform visuo-spatial perspective-taking, because
it internally rotates the visual perception of another person (and
as a matter of modeling, also its environment) into a previously
learned frame of reference. Further, by reading out the activation
of the adaptive bias neurons after adaptation, one can directly
determine the orientation of an observed actor relative to the
own simulated frame of reference. Technically, this adaptation
can be compared to (Tani, 2003; Sugita et al., 2011), where
batch adaptation of bias neurons was used to achieve different
behavioral primitives. However, the simultaneous and steady
adaptation of the orientation of perceived biological motion we
use allows the derivation of the path of rotation toward an error-
minimal perspective. This is in compliance with psychometric
studies on mental rotation (Shepard and Metzler, 1971).

We are aware that in neurobiological terms classical
backpropagation of a supervised learning signal and parameter
optimization through gradient descent may not be considered
the most plausible approach. However, our idea differs in the way
that the learning signal emerges completely without exogenous
teaching, but rather frommotion patterns that have been learned
in an unsupervised manner. In this way, this self-supervised
backpropagation can be compared to feedback connections
that implement a predictive encoding paradigm, while gradient
descent ensures the convergence to a minimum in free energy,
or in other words, to perceptual attractor states. Here, those
attractor states are equivalent to view-dependent encodings of
biological motion.

In sum, stage I provides autonomously rotated, normalized
directions of visuo-proprioceptive motions. It accounts for affine
invariance in biological motion perception. The information
preprocessed in such a way serves as input to stage II, where
population coding is performed.

2.2. Stage II—Population Coding
Stage II accounts for population coding of the individual features
under consideration of the overall length of activations in the
populations, which serves as preparation for the segmentation
and predictive coding applied in stage III. This step is shown as
connection graph in Figure 3B for a single feature.

The normalized motion direction of a feature—encoded by
a layer with neurons indexed by i—can be converted into a

symmetric population of direction-selective neurons—encoded
by a layer with neurons indexed by j—by full connection via a
directional weighting matrix Wij: This weighing matrix is set up
in a combinatorial fashion, as every single dimension of the Dn-
dimensional motion direction of the nth feature may be positive,
neutral, or negative. This results in 3Dn−1 possible combinations
of motion directions. For instance, in a 2D example this would
result in

Wij =





























0 1

1/
√
2 1/

√
2

1 0

1/
√
2 −1/

√
2

0 −1

−1/
√
2 −1/

√
2

−1 0

−1/
√
2 1/

√
2





























· βn , (13)

where each row of the matrix describes a synaptic weight vector
EwIj of a population neuron by means of a normalized direction
that represents the tuning of the neuron to the directional motion
input. The tuning of the population neurons is equally distributed
and overlapping to cover the whole directional space. βn denotes
a specific scaling factor that results in a normalization of length
1 of the concatenation of all feature populations (see below). In
summary, this mechanism provides a population of neurons for
each feature of sensory processing, which is either sensitive to
directional motion in a body-relative limb position (26 neurons
for each position) or sensitive to directional motion in angles
between limbs (2 neurons for each angle).

Additionally, each population provides a single neuron with
index s that is active only when the feature velocity is very small
and thus normalized to a magnitude < 1 (cf. Equation 10): Its
activation is calculated in a way such that a population’s response
vector including neuron s warrants a specific length L, even if the
actual length of the direction-selective neurons is l < L due to an
insufficient normalization in Stage Ib. This can be performed by
lateral inhibitory connections from all 3D − 1 direction sensitive
neurons j plus a single bias neuron b connected to neuron s:

fs(t) =
√

nets(t) , (14)

sjs(t) = −oj(t)
2 , (15)

sbs(t) = ob(t) , (16)

ob(t) = L2 , (17)

such that os(t) =
√
L2 − l2. As a result, the total length of

the population including neuron s is equal to L in all possible
cases. The desired length L of each feature population can be
determined by 1/

√
N+M, where N denotes the number of visual

features, and M denotes the number of proprioceptive features
processed. Together with

βn = L ·
√

Dn

3Dn − 1
, (18)

where Dn denotes the dimensionality of feature n, it is assured
that the length of the concatenation of all feature populations
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is 1. Consequent normalization of the data is an important
prerequisite for the pattern learning applied in Stage III.

To distinguish features without velocity from features that are
not observable at the present time, we add an exogenous gain
factor gn(t) as gain control to every neuron j of a feature specific
population n, such that

aj(t) = gn(t) ∈ {0, 1} ∀j . (19)

While initially, this gain factor is 1, it is set to 0 if a feature is
considered unavailable.

Both, the direction sensitive neurons and the neuron sensitive
to no velocity and their connectivity are shown in Figure 3C.
The activations provided by the concatenation of all population
neurons serves as input to stage III, where spatio-temporal
learning of motion patterns is applied to infer predictions about
the progress of observed movements.

2.3. Stage III—Segmentation and Predictive
Coding
While Stage I and Stage II essentially pre-process incoming
information extracting relative motion signals by means of a
pre-wired architecture, Stage III is a network with adaptive
connectivity that performs unsupervised segmentation of the
driving data into sets of motion patterns and that learns about
the temporal sequence of the developing patterns. Considering
the input fed into the model and the processing described, each
pattern represents a recurring visuo-proprioceptive correlation
in a high-dimensional, highly invariant, directional motion
space. The embodied learning procedure entails that at first,
self-induced biological motion is observed from one or
multiple, rather arbitrary egocentric views (without error-driven
adaptation of the visual frame of reference). Patterns are recruited
probabilistically when sufficiently new and unexpected data is
perceived, which we describe in Section 2.3.1. For temporal
sequence learning, which we describe in Section 2.3.2, each
pattern develops asymmetrical lateral connections, which encode
and privilege possible pattern sequences by exploiting neural
noise paradigms.

In this way, while training, pattern sequences that repeatedly
occurred are preferably recognized and developed further, which
largely improves the self-supervised distinction of different
movements in terms of patterns unambiguously responding to
specific views and movements. After training, those patterns
serve both as recognizer as well as predictor of currently observed
motion. This means that the view-dependence of observed
motion can be resolved by minimizing the error in the prediction
after a pattern has been recognized. Again, pattern recognition
is highly improved by learning about likely pattern sequences,
and can be enhanced further by providing basically view-point
invariant angular motion features.

2.3.1. Spatial pattern learning
The unsupervised clustering of activations given by the
concatenation of all motion-encoding population neurons from
Stage II (in the following indexed by i ∈ I) by means of a number
of motion pattern responsive neurons (indexed by j) is achieved

via a full connection in-between the layers. Each pattern neuron j
is responsible for a specific, local part in the high-dimensional
space of possible population activities, which is encoded in its
instar weight vector denoted by EwIj.

Because the population activation space to segment can be
arbitrarily high-dimensional and complex, we bootstrap both
the number of patterns and their initial response from scratch
without prior knowledge about the final distribution. First, this
means that instead of initializing the weights randomly, they are
initialized with EwIj(t = 0) = E0. Secondly, the pattern layer is
growing dynamically.

The pattern neurons feature a neural noise-based activation
function, which distinguishes two types of patterns by the length
of their instar weight vector:

fj(netj(t)) =
{

C(γ, netj(t)) if j is a trained pattern: || EwIj(t)|| > r

C(γ, θ) if j is a free pattern: || EwIj(t)|| ≤ r
,

(20)

where C(γ, x) denotes a Cauchy-distributed random variable
with scaling γ andmean x. By r, we introduce the minimal length
of the instar vector to a pattern, below which a pattern neuron
is considered free in the sense that it can be acquired to encode
new, previously unseen data. A free pattern does not respond
to input, instead, its expected activation is parameterized by the
constant θ . All patterns that feature an instar length above r are
considered trained, in the sense that they are responding to the
sensory signals.

By adapting the instar weight vector EwIk(t) of a pattern k to
the input activation EoI(t) fed forward by the populations, the
pattern neuron increases its tuning to the respective constellation
of positional and angular directional motion. Adaptation is
achieved by the associative learning rule

1/η · ∂wik(t)/∂t = 1wik(t) = oi(t)− wik(t) , (21)

where η denotes the learning rate for encoded motion patterns.
We define η > r, such that, if k is a free pattern, it is converted
into a trained pattern once it is adapted a single time. Starting
with only one single free pattern, a new free pattern is created
and connected accordingly as soon as the former free pattern is
recruited, that is when || EwIj|| > r ∀j, thus growing a new free
pattern neuron on demand.

From the pre-synaptic process function of pattern neurons

sij(oi(t)) =
oi(t)

max(|| EwIj(t)||, r)
, (22)

where we assume that neural excitability decreases proportional
to the overall synaptic strength, it follows that the input to a
trained pattern neuron j is determined by the angle between the
observed pattern EoI(t) and the pattern stored in the instar weight
vector EwIj(t), since both are normalized unit vectors:

netj(t) =
∑

i∈ I

wij(t) · sij(oi(t)) , (23)

= cos(∡(EwIj(t), EoI(t))) . (24)
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This property ensures that the pattern neuron with the smallest
angular distance to a given input vector is (most likely) the most
active, which we call the winner pattern k. Only the winner
pattern k is adapted to the currently propagated activation
(winner-takes-all learning). If the most active pattern is the free
pattern, it is recruited to represent the current data. Although
trained instar vectors are normalized by the presynaptic process
function above, their length still has an influence on the rate of
adaptation of a pattern’s directional tuning.

The neural noise activation function in combination with
winner-takes-all learning accounts for (1) probabilistic updates of
one of several similarly close trained patterns, (2) a deterministic
influence on when to train a new pattern, determined by the
threshold parameter θ , and (3) a probabilistic influence on when
to recruit a new pattern, determined by γ . By parameterizing the
probabilistic and deterministic influence on pattern recruitment
accordingly, the segmentation paradigm can account for a
specific degree of generalization and robustness against noise
in the driving data. Since the random variable is Cauchy-
distributed, the probability that a free pattern f has a higher
activation than the best matching trained pattern g, and thus will
be the next winner k that is trained on the observed data, can be
determined in closed form depending on the input to neuron g
(see Supplementary Material for the derivation):

p(of (t) ≥ og(t)) = 1/2 + 1/π · arctan
(

θ − netg(t)

2γ

)

. (25)

This cumulative distribution function is plotted in Figure 5A,
showing the resulting sigmoidal function, which is symmetric
around the pattern recruitment threshold θ , where arccos(θ) is
the angular mismatch in rad between the instar vector EwIg of the
best matching pattern g and the actually observed stimulus EoI , for

which the probability to recruit a new pattern is 0.5. The scaling
of the pattern noise γ reflects the fuzziness of this threshold and
can be parameterized by choosing a probabilistic recruitment
remainder ǫ and a breadth b, for which

p(of (t) ≥ og(t) | netg(t)=θ + b) = ǫ, ǫ ≤ 0.5, b > 0 , (26)

or analogously

p(of (t) ≥ og(t) | netg(t)=θ − b) = 1−ǫ , (27)

such that there is a low probability ǫ to recruit a new pattern if the
best matching trained pattern’s input is θ+b, or a high probability
1 − ǫ to recruit a new pattern if the input is θ − b, respectively.
From this it follows that (see Supplementary Material)

γ = tan(ǫπ) · b
2

. (28)

2.3.2. Temporal Pattern Learning
A further characteristic of the neural noise-based activation
function of pattern neurons is that by asymmetric lateral
inhibitory biasing, implicit winner sequences can be encoded.
Given that the pattern layer is fully, reciprocally connected
without self-connections, the winner neuron k(t−1) determined
in the last time step is able to inhibit all other neurons j
(except the free pattern), that is, all potential successors in
the sequence of winning patterns, such that the probability for
another pattern to have a larger activation than the last winner
p(oj(t) > ok(t−1)(t)) is equal to the lateral weight wk(t−1)j. Given
that the lateral weights approximate this independent probability
while learning, the inhibition implicitly establishes the dependent
winning probability p(oi(t) > maxj 6=i(oj(t))) for a new pattern
neuron i winning in the current time step. This lateral inhibition
can thus be considered a time-dependent prediction of the next
winner pattern.

A B

FIGURE 5 | Properties of the spatial and temporal pattern learning

algorithm. (A) Plot of the cumulative pattern recruitment probability for two

exemplar function parameterizations. Here, og (t) denotes the activation of

the best matching, trained pattern, and of (t) denotes the activation of the

free pattern. (B) Plot of the effect caused by temporal pattern learning,

yielding temporally predictive, lateral inhibition between pattern neurons.

Here the inhibition effect of pattern neuron k on pattern neuron j is

illustrated, which is determined by wkj . The relative pattern winning

probability of j over k depends on the signal strength s, given that both

neurons are randomly activated with equal strength on average. The plot

shows the result of 500 k randomly sampled trials per measuring point of

wkj and s, in which both neural activations were set uniformly randomly to

ok (t) ∈ [−1,1] · s and oj (t) ∈ [−1,1] · s. The result shows that with increasing

signal strength the influence of the lateral bias decreases, while the lateral

inhibition nearly fully determines the transition probability given a very weak

signal.
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Since winner pattern transitions should not be driven purely
by lateral inhibition, but mainly by stimulus, we make two
assumptions for the derivation: First, we assume that currently
no sensory input is given. Secondly, we limit the lateral inhibition
to the interval (−1, 0] by applying a hyperbolic tangent for
signal transformation. This results in the laterally inhibiting
pre-synaptic process function

skj(wkj(t)) = tanh

(

−2γ

tan
(

wkj(t)π
)

)

∈ (−1, 0] for wkj(t) ≤ 0.5 ,

(29)
which causes that the probability for the activation of pattern
j to be greater than the activation of the winner pattern
k is approximately wkj, if there is no sensory input (see
Supplementary Material for the derivation). Note that the
lateral inhibition is added to the input to each pattern neuron
(cf. Equation 23). Accordingly, the influence of this lateral
inhibition on the actual probability p(oj(t) > ok(t)) when
the network is driven by sensory signals depends on the total
signal strength, which is determined by the number of currently
observable features (see Equation 19). Figure 5B illustrates this
interaction.

The lateral weights wkj are initialized with 0.5, such that
no inhibition occurs. While training the network on biological
motion, the weights outgoing the last winner k(t−1) are adapted
to a stochastically determined expectancy of p(oj(t) > ok(t)) by
batch learning, when a transition event in the current winner
pattern is detected:

∂wkj(t)

∂t
=
{

ηl/T ·∑t
τ = t−T

(

1/2 + 1/π · arctan
(

netj(τ )−netk(τ )

2γ

)

− wkj(t)
)

if κ(t) 6= κ(t − 1) = k

0 else
, (30)

where T denotes the number of time steps since the last winner
transition, ηl denotes the learning rate for a lateral pattern weight,
and κ(τ ) denotes the winner pattern of time step τ . Batch-
learning is particularly important in case of a small noise scaling
γ , because otherwise the weight updates would be very close to
either ηl or 0 in each time step, making it difficult to average over
appropriate time spans.

2.3.3. Self-supervision and backpropagation
By comparing the currently observed motion given by the
concatenated populations’ activation to the expected motion
encoded by the currently recognized winner pattern, a prediction
error can be derived without supervision. This error term δi(t) is
induced into the population neurons i, and is given by

δi(t) = wik(t)− oi(t) , (31)

where, k denotes the current winner in time step t. The error
is top-down propagated along the feed-forward connections4

and finally merged at the perspective-taking module to adapt

4This means that all presynaptic process functions implicitly implement

backpropagation functions for feedback processing.

the orientation biases µx, µy, and µz in an error-minimizing
manner (see Figure 1)—which is equivalent to a minimization
of surprise, leading to a maximization of the current pattern’s
activation. Given the observed movement is similar to a rotated
version of a movement that is encoded in the patterns, and given
the correct motion pattern is recognized, the transformation
to the closest perspective that was shown during the training
is typically achieved. Thus, the model’s ability to adapt its
internal perspective in a self-supervised manner follows from
the embodied encoding of biological motion via spatial and
temporal associative learning, since the current winner pattern
is determined both by the pattern best matching the stimulus and
the expected sequence of patterns.

3. Experiments

In the following experiments, we show that (1) the model is able
to encode a realistic walking movement when both visual and
proprioceptive stimuli are present during self-perception; (2)
multiple movements each in multiple frames of reference can
be encoded in mainly disjunct sets of motion patterns, and (3)
that this enables the transformation of randomly oriented views
of similar biological motion to the previously learned frames
of reference upon observation and thus the ability to solve the
correspondence problem and to derive others’ perspectives.
To further evaluate the plausibility of the network in a neuro-
cognitive context, we show that it is able to (4) reproduce
psychological findings on bistable percepts of projected

point-light walkers and (5) to simulate learned movements
without sensory stimulation. Finally, we show that (6) the
model is able to derive unobservable, hidden features such
as the proprioception of another person when perceived from
an unknown orientation. In this context, we point out that
perspective-taking is necessary to facilitate this inference.

In all of the conducted experiments, we chose the following
network parameterizations

Input scaling α = 5000

Smoothing factor λ = 0.95

Instar learning rate η = 0.01

Perspective-taking angular learning rate ηµ = 0.0075

Perspective-taking angular momentummµ = 0.85

Pattern recruitment threshold θ = cos(60◦)

Pattern threshold breadth b = 0.034

Pattern recruitment probability remainder ǫ = 0.001

Lateral inhibition learning rate ηl = 0.6 .

In the following, we first introduce the simulation environment
and stimuli we used to test the capabilities of our model and then
proceed with the respective model evaluations.
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3.1. Simulation Environment and Stimuli
We evaluate our model making use of motion tracking
data recorded from three subjects, which performed three
different, periodic movements (walking, running, and basketball
dribbling) in four trials each. For each movement, we chose
two of the trials as training set and the other two as testing
set to test for generalization. Training, in this case, means
enabling the segmentation and spatio-temporal learning of visuo-
proprioceptive motion patterns while the network is driven by
the training data sets to model mental development. Whereas
testing means that the network is driven by the testing data
sets while pattern learning is disabled to model and evaluate the
model’s action observation capabilities.

The motion tracking data were recorded at 120 Hz using
41 tracking markers attached to the subjects. As input to the
model in all of the simulations, we chose the recorded time
series of 12 three-dimensional, relative positions between the
tracking markers as input to the visual pathway (each encoded by
a 3D coordinate vector), as well as 8 angles between the relative
positions as input to the proprioceptive pathway (each encoded
by an angular scalar). In this configuration, the input layer of the
network consists of 44 neurons. A map of the inputs at a single,
exemplarily time step is given in Figure 6. Population coding
of the individual features in Stage II results in a normalized,
348-dimensional common visuo-proprioceptive space in which
motion patterns are put in place.

The motion tracking simulation we used provides positional
information relative to any demanded frame of reference,
including origin and orientation. In real life situations, specific
vantage points are more common when observing biological
motion. Considering an embodied framework, an egocentric

perspective on the own motion will lead the way when learning
biological motion. Such an egocentric perspective could be
defined e.g., either head-centered or upper torso centered
(Alsmith and Longo, 2014). Despite this embodiment, we assume
that perspectives frequently perceived while observing others, or
in relevant situations, may also have an influence on encodings
of biological motion and account for the motion direction
specificity observed in STS cells. Also, view-dependent encodings
of actions may possibly emerge from social interaction and self-
observation in mirrors (Rochat, 2003; Heyes, 2010). However,
in the following experiments, we will particularly focus on four
different (non-mirrored) perspectives: An egocentric view, which
is learned first, as well as a facing view, a right view, and a left view,
possibly resulting from pure observation or social interaction.
Figure 6 shows some snapshots of recorded body motion from
those different vantage points. Video examples of the stimuli are
provided with the Supplementary Material.

Note that the origin of the coordinate system does not
matter for the model and is thus not modified across the views.
Because of this fundamental invariance, we are able consider
a self-perceived movement visually equivalent to an observed
movement of a distant person, as long as the orientation in space
is the same. Also, the choice of the above perspectives is rather
arbitrary for the learning algorithm itself. Here, we chose them
since as a matter of principle (1) those views seem to be the most
common and natural in social settings and (2) they divide the
orientation space consistently about the vertical axis. Movements
observed in other, rather uncommon orientations not encoded in
the developing motion patterns are expected to be adapted to one
of the learned views using the implemented perspective-taking
principle.

FIGURE 6 | Simulated body model driven by motion capturing data. Shown are the relative visual features (blue lines between dots) and angles (green dots)

chosen as input to the model. On the right, example stimuli are shown from different perspectives.
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3.2. Spatial and Temporal Motion Pattern
Learning
In real life, learning about the own body is governed by an
entangled nature of gathering knowledge and applying this
knowledge. Newborns seem to be equipped with a to some
degree developed body scheme of their proprioceptive and
vestibular systems (e.g., Rochat et al., 1988). It is possible that
components of those body schemes are even associated to
respective visual stimuli later in life. However, we investigate in
this first experiment, if our embodied model is principally able to
develop a visuo-proprioceptive body schema from scratch during
self-perception while its simulated body performs a walking
movement, given that all information is available. That is, the
developing pattern structure shall encode the own visual, relative
body motion from an egocentric view as well as corresponding

proprioceptive sensations that are characteristic for this kind of
movement.

Thus, we drove the neural network by a single trial of
the walking movement (performing about 6 walking steps in
a 360 time steps interval Ti), and repeated that training 20
times (T1..T20). Figure 7A shows how 6 patterns developed from
scratch in their high-dimensional domain already during the
first repetition T1, which then formed a cyclic series of winners
because of the periodic nature of the walking movement.

To show that this pattern structure is stable over time and
avoids a constant recoding of patterns as well as catastrophic
interference (McCloskey and Cohen, 1989), we evaluated the
number of time steps each of the patterns was winning (most
active) during a repetition Ti while the training of a motion
tracking trial was continued—which we call the winner pattern

A

C

B

FIGURE 7 | Evaluation of spatial and temporal motion pattern

learning. (A) Pattern activation and winner patterns while a new movement

is learned. Vertical bars restrict the time intervals Ti in which a respective

motion capturing trial is fed into the network. Blue indicates the activation of

a pattern (dashed horizontal bars correspond to no activation), while red

indicates which pattern is currently the winner pattern. Initially, pattern one is

the only pattern in the network, which is converted from a free pattern to a

trained pattern by adapting to the novel stimulus. Once this happens, a new

free pattern (pattern 2) is created with activation C(γ, θ ). When the movement

changes significantly, this pattern is also recruited. Because of the cyclic

nature of the movement presented here, the series of winners is also cyclic.

(B) Comparison of the pattern activation/winning cycle with (before time

interval T21) and without sensory stimulus (starting with time interval T21). It

can be seen that the same sequence of winner patterns (2 3 6 4 1 5) is

activated in both cases repeatedly. This is a result of lateral probabilistic

inhibition, where, for example, neuron 4 strongly inhibits all other neurons

except its distinct follower 1. (C) Development of the winner histogram over

time, when (time intervals T1 to T20) a movement is learned from an input

stimlus, vs. the probabilistic sequence simulation when no stimulus is

presented (time intervals T21 to T40). Each vertical bar counts the number of

time steps neuron i is winning within the respective time interval. Without

stimulus, a high variance of the winner histograms is the result of a the purely

noise driven pattern neurons. However, the average winner histrogram

seems comparable to the histograms determined after learning.
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histogram. Figure 7C shows that this histogram converged after
roughly 16 repetitions.

Furthermore, we evaluated the temporal pattern sequence
learning by clearing the activation of all population neurons
(gn(t) = 0 ∀n, see Equation 19) after the training was
finished, such that the pattern neurons were driven purely
by noise and their lateral inhibition during the time intervals
T21 to T40. Figure 7B shows that the same cyclic winner
pattern sequence emerged despite the absence of sensory input,
confirming the correct functionality of the temporal learning
mechanism. Similarly, Figure 7C shows that on average the
winner histograms of intervals T21 to T40 are comparable to
the histograms of the training repetitions with stimulus T1 to
T20. This indicates that the temporal pattern learning algorithm
also approximates the correct movement speed without sensory
stimulation.

These results confirm that the model is able to encode
real-world biological motion patterns effectively: Neither does
the network recruit unnecessary new patterns, nor are learned
patterns or pattern sequences recoded constantly. Moreover, the
systematic sequence of patterns in biological motion is learned
correctly as well. The evaluation indicates that lateral inhibition
can furthermore stabilize the recognition of motion pattern
sequences, since unlikely pattern successors are inhibited in
advance up to an equivalent of a 90◦ mismatch to the observed
data.

3.3. Encoding Multiple Movements and
Perspectives
With respect to findings about view-based representations of
diverse (also whole body) movements in STS (e.g., Oram and
Perrett, 1996), we evaluate if the proposed model is also able
to encode and differentiate a variety of different movements,
each in different frames of reference. Thus, we selected the full
training data-set—consisting of walking, running, and basketball
movements—and trained them consecutively shown from the
four perspectives defined in Section 3.1.We repeated this training
procedure 20 times, resulting in 480 motion tracking trials
presented to the network overall. Referring to selectivity of STS
cells, this should result in 12 relatively independent groups of
motion pattern neurons, each specifically responding to the view-
dependent observation of a movement.

In a generic experiment, 151 patterns evolved during the
training (± ∼ 5% across independent experiments). After that,
we drove the model by the testing data set, again showing four
different orientations. We compared the winner histograms with
respect to each of the 12 view-dependent movements, to see
if patterns were responding exclusively and unambiguously to
one of them, or if patterns were attributed to multiple view-
dependentmovements. Exclusiveness in pattern response decides
whether the model can discriminate between movements and
views. We assess that it can distinguish e.g., between the walking
and the running movement perceived from the left view, or
decide if someone is walking to the left or right if separable groups
of motion patterns are activated during these observations.

Figure 8 shows the exclusiveness of pattern neurons after
training. At first, it can be seen that 60 of 151 patterns were

FIGURE 8 | Winning exclusiveness of the motion patterns with respect

to 12 view-dependent movements. The exclusiveness measure describes

the maximum of the number of time steps a pattern neuron was winning while

a specific view-dependent movement was observed, divided by the number of

time steps the pattern was winning during the whole testing phase. Thus, 1

denotes the maximum exclusiveness, denoting exclusive winning during the

observation of a specific movement and view, while the lower boundary is 1/12

for a pattern that is winning equally often during all observations.

winning exclusively while a specific movement was shown from
a specific vantage point, meaning an exclusiveness of 1. Further,
120 patterns were relatively unambiguously by representing over
75% of their winning time steps during the perception of a single
view-dependent movement, implying a high affiliation. Finally,
all except two patterns had a clearly relatable preference for
a specific observation, meaning an exclusiveness of over 50%.
This indicates that the motion patterns were encoded in 12
mostly disjunct sets with respect to the training data, although
no supervised learning was applied. Thus, the model was able
to separately encode, generalize, and recognize 12 different
observations.

3.4. Perspective-Taking
Based on the last experiment, where we could confirm that
multiple movements and perspectives can be learned and
recognized by the model, here we investigate the resulting
perspective-taking ability and its precision when observing
biological motion from vantage points not seen during the
training. That is, when biological motion is observed in a
random orientation, the model ought to minimize the divergence
between the orientation the movement was encoded in, and the
orientation it is observed in by adapting the bias neurons of
the perspective-taking module in Stage Ic. Consider that in our
model this perceptual adaptation is driven by an error signal
provided by the currently recognized winner pattern. This can
only work, however, when the sufficiently correct patterns are
recognized, which can be compromised while the perspective is
not properly adapted. In symbiosis, thus, perspective-taking will
improve the probability to recognize the correct patterns, while
correctly recognized patterns push the perspective adaptation
further in the right direction. Upon convergence, we can evaluate
the precision of the visuo-proprioceptive encodings as well as
the robustness to variances in orientation, body morphology,
and posture control by evaluating how precisely the perspective
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derived by the model matches one of the perspectives learned
during the training.

Again, we first trained the network on 3 movements, each
shown in 4 systematic perspectives as in the experiments before.
After this, we drove the model by the complete testing set of the
trained movements, consisting of 3 movements each performed
by two different subjects. However, we applied a random rotation
Rν uniformly distributed in the 3D orientation space to the
motion tracking data of each trial, and repeated its presentation
until 5000 time steps were processed.

While doing so, we allowed the bias neuronsµx, µy, andµz of
the perspective-taking module in Stage Ic to adapt to minimize
the top-down propagated error between the expected and the
observed visual stimuli. We measured the difference between the
resulting, internal rotation matrix Rµ applied by the model and
the exogenous rotation Rν applied to the simulation, with respect
to each perspective that was trained on. Such a perspective can be
defined by a rotationmatrix Pi, where i ∈ {1..4} depicts one of the
four views defined in Section 3.1. This leads to a measuring unit
orientation difference (OD) by calculating the trace of resulting
overall rotation by

ODi(t) = 1/2 · acos(tr(P′iRνRµ(t))− 1) , (32)

which describes the minimal amount of rotation about an
arbitrary 3D axis to transform the currently derived orientation
RµRν to the encoded orientation Pi. That is, ODi(t) converges
to 0◦ when the model internally compensated the rotation
applied to the simulation. In this case, the unknown, observed
perspective has been adopted and the correspondence to the
learned encodings has been established.

We ran this experiment 500 times, including independent
training with different random seeds. Regardless of the
exogenous orientation Rν , over 97% of the shown movements
could be transformed to one of the learned views Pi.
The orientation of an observed movement was considered
successfully derived, when the OD converged to less than
35◦ after 5000 time steps. While there is a clear preference
for convergence to the perspective that is nearest in terms of
the OD, the model does not feature a strong preference for a
specific perspective Pi, such that all of the perspectives were
reached about equally often. Thus, the model is able to derive the
perspective of another person performing a movement similar
to a movement known from self-perception on the fly, without
explicit knowledge about their orientation, and by motion signals
only. In informal tests, we were not able to reproduce the same
success rates when no temporal pattern learning was applied.

Figure 9 shows the convergence to the egocentric view
P1 in terms of OD over time for all examined movements
and trials in the testing data set. Particularly, it can be seen
that different trials of the same movement result in differing
variances in the final OD after convergence, which was raised
by deviations in posture control to the training trials. Since
the model applies normalization to each considered feature,
different body morphologies are generalized over and can not be
a source for such a variance in OD. Rather, more complex and
articulated movements are more likely to have a higher degree
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FIGURE 9 | Perspective-taking experiment. Shown is the convergence of

the Orientation Difference (OD) to the egocentric view for (A) the walking

movement, (B) the running movement, and (C) the basketball movement while

the testing trials were shown. Black indicates the median of all trials, dark blue

indicates the 25/75% quartiles, and gray indicates the 10/90% deciles of the

OD. The plots for the convergence to the other three learned views are similar

respectively, and their convergence properties can be see in Table 1.

of postural control variance over several trials, which explains
the high difference in the remaining OD between the two tested
basketball trials.

The convergence properties of all experiments are detailed
in Table 1: While the convergence time was comparable in all
cases, it can be seen that the relatively fast running movement
in comparison to the walking is conspicuous by a slightly worse
precision in terms of the remaining OD after convergence
on average over both testing trials. Also, the more complex
basketball dribbling shows a final variance in the median OD
larger than the two other motion types.

3.5. Bistable Stimulus
To further evaluate the plausibility as a neuro-cognitive
model of brain functionality, we also investigated bistable
properties of the network: It has been shown that humans
recognize biological motion perceived from point-light displays
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TABLE 1 | Overview of the convergence properties in the perspective-taking experiment.

Movement Perspective Convergence (%) Convergence time Remaining OD (◦) Median variance (◦)

Walking Egocentric : 21.4 232 3.42 0.89

Right : 27.4 215 3.32 0.91

Left : 22.6 218 3.32 0.84

Facing : 23.8 257 3.42 1
∑

or ∅ 95.2 230.5 3.37 0.91

Running Egocentric : 22.2 235 5.32 2.34

Right : 24.6 240 6.1 2.52

Left : 26.2 206 5.46 2.41

Facing : 23.4 251 5.71 2.2
∑

or ∅ 96.4 233 5.65 2.37

Basketball Egocentric : 25.8 213 4.56 3.99

Right : 23.2 229 4.78 6.57

Left : 28.6 230 4.41 4.55

Facing : 22 243 4.45 3.37
∑

or ∅ 99.6 228.75 4.55 4.62

When testing, we measured the percentage of runs that converged to each specific perspective (Convergence). Further, we evaluated the time step the median of the OD fell below

20◦ (Convergence time). The Remaining OD denotes the average of the median OD at the end of both trials shown, while Median variance depicts its variance.

FIGURE 10 | Bistable stimulus experiment. According to the

activated patterns, all egocentric and facing views of the walking

movement as well as their 2D projections are recognized correctly.

However, when the movement is projected and the display is inverted

about the vertical axis, egocentric views are recognized as facing and

vice versa.

with specific orientations bi-stably, either as pointing away
(corresponding to our egocentric view) or toward the viewer
(corresponding to our facing view) when the walker was perfectly
symmetric and projected on a 2D screen (albeit with preference
to the facing view) (Vanrie et al., 2004).

Thus, we trained the model both on the egocentric and
the facing view of the walking movement. After training, we
evaluated the influence of a parallel projection to 2D, as well as the
influence of gait symmetry on the correct recognition while the
same data was presented again. The pattern winner histograms
with respect to all possible setups (S1..S6) in Figure 10 first show
that the model was able to distinguish the 3D representations
of the facing and egocentric walking movements by means of
exclusively winning patterns. More surprisingly, the model was
also able to recognize the walking direction correctly when

projected to 2D. Further investigation showed that this is a
result of the asymmetry of the movement that was trained on:
By inverting the horizontal component of the movement, we
achieved the opposite effect: The facing view was recognized as
egocentric and vice versa.

While we could thereby replicate a bistable perception, we
could also ensure that the model is able to recognize biological
motion that was learned in a 3D visual domain from a 2D
projection. Thus, we suggest that the model will also work robust
on data with uncertain depth component.

3.6. Feature Inference
In this final experiment, we ensure that information that was
trained by self-perception, but is not available during the
observation of another person, can be derived by activating
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the correct motion patterns even when observed from rather
uncommon perspectives.

We trained the network on a walking movement perceived
from an egocentric view as in experiment 3.2, such that
pattern neurons were encoding visual and proprioceptive
stimuli. When testing the movement and enabling the network’s
perspective-taking, we compared (1) the prediction error in the
proprioceptive population neurons while pattern neurons were
driven both by vision and a proprioceptive equivalent5 during
the observation, with (2) the prediction error that was measured
while patterns were driven by vision only. Thereby, we investigate
if the model is nevertheless able to recognize the correct visuo-
proprioceptive motion patterns and thus inferres the missing
proprioception. Also, we investigate, if missing information
impairs the ability adapt to perspectives: In both cases (1) and (2),
we rotated the visual representation of the walker by 180◦ about
the walking direction (leading to top-down inversion), followed
by 45◦ about the vertical axis after learning was complete, which
amounts to an almost-worst-case scenario in terms of orientation
difference to the encoded biological motion.

Figure 11 shows that the prediction error in the
proprioceptive pathway started relatively high in both cases,
suggesting incorrectly recognized patterns. That is, without
adoption of the perspective, the proprioception expected by the
model was faulty. However, the error converged to a final level
of ∼0.28 (1) or ∼0.31 (2), respectively as the adaptation of the
perspective progresses, regardless whether the proprioception
was provided or not. When patterns were driven purely by
vision, the performance of this adaptation was compromised.
However, the final error was comparable, confirming that the

FIGURE 11 | Evaluation of the model’s feature inference capability. This

shows a comparison of the prediction error in the proprioceptive pathway (RMS)

while pattern neurons were driven by both visual and proprioceptive information

(left side of the dashed vertical line), in contrast to the error observed while

pattern neurons were driven by vision only (right side of the vertical line).

Information was given by the observation of a walking trial, perceived from an

unknown view. Blue indicates the orientation difference of the derived

orientation to the egocentric orientation, while red indicates the moving average

of the error in inferring proprioception (dashed horizontal lines indicate the level

of convergence).

5Here, we assume that proprioception can partially be derived directly from

vision.

proprioceptive information was inferred precisely as well after
the perspective was derived.

Substantially, this result suggests that visuo-spatial
perspective-taking can be considered a candidate for solving
the correspondence problem: Since biological motion seems to
be encoded view-dependently, similar perceptual adaptation
mechanisms appear necessary to explain action understanding
and inference abilities in the human brain.

Analogously to the derivation of the proprioception by vision,
the model can also infer the correct visual motion patterns when
it is driven by proprioceptive information only. However, this
process does not require perceptual adaptation. Another result
is, that adding orientation independent, angular information as
visual equivalent to proprioception can help to recognize the
correct patterns and speed up the derivation of the perspective
and potentially other intrinsic states.

4. Related Work

There is a number of noteworthy related approaches. Amongst
them, Fleischer et al. modeled the properties of abstract STS
cells during object interaction. Their approach includes the
encoding of multiple viewer-centered representations of simple,
schematic actions to establish a certain degree of orientation
invariance. The recognition was based on a hierarchy of feature
detectors in several neurobiologically inspired domains, like local
shape detectors and motion neurons, leading to plausible model
predictions about the human recognition performance (Fleischer
et al., 2013). However, using separate networks for each encoded
view-point seems counterintuitive. Also, the model uses a hard-
coded wiring and parameterizations that is not trained on data.

Lange et al. modeled biological motion recognition using
viewer-centered, image-based posture templates, where the
best matching template responses were integrated over time
and decided on the recognized movement (Lange and Lappe,
2006; Lange et al., 2006). This model is timescale-independent
to a certain degree and can distinguish pre-defined walking
directions. The approach also produced plausible results with
respect to the artificial cell firing rates. Even so, the model is
working on a domain where scale- and translation invariance
are assumed. Further, the motion information is only considered
indirectly by recognizing whole movements by means of adjacent
posture images, and the model was validated only on a single
movement in twomanually distinguished orientations. Again, no
learning was applied to the model’s parameters.

Schindler and Van Gool were able to show that a model
that processes both form and motion information is able to
recognize and distinguish several actions from very short motion
clips (Schindler and Van Gool, 2008). Although this result is
admirable, their approach is again based on pre-parameterized
local template matchers, max-pooling operators and supervised,
linear classification methods. Further, it does not provide any
explicit mechanism to achieve spatial or temporal invariances.

A neural network related to our approach modeling STS cells
for biological motion perception was developed by Layher et al.
(2014). The model includes neurally plausible Hebb’ian learning
mechanisms to integrate form and motion pathways and identify
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relevant postural snapshots of biological motion. Also, the model
includes top-down signal processing that reinforces the encoding
of articulated postures. As a result, walking movements could be
learned, recognized and distinguished with respect to the walking
direction without supervision.

All of the work mentioned above has in common, that
biological motions and actions are neither encoded view-
invariantly, nor is invariance—especially to orientation—
established on-line to a plausible degree. In contrast, our
approach gains a high degree of spatio-temporal invariances
merely due to adequate neural processing and encoding, and
attains orientation invariance by converging to perceptual
attractor states. To the best of our knowledge, this ability is a
unique property of our model, which allows it to form a bridge
between visual perceptions and corresponding perceptions in
other modalities.

Also, our model’s ability to distinguish specific viewer-
centered movements is not based on pre-wired templates or
supervised classification, as in all of the foregoing models
except Layher et al. (2014). In contrast, we apply unsupervised
spatio-temporal clustering paradigms that facilitate perceptual
flexibility: Top-down propagation of a self-supervised prediction
error consequently allows adaptation of the visual perception.
This is equivalent to a predictive-coding scheme (Rao and
Ballard, 1999; Friston et al., 2006) minimizing the free energy
emerging from experiencing surprise about the directionalities
in biological motion observed from an unknown vantage point.
Also, this parallels the direct inference of the spatial orientation
of another person merely by inspecting relative motion signals.

However, to make the model sparse and its adaptation ability
computationally efficient (and to avoid sliding into the topic
of image-processing and feature extraction), we abstract the
retinotopic and tuning properties of occipital/temporo-occipital
and parietal visual processing sites by feeding the network
directly with analytically relevant information about biological
motion. This allows us to verify the model on realistic and
complex 3D scenarios in real-time. Whereas the above models
thus mainly rely on a combination of form, shape and partially
motion template snippets, our model solely operates on abstract
relative motion signals as the probably most essential domain
for the recognition of actions. This is in accordance with the
fact that local motion features are most critical and necessary
for perceiving biological motion from point light displays
(Johansson, 1973; Garcia and Grossman, 2008; Thurman and
Grossman, 2008).

Further, our model does not solely work with visual features.
To give our model basic mirror neuron properties, we include
motor-related proprioceptive codes in our model. This allows the
derivation of intrinsic, otherwise unobservable states during the
observation of others. Under the assumption that proprioceptive
information can partially be derived directly from vision, this also
increases the recognition robustness of the model.

Previously, we could show that using an embodied, generative
model on a minimal set of abstract, relative, visual and
proprioceptive motion information, it is possible to transform
observed 2D biological motion to canonical frames of reference
(Schrodt et al., 2014a). The model also adopts to simulated full

body motion, whereas the predictive coding scheme provides
a high precision and recognition performance of sufficiently
upright walkers even in 3D spaces (Schrodt et al., 2014b). Adding
a simple algorithm that forecasts the sequence of observed
motion patterns can ensure the recognition of movements shown
in arbitrary, also top-down inverted perspectives. Beyond the
mentioned spatio-temporal robustness, the model is completely
invariant to body morphology and invariant to variabilities in
posture control to a certain degree (Schrodt and Butz, 2014).

In this work, we applied the model to complex motion-
tracking data and provided a more elaborate spatio-temporal
pattern learning algorithm that is able to encode ambiguous
sequences of motion, provides the possibility to simulate
movements even in the absence of sensory stimulation, and
advances the unsupervised distinction of observed movements
and views. Also, we have shown the necessity of perspective-
taking for the derivation of others’ intrinsic bodily states (e.g.,
joint angles), given that visual encodings of biological motion are
represented view-dependently.

5. Discussion

The presented modeling results have shown that the introduced
generative, neural network model learns to encode biological
motion, enabling the invariant and robust recognition of
observed movements and adoption of others’ perspectives. The
neural noise based pattern learning paradigm has proven to
be suitable for both learning spatial and temporal multimodal
correlations: The emerging sets of patterns encoding view-
dependent movements were predominantly disjunct and
classifiable without any form of supervised learning. The motion
patterns essentially provided self-supervised signals to adapt an
internal visual perspective online while preserving a high degree
of robustness to realistic variances in observed movements.
The temporal pattern learning algorithm that improves the
recognition performance when biological motion is observed
was capable of simulating whole movements probabilistically
when no sensory stimulation was present. Psychological findings
on bistable percepts of biological motion could be replicated
in the experiments, which underlines the plausibility of our
network in a neuro-cognitive context. Finally, we were able
to show that others’ intrinsic states can be inferred solely by
observing visual bodily motion signals under the assumption of
an embodied learning framework.

Our experiments clarify that perspective-taking is a
prerequisite in this process when biological motion is
encoded view-dependently but observed from rather unknown
perspectives. Thus, hypothetical concepts attempting to explain
the mirror neuron property to derive action related codes
from observation should consider similar spatial visualization
abilities as a potential solution to the correspondence problem.
Complementary to the ideomotor theory, the associative
sequence learning hypothesis states that somatosensory and
motor representations of actions are associated to their visual
equivalent while perceiving the own actions, but also while being
imitated, perceiving a mirrored self, as well as synchronous
activities with others (Heyes and Ray, 2000; Heyes, 2001;
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Brass and Heyes, 2005; Heyes, 2010). This would lead to the
ability to infer action related codes during the observation of
others to enable imitation. However, our results suggest that
the correspondence problem cannot be solved reliably by a
generalist, solely associative model, as opposed to the claims
of the authors. We believe that perspective-taking can help
the activation of view-dependent representations of actions
and the derivation of others’ intrinsic states by establishing
the correspondence between frames of reference. Analogous
concepts could thereby explain social abilities related to the
mirror neuron system at a tangible level of detail.

Furthermore, our modeling paradigms suggest a functional
benefit of neural noise: Besides breaking the symmetry in
uninitialized or equal encodings, it allows to implicitly encode
stochastic activation sequences in laterally connected clusters of
cells. Reciprocal inhibition in combination with neural noise
could thus explain neuronal avalanches observed in cortical
circuits (Beggs and Plenz, 2003, 2004).

Future validations of the model should compare the
orientation specificity in the model’s ability to recognize
biological motion from point-light displays with the performance
of humans (Pavlova and Sokolov, 2000). We further anticipate
that our embodied model can be used to identify sex (Runeson
and Frykholm, 1983) or even the identity (Cutting and
Kozlowski, 1977) of an observed person solely by motion signals,
and performs better in the latter task when observing recordings
of the own actions from point-light displays in comparison to the
actions of others (Beardsworth and Buckner, 1981).

There are certainly several limitations in our current model.
First of all, it relies on motion signals only, such that it has no
possibility to adopt the perspective of another person simply
by observing their posture. By adding postural information to
the model, its ability to derive others’ perspectives could be
improved. Also, further intrinsic modalities should be included
in the embodied learning procedure. Our model is able to
expect and infer unobservable proprioceptive features to a certain
extent. Analogous approaches could enable the derivation of
further states, like executed motor primitives or simulated action
intentions, which could drive forth a realistic model of self-
supervised learning by imitation.

Currently, a major limitation of our model is the fact that
we indirectly supply a basic body-structure knowledge to the
model by manually selecting and assigning bodily features to
specific network inputs. That is, we define that e.g., the first
visual input to the model is responsible for processing the relative
location of the elbow. For a biological system observing a point-
light display this assignment is a non-trivial problem since it
isn’t supplied with body-structure information a priori. Thus, in
our current research we focus on mechanisms that automatically
and dynamically select features and assign them adequately to

the respective neural processing pathway during the observation
of motion. First investigations showed that the same prediction
error signal that is used for perspective-taking can also be used
for this task.

The introduced spatio-temporal pattern learning algorithm
currently relies on angular distances between activations given
by a set of neural populations. However, in terms of an

angular distance metric between different stimuli, coding neural
activation in symmetric populations is equivalent to coding
them in directional vectors. Except to account for small motion
signals, it is thus not necessary to convert the neural coding
paradigm to population coding in the current version of our
model. However, populations provide the potential to encode
multiple, possibly conflicting stimuli in the same population.
In the context of biological motion recognition from point
light displays, the model could be equipped with mechanisms
that maintain multiple feature selections in parallel, leading to
uncertain stimulus encodings until a perceptual attractor state is
reached. Moreover, incertainty could be expressed by adapting
the noise scaling parameter γ . An adaptation of the pattern
recruitment threshold θ could account for an increase in spatial
resolution in crucial parts of observed movements, whereas
distinct normalization lengths’ per feature could be used to
express the relevance of specific features.

Despite the high invariance of our model to several spatio-
temporal transformations, the invariance to speed and scale is
limited by the fixed scaling parameter α to a small degree,
when no velocity is present in some of the observed bodily
features. In future model versions, this scale should be adapted
online analogously to the orientation of the frame of reference,
effectively implementing both a temporal and spatial zooming
mechanism.
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