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In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition

Theory of Mind” that states that the brain uses millions of pattern recognizers, plus

modules to check, organize, and augment them. In this article, I further the theory to

go beyond pattern recognition and include also pattern activation, thus encompassing

both sensory and motor functions. In addition, I treat checking, organizing, and

augmentation as patterns of patterns instead of separate modules, therefore handling

them the same as patterns in general. Henceforth I put forward a unified theory I call

“Pattern Activation/Recognition Theory of Mind.” While the original theory was based on

hierarchical hidden Markov models, this evolution is based on their precursor: stochastic

grammars. I demonstrate that a class of self-describing stochastic grammars allows for

unifying pattern activation, recognition, organization, consistency checking, metaphor,

and learning, into a single theory that expresses patterns throughout. I have implemented

the model as a probabilistic programming language specialized in activation/recognition

grammatical and neural operations. I use this prototype to compute and present

diagrams for each stochastic grammar and corresponding neural circuit. I then discuss

the theory as it relates to artificial network developments, common coding, neural reuse,

and unity of mind, concluding by proposing potential paths to validation.

Keywords: recurrent, neural, stochastic, autapse, self-description, metaphor, grammar, hylomorphism

Introduction

In his book How to Create a Mind (Kurzweil, 2012), Ray Kurzweil proposes to model the brain
with a unified processing paradigm (pp. 5, 7, 23) that consists in a hierarchy of self-organizing
pattern routines (pp. 29, 172) “. . . constantly predicting the future and hypothesizing what we
will experience” (pp. 31) and “. . . involved in our ability to recognize objects and situations” (pp.
32). Furthermore, Kurzweil proposes that the model be implemented with hierarchical hidden
Markov models (HHMMs, p. 144) whose parameters are learned via genetic algorithms (p.
146).

Importantly, Kurzweil calls his model “Pattern Recognition Theory of Mind.” While I fully
concur to the hypothesis of a unified processing paradigm involving patterns, I suggest in this
article that the model Kurzweil presents in his book does not fully achieve his goal and that it can
be more ambitious. First, I note that Kurzweil adds to the central pattern recognition processing
two modules: a “critical thinking module” (p. 175) that checks for consistency of patterns, and an
“open question module” (p. 175) that uses metaphors to create new patterns. These two modules
invoke additional, separate apparatus to that of his pattern recognition modules. Second, Kurzweil
proposes that self-organization of pattern recognition modules is achieved via linear programming
(p. 174), which is yet another apparatus.
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I suggest that while functions of consistency checking,
metaphorical creation, and self-organization are indeed needed,
their treatment should not require extra mechanisms. The theory
should handle them just as any other pattern, since they are
actually patterns of patterns, an assertion that I will formally
substantiate further on. Moreover, I consider that limiting
pattern processing to recognition is limiting the scope of a
unified processing paradigm. Indeed, patterns of activation are
not different from patterns of recognition; for example, drawing
a circle or recognizing a circle both involve the same pattern
(circle), and so the same unified pattern mechanism should apply
in both cases, with the difference being determined only by the
type of action (Mumford and Desolneux, 2010). In fact, Kurzweil
does mention that HHMMs can be used in both activation and
recognition (p. 143); but he did not include that in his model, nor
did he consider them being used at the same time in activation
and recognition, a key element of my analysis going forward.

In this article, I therefore advance an evolution of the
model, extending it to both activation and recognition. I call
it “Pattern Activation/Recognition Theory of Mind.” It is based
on stochastic grammars, i.e., the superset model from which
HHMMs were originally derived (Fine et al., 1998). Stochastic
grammars differ from HHMMs in that they are fully recursive,
or, said otherwise, fully recurrent. I will demonstrate that they
are capable of self-description, allowing them to handle both
patterns and patterns of patterns. Consequently, they can account
for pattern consistency, since consistency is a pattern of patterns;
similarly, stochastic grammars can use metaphors to create new
patterns in a process which also involves patterns of patterns.
Since the self-describing stochastic grammars I present can both
activate and recognize patterns, they meld in a single model the
motor and sensory experiences of the brain.

More generally, I will show that in addition to providing
a unified processing paradigm, self-describing stochastic
grammars capable of both activation and recognition have a
natural mapping to neuronal circuits. Recursion (recurrence),
which enables self-description, is a property of neural circuits,
an example being a neuron whose axon feeds back to the
neuron itself via an autapse (van der Loos and Glaser, 1972).
In addition, stochastic grammars probabilities express the
stochastic nature of synapses with excitation (more likely to
trigger; probability above .5) and inhibition (less likely to trigger;
probability below .5). Furthermore, activation is what an axon
does, while recognition is what a dendrite does. Self-description
allows reading, modifying, and creating neuronal circuitry,
modeled by stochastic grammars both activating and recognizing
other stochastic grammars. This is equivalent to saying that
patterns can both activate and recognize other patterns, thus
providing a general mechanism to create, modify, and exercise
patterns and patterns of patterns for both activation and
recognition.

In order to make the correspondence between stochastic
grammars and neural circuits both clear and explicit, I
present each grammar of the text together with an associated
neural diagram. Neural properties to watch for are those that
map stochastic grammars properties: hierarchy, recurrence,
directionality, probabilities, and, most importantly for this

presentation, learning afforded by self-description. Diagrams
are produced by running a prototype implementation of the
model in the form of a probabilistic programming language
belonging to the lineage of PRISM (Sato and Kameya, 1997)
and Church (Goodman et al., 2008), but dedicated to the
self-describing activation/recognition grammatical and neural
operations described in this article.

In summary, I present here a model that augments and
completes Kurzweil’s software ambition and has a natural
interpretation in terms of the brain’s hardware. Subsequently, I
discuss the theory as it relates to artificial network developments,
common coding, neural reuse, and unity of mind, and I propose
potential paths to validation. Finally, Kurzweil places evolution
at the center of his learning model, with genetic algorithms. I
prefer here to use instead swarming as a learning mechanism, as
evolution is a phylogenetic property (which happens over time),
while swarming is an ontogenetic property (which happens in
real time). Swarming is readily achieved with neuronal circuits in
lower and higher animals, and therefore readily asserted in neural
circuits. With this considered, I can now describe the Pattern
Activation/Recognition Theory of Mind.

Materials and Methods

I first introduce activation/recognition grammars, a class
of probabilistic context-free grammars that can function
both separately and simultaneously in activation and
recognition. I show that activation/recognition grammars
have the power needed for biologically-inspired computations,
that is, the power of Turing machines, while providing an
additional level of expressiveness and theory that maps neural
circuitry. I demonstrate with an example from vision how a
probabilistic version of these grammars can learn colors through
reinforcement by expressing a swarm of lower grammars. I then
show with metaphor and composition that this mechanism
generalizes up to a self-describing grammar that provides the
root of a hierarchical and recursive unified model of pattern
activation and recognition in neural circuits.

Activation/Recognition
I now introduce grammars that can simultaneously activate and
recognize patterns.

A grammar executes a set of rules until rules no longer
apply (Chomsky, 1957). Grammars herein are probabilistic (a.k.a.
stochastic) context-free grammars without null symbol (Booth,
1969; Chi, 1999). They are coded in a minimal subset of Wirth’s
syntax notation (Wirth, 1977), augmented with probabilities.
These grammars are not traditional, because they are not limited
to functioning solely either in activation or recognition; instead,
they can function both separately and simultaneously in activation
and recognition, which I will show is a small but critically
consequential specification in regard to biologically-inspired
interpretation of grammar theory and practice.

Grammar “Draw = DrawSquare DrawCircle DrawTriangle.”
produces a square, a circle, and a triangle. Conversely, when
presented with a square, a circle, and a triangle, grammar
“Spot = SpotSquare SpotCircle SpotTriangle.” recognizes them.
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Production and recognition can mix, as with grammar “Mix =

DrawSquare SpotCircle DrawTriangle.” This grammar recognizes
a circle, and produces a square and a triangle.

Formally, the three grammars above are unified in a single
paradigm of production and recognition; this is captured by
a common rule “A = B C D.” that expresses, with arbitrary
symbols (de Saussure, 1916), the abstract pattern constituted by
any three entities. This pattern is then specialized with rules
that terminate abstract symbols with activation and recognition
functions. The first grammar above is thus formally written “A=

B C D. B = DrawSquare. C = DrawCircle. D = DrawTriangle.”
while the second one is written “A= BCD. B= SpotSquare.C=

SpotCircle.D= SpotTriangle.” and the third one “A=BCD.B=

DrawSquare. C= SpotCircle.D= DrawTriangle.” (Figure 1).
In activation/recognition grammar rules, sequencing does not

convey order, except that recognition comes ahead of production.
Grammars “A = B C. B = DrawSquare. C = DrawCircle.” and
“A = B C. B = DrawCircle. C = DrawSquare.” are equivalent.
They both produce a square and a circle, in any order. The
number of rules involved in a derivation conveys order, whether
for production or recognition. In the two previous examples,
the number of rules needed to produce a square and a circle
is the same for both grammars: two rules are involved, so the
grammars are equivalent. But the grammar “A = B C. B =

DrawSquare. C = D. D = DrawCircle.” is not equivalent to
preceding grammars, as drawing a square requires the application
of two rules, whereas drawing a circle requires the application of
three rules; consequently, the square is ordered ahead of the circle
(Figure 2).

Further varying the rules, infinity of situations can be
conveyed. For example, grammar “A = Look B. B = See C.
C = Describe.” expresses looking for an object and, on seeing
it, describing it (Stock and Stock, 2004). Abstract symbols such
as A, B, and C that expand to other symbols, are called non-
terminal and have no other role than structural. Symbols such as
DrawSquare, SpotCircle, Look, and See that do not expand further,
are called terminal and have a functional role; as explained later,
they can also be placeholders for further grammatical expansion.
Terminals can be actuators or sensors; DrawSquare and Look are
actuators, as they produce output, while SpotCircle and See are
sensors, as they recognize input (Figure 3).

Taken as a whole, the above account of grammars differs
from tradition (du Castel, 1978) only in that it melds
activation and recognition, or, otherwise stated, actuation,
and sensing, or action/perception (Clark, 2013). Grammars
have long been known to work alternatively in production
(“performance”) and recognition (“competence”), but their
working simultaneously in both modes is new; and with this

FIGURE 1 | Three grammars are shown in the top row, while the

second row shows a graphical form of the grammars, and the

third row presents their associated neural circuits. Arrows in

grammatical descriptions indicate when a grammar is activating (down

arrow), and when it is recognizing (up arrow). In neural descriptions,

an inverted triangle denotes a soma, while a segment cut by an arc

denotes an axonal extension and a synapse, further connecting to a

dendrite.
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FIGURE 2 | Four grammars are shown with their neural

counterpart. The two first grammars are equivalent, as their ordering

is not set by rule sequencing but rather by the number of rules

applied; the production of the square requires just two rule

applications, the same as for the circle. The third grammar is not

equivalent to the two preceding ones, as three rule applications are

required for the circle, and two for the square. The fourth grammar is

different from the three preceding grammars, as the square requires

three rule applications, and is therefore ordered after the circle, which

takes two.

FIGURE 3 | This grammar and its neural equivalent demonstrate

variety of purpose; here, actions are described instead of geometrical

figures. A, B, and C are non-terminals, while Look, See, and Describe are

terminals. Look and Describe are in production, See is in recognition. The

particular grammatical and neuronal pattern of this example will be repeatedly

found further down in self-describing grammars and their neural equivalents.

small addition, activation/recognition grammars find a new role
in biologically-inspired computation.

Expressivity
I now add probabilities to activation/recognition grammars, and
I show that these grammars have the same power as Turing
machines, while presenting additional modeling capabilities.

Rules can have alternates, marked by the symbol “| ” (or) and
weighted with probabilities. Grammar “A = .3 B | .7 C. B =

DrawSquare. C = DrawCircle.” prints a square with probability
.3 and a circle with probability .7, such that the mean of the
grammar’s distribution is 30% squares and 70% circles. Grammar
“A = .3 B | .7 C. B = SpotSquare. C = SpotCircle.” recognizes a
square with probability .3, and a circle with probability .7, such
that the grammar’s expectation is 30% squares and 70% circles.
Note that grammar probabilities sum up to 1 for convenience of
presentation, but this is not necessary; weights can substitute to
probabilities without affecting the descriptive value of a grammar
(Smith and Johnson, 2007). For style, unspecified probabilities
are read as equipartition, such that grammar “A = B | C | D |
E.” is actually “A= .25 B | .25 C | .25D | .25 E.” (Figure 4).

Completing this enumeration of fundamental properties of
activation/recognition grammars, non-terminal symbols can be
used in feedback loops (Bellman, 1986; Buzsáki, 2006; Joshi
et al., 2007). Grammar “A = DrawSquare A.” repeats producing
squares to infinity, while grammar “A = SpotCircle B. B =

DrawSquare A.” only repeats as long as circles are recognized,
drawing as many squares as there are circles (Figure 5).

Equipped with alternates and recursion, activation/
recognition grammars can express Turing machines (Turing,
1936). For proof, I consider the seminal Turing example, which
is the generation of the infinite sequence 001011011101111... The
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FIGURE 4 | Three grammars and their neural equivalent are presented, with probabilities. In grammars, alternate paths are marked by a horizontal bar, with

corresponding probabilities indicated for each path. In neural circuits, probabilities are associated with synapses.

FIGURE 5 | Two recursive (recurrent) grammars are shown with their

neural circuits. In the grammatical schema, the recursion is only shown

for three levels for reason of presentation (in further figures it is typically cut

to one or two for the sake of clarity). The neural diagram does not suffer

from the same limitation of presentation, so it is faithful to the original

grammatical formulation. The recurring synapse of the first circuit connects

the soma onto itself, so it categorizes as autapse. The second neural

circuit has two synapses terminating on the same soma, one being

recurrent. The recurrent synapse of the second circuit is categorized as

regular, as it connects one soma to a different one.
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following activation/recognition grammar transliterates Turing’s
specification using its exact original notation: “b = Pe R Pe R P0
R R P0 L L o. o = 1 R Px L L L o | 0 q. q = Any R R q | None P1
L p. Any = 0 | 1. p = x E R q | e R f | None L L p. f = Any R R
f | None P0 L L o.” In the terminology of activation/recognition
grammars, terminals Pe (Print e), R (Move right), P0 (Print
0), L (Move left), Px (Print x), P1 (Print 1), and E (Erase),
are actuators, while terminals 1 (Read 1), 0 (Read 0), None
(Read None; meaning blank square), x (Read x), and e (Read
e), are sensors. Therefore, mixed production and recognition
overcomes computational limitations of traditional context-free
grammars (Chomsky and Schützenberger, 1963), allowing them
to perform most biologically-inspired computations, if not all
(Penrose, 1989; Siegelmann, 1995) (Figure 6).

Turing’s infinite sequence is actually an enumeration of the
natural number set, perhaps not a biological object. However,
recognition of numbers is certainly a common and early human
activity (Libertus et al., 2011). Grammar “A = B | C. B = 0 | 1.
C=BA.” expresses any digit sequence; the first rule differentiates
finishing a sequence and pursuing one, the second rule produces
digits, and the third rule adds to sequences. Following the same
pattern, but with different terminals, grammar “A = B | C.
B = DrawSquare | DrawCircle. C = B A.” produces a number
of squares and circles in sequences mapping the production of
digits, grammar “A = B | C. B = SpotSquare | SpotCircle. C = B
A.” recognizes such a sequence, and grammar “A = B | C. B =

SpotSquare | DrawCircle. C = B A.” mixes identifying squares
and producing circles. The non-terminal grammar part common
to digits and geometrical figures expresses a metaphor from one
domain (digits) to another (figures), a subject I will come back to
further on (Figure 7).

I have showed that activation/recognition grammars have
the same power as Turing machines, to formally demonstrate
that these grammars are universal. However, they are more
than Turing machines. They constitute a higher-level model
that expresses in particular hierarchical and recursive (recurrent)

concepts that are not explicit in Turing machines. It is this extra
modeling capability that I use to build the theoretical apparatus
that on one hand meets the extra requirements I have put on
Kurtzweil’s original theory, and on the other finds a natural
expression in neural circuits.

Now, while it is yet possible to suggest that they are natural
models of biologically-inspired processes, a plausible origin has
to be found for activation/recognition grammars.

Learning
I now show that probabilistic activation/recognition grammars
can learn with swarms, using color learning as an example.

The use of probabilities allows producing and recognizing
patterns expressing gradients. Assuming base colors red and
green, grammars can produce from them composite colors,
such as yellow grammar “A = B A. B = .5 C | .5 D. C =

PrintGreenPoint. D = PrintRedPoint.” and orange grammar
“A = B A. B = .61 C | .39 D. C = PrintGreenPoint. D =

PrintRedPoint.” or gold grammar “A = B A. B = .54 C | .46 D.
C = PrintGreenPoint. D = PrintRedPoint.” Replacing actuators
by sensors, “C = ReadGreenPoint. D = ReadRedPoint.” lets
grammars recognize, instead of produce, corresponding colors
with variations respecting probability distributions. Yellow,
orange, and gold grammars are very similar, since they differ only
by their gradient probabilities (Figure 8).

The purpose of this section is to study reinforcement learning
with grammar swarms. Swarms are well-understood (Kennedy
and Eberhart, 1995), and grammar swarms have been studied in
production (von Mammen and Jacob, 2009). Here I will consider
one aspect of swarm learning, albeit a critical one, in recognition.
I will consider the capability of a swarm to select for the orange
color. The problem is equivalent to that of a swarm exploring for
food (Dasgupta et al., 2010); instead of sampling a geometrical
space, the swarm samples the green-red spectrum. The swarm is
made of color grammars with different probabilities. The swarm
is presented with varied colors; when a color is presented, the

FIGURE 6 | Here is the Turing grammar with its neural circuit. Note that the grammar has actually been simplified for the sake of presentation, as ordering

should be introduced following the precepts previously enunciated regarding the number of rules executed.
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FIGURE 7 | Varying terminals. The first grammar and its neural

circuit produce binary digit sequences. The second grammar is the

same as the first one except for its terminals. Instead of producing

digits 0 and 1, it recognizes squares and produces circles. It does

that following the same pattern, where production of 0 is replaced

by recognition of a square, and production of 1 by production of a

circle. As will be discussed further down, this constitutes a

metaphor, applying a set pattern (expressed by the non-terminal part

of the grammar) from one domain (digits) to another (geometrical

figures) by varying the terminals.

FIGURE 8 | Yellow, orange, and gold grammars are shown with their neural circuits. The only difference between these three grammars is probabilities, which

express the mixture of green and red constitutive of each color.
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grammar of the swarm closest to that color recognizes it. If
the recognized color is close to orange, the described grammar
produces orange in return. This is the essence of swarm learning,
as the swarm can then bemodified to concentrate more andmore
on the exact orange color, a process that I do not describe here
but that can be performed by the methods presented in the next
section.

Color grammars presented above differ only by their
probabilities. Grammars can themselves be represented by
grammars (Harris, 1968). Therefore, patterns (such as individual
color grammars, with set probabilities) can be represented by
other patterns (such as general color grammars, with varying
probabilities). My demonstration consists in showing that a
grammar can describe another one in a way that expresses the
swarm capability sought.

For this, I first need to introduce a simple case of a grammar
describing another one. The most simple grammar I can consider
is “A = PrintGreenPoint.” The key elements of the grammar are
A and PrintGreenPoint. The equal sign (“=”) and dot (“.”) are
markers that are necessary in the linear form of grammar writing,
but that do not need to be reproduced in a grammar-describing
grammar, because their function is accomplished by the structure
of that grammar (cf. Methods Summary further below). Thus,
grammar “A = PrintGreenPoint.” is fully described by grammar
“A = QuoteA B. B = QuotePrintGreenPoint.” This describing
grammar uses the quote operator. This operator allows specifying
a symbol that is not otherwise active, which is necessary to avoid
confusion between the non-terminal node A of the describing
grammar and the terminal node A referring to the described
grammar. This operator, recognized as such by Harris (Harris,
1968), is that of Gödel’s proposition-describing propositions
(Gödel, 1931/1986); it was also identified, independently, by
McCarthy (1960) and Wirth (1977). Without this operator, the
describing grammar would go into inappropriate recursion.
Instead it describes the simple grammar as desired; expressing
that the recursion domain of the described grammar is different
from that of the describing grammar (Figure 9).

I now consider the slightly more complex grammar “A =

.61 B | .39 C. B = PrintGreenPoint. C = PrintRedPoint.” It is a
subset of the orange grammar, with probabilities expressing the
proper mix of green and red that produces orange. Grammar
“A = B C D. B = QuoteA E. E = F G. F = QuotePoint61
QuoteB. G = QuotePoint39 QuoteC. C = QuoteB H. H =

QuotePrintGreenPoint. D= QuoteC I. I= QuotePrintRedPoint.”
describes this orange grammar subset, including probabilities
(Figure 10).

The more complex orange grammar is just an expansion of
the simpler one to multiple points. For the sake of simplicity,
I will therefore consider the simplified orange grammar for
my demonstration. Varying the probabilities of the grammar,
it is possible to produce any color grammar of the green-red
spectrum. For example, it is possible to produce a grammar that
recognizes colors with probabilities .5 and .5, as easily as one
recognizing probabilities .6 and .4, or one recognizing .9 and .1.
It is then possible to produce these three grammars at once with
grammar “A = B | C | D. B = .5 E | .5 F. E = SpotGreenPoint.
F = SpotRedPoint. C = .6 G | .4 H. G = SpotGreenPoint.

FIGURE 9 | Simple description. The first grammar is the very simple

grammar. The second grammar describes the first grammar, using the quote

operator, to point to appropriate nodes of the grammar described. The second

neural circuit combines the neural circuits of the describing and described

grammars. The grammatical function of the quote operator is fulfilled by the

projection of the neural circuit of the describing grammar to the neural circuit of

the described grammar.

H = SpotRedPoint. D = .9 J | .1 K. J = SpotGreenPoint. K =

SpotRedPoint.” This assembly of grammars all similar but for
one element is called a grammar swarm (von Mammen and
Jacob, 2009). When presented with a color, this swarm of three
grammars activates the grammar closest in color to the input
(Figure 11).

The swarm is then a tool of color detection. Let’s assume
that the swarm receives as input the color orange, that is, a
mix of .61 green and .39 red. The branch of the swarm that
detects that color is the second branch of the grammar since its
probabilities, namely .6 and .4, are the closest to those of orange
(the distribution of .6 and .4 is closest to that of .61 and .39).
For that detection to be confirmed, this swarm branch needs to
be connected to an orange production which acknowledges the
detection and therefore presents an input for reinforcement. This
capability is present once the swarm expands into production
rules, as in “A = B C. B = .6 D | .4 E. D = SpotGreenPoint.
E = SpotRedPoint. C = F G H. F = QuoteA J. J = K L.
K = QuotePoint6 QuoteC. L = QuotePoint4 QuoteD. G =

QuoteC M. M = QuotePrintGreenPoint. H = QuoteD N. N =

QuotePrintRedPoint.” When the second branch is triggered, it
allows closure of the reinforcement loop, which is validated by
presentation of the expected orange color (Figure 12).

Any other gradient can be substituted to red-green, be it a
different spectrum, tone, or other probabilistically-determined
base for classification. However, this example of linking input
to output for reinforcement learning needs to be augmented
with more powerful capabilities. Consequently, I turn to
demonstrating that the model is both general and organized.

Self-Description
I now show that probabilistic activation/recognition grammars
can self-describe, allowing patterns to activate/recognize other
patterns, such as with metaphor and composition.
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FIGURE 10 | Probabilistic description. The first grammar is a subset of

the orange grammar. The second grammar describes the first grammar. The

second neural circuit combines the neural circuits of the describing and

described grammars. Probabilities quoted in the describing grammar project

to the described grammar, just as probabilities referred by the describing

circuit project to the circuit described.

FIGURE 11 | A grammar swarm. This is a swarm of three color grammars, side by side with its neural equivalent.
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FIGURE 12 | Reinforcement learning. The first grammar is the target

orange grammar. The second grammar is the branch of the grammar

swarm that is triggered when presented with a color close to orange.

The first part of the second grammar is the triggering mechanism; the

second part is the description of the target orange grammar. In the

corresponding neural circuit, the top part is the trigger, the bottom right

part is the description, and the bottom left part is the activated circuitry

resolving to orange.

Grammars-describing grammars can be recursively defined
upward in an increasing generalization. The fixed point of that
recursion is an ultimate grammar that can produce and recognize
any grammar, including self. This root grammar “A= .5 B | .5 C.
B = Symbol D. D = .5 E | .5 F. E =Weight G. G = .5 Symbol | .5
H. H = Symbol G. F = E D. C = B A.” defines the most general
pattern, from which all other patterns derive (cf. Methods
Summary, further below). Like all activation/recognition
grammars, this top grammar can function in production,
recognition, and mixed mode. The top grammar provides for a
unified model since it covers all patterns (Figure 13).

This begs studying grammar learning over the full
activation/recognition grammatical landscape. Kutzweil’s
two separate modules that I have not yet integrated in the theory
are dealing with augmentation and organization. Augmentation
is related to metaphor, the capability of creating new patterns as
well as applying existing patterns to new domains. Organization
is related to the general problem of associating patterns with
one another. Metaphors allow reusing circuitry: for example, if a
particular circuit counts items, one cannot imagine this circuit
being replicated for the infinite number of possible items that can
be counted. Therefore, there needs to be a mechanism that allows
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FIGURE 13 | The root grammar can describe any grammar, including itself. Like the grammar it corresponds to, the neural circuit self-describes, providing root

circuitry from which all circuits can derive.

reusing the counting circuit to apply it to different items, which is
what I will present. Organizational capabilities are an extension
of metaphoric capabilities. If a circuit counts items, it should not
only be capable to count any item, it should also be able to count
anything; for example, the number of times an orange color is
produced. In the following, I show that self-description allows
handling both metaphor and organization within the Pattern
Activation/Recognition Theory of Mind.

Regarding metaphors, a pattern can be described by another
one, while the describing grammar can also perform other
operations, a feature I have already used for swarms. For the sake
of presentation, I consider a very simple pattern, that of counting
two squares, done by grammar “A = B C. B = DrawSquare.
C= DrawSquare.” This grammar is described by grammar “A=

B C D. B = QuoteA E. E = QuoteB QuoteC. C = QuoteB
F. F = DrawSquare. D = QuoteC G. G = DrawSquare.” This
describing grammar can be augmented to draw a circle each time
it detects a square, with “A= B C D. B= QuoteA E. E= QuoteB
QuoteC. C = QuoteB F. F = UnquoteDrawSquare DrawCircle.
D = QuoteC G. G = UnquoteDrawSquare DrawCircle.” The
unquote operator is the reverse of the quote operator. With
the addition of the new rules, instead of producing a square,
the described grammar forwards the drawing operation to
the describing grammar that then produces a circle. In other
words, the describing grammar retargets the counting pattern
from one domain (squares) to another (circles), which is the
essence of metaphors, defined as “a cross-domain mapping in the
conceptual system” (Lakoff, 1979). Of course, this is illustrating
only the basic mechanism which metaphors rely on, while I have
published elsewhere with Yi Mao a more complete account, using
Montague grammars (Montague, 1974; du Castel andMao, 2006)
(Figure 14).

Regarding organization, I now consider two grammars
previously discussed, digit grammar “A= B | C. B= 0 | 1. C= B
A.” and orange grammar “A= .61B | .39C.B= PrintGreenPoint.

C = PrintRedPoint.” Digit grammar outputs digits, and orange
grammar outputs points. Let’s imagine that instead of producing
the digit 1, I want the digit grammar to produce an orange point,
therefore producing a pattern of orange points that follows the
pattern of 1’s of the digit grammar. A way to do this could
be to just replace digit 1 of the digit grammar by an orange
grammar expansion, as in “A = B | C. B = 0 | D. C = B A.
D = .61 E | .39 F. E = PrintGreenPoint. F = PrintRedPoint.”
While this static combination produces the desired result, it
does not provide a plausible model for the brain. Like in the
case of metaphor discussed above, this process of combining
grammars directly would accrue an infinity of combinations in
the brain, not a possibility. What is needed is rather a means
to combine the two circuits while preserving them, so that they
can be combined in an infinite number of ways in a dynamic
fashion. Here again, we turn to self-description, by invoking a
grammar that describes these two grammars and combines them
while keeping them intact. This is achieved by grammar “A =

B C D. B = QuoteA E. E = QuoteB QuoteC. C = QuoteB F.
F = Quote0 J. J = Unquote1 K. D = QuoteC G. G = QuoteB
H. H = QuoteA. K = L M N. L = QuoteD O. O = P Q.
P = QuotePoint61 QuoteE. Q = QuotePoint39 QuoteF. M =

QuoteE R. R = QuotePrintGreenPoint. N = QuoteF S. S =

QuotePrintRedPoint.” In addition to providing a means to reuse
circuitry, this dynamic combination, by leaving the two circuits
combined intact, allows them to be learned independently of
each other. Independent learning helps limit the size of spaces
explored by swarms (Bengio et al., 2009) (Figure 15).

While I have previously studied swarm learning for gradients,
other variations can be considered, such as structural properties
of grammars. In the same way as a grammar can generate a
swarm of other grammars with different probabilities, it can
generate other grammars with different structural properties,
and then learn from the swarm, with branches that fulfill some
target function. If learning the particular precedes the general,
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FIGURE 14 | Actualization of a metaphor. The first grammar

counts two squares, and is described by the second grammar.

Each time the first grammar outputs a square, the second

grammar transforms it into a circle, thereby allowing counting circles

instead of squares. In the second neural circuit, the left part is the

original square-counting circuit, the middle part activates the

square-counting circuit, and the right part transforms counting

squares into counting circles.

a possible but not necessary hypothesis for this argument,
hierarchies of activation/recognition grammars are then learned
from the bottom-up, accumulating experience in the memory
of validated grammars until reaching the top grammar. In that
model, pattern circuits build up over time, and the discovery of
new patterns is an incremental operation.

Methods Summary
I now provide a method allowing better understanding of
stochastic self-description, and I explain computation of the
grammatical and neural diagrams.

Since grammar patterns are formal and structural, complex
ones are better understood by considering them together with an
expressive representation. For example, consider self-describing
grammar “A = .5 B | .5 C. B = Symbol D. D = .5 E |
.5 F. E = Weight G. G = .5 Symbol | .5 H. H = Symbol
G. F = E D. C = B A.” For legibility, A can be recast as
Rules, B as Rule, C as RulesSequence, D as Alternates, E
as Alternate, F as AlternatesSequence, G as Symbols, and
H as SymbolsSequence. Then the grammar is expressed as

“Rules= .5 Rule | .5 RulesSequence. Rule= Symbol Alternates.
Alternates = .5 Alternate | .5 AlternatesSequence. Alternate =
Weight Symbols. Symbols = .5 Symbol | .5 SymbolsSequence.
SymbolsSequence = Symbol Symbols. AlternatesSequence =

Alternate Alternates. RulesSequence = Rule Rules.” This
method can be generalized to any grammar for better
understanding of their function.

Earlier versions of some of the grammars were posted online
as unpublished works and are presented here in new versions
with permission from the author (du Castel, 2013a,b).

The model is fully implemented as a prototype which I ran
to produce the grammatical and neural diagrams of this article
as well as all describing grammars. The prototype compiles
grammars expressed in Wirth’s format into both their graphical
expression and the expression of their self-description. These
compilations drive execution of the stochastic grammars in
two modes: one provides the grammatical diagrams, while the
other provides the neural diagrams. This unity of execution
ensures that both diagrams are indeed issued from a single
description, as presented by the model, and that there is in
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FIGURE 15 | Composition. Grammars 1 and 3 are combined by grammar 2. The neural circuit of grammar 2 activates the neural circuit of grammar 1, and then the

neural circuit of grammar 3, joining them to make them interdependent.

fact a one-to-one correspondence between the grammars and
their neural representations. The prototype is quite elaborate in
its treatment of grammars, as it handles all the cases of this
article and more, but is less so in its handling of sampling and
distributions, where it is far from the state of the art. While
the prototype implementation is not in a form appropriate for
general use, I present next a screen shot showing both the core
execution code and the results of the execution on a very simple
example (Figure 16).

My implementation of self-describing activation/recognition
stochastic grammars, which affords universal computation,
meta-circularity, and probabilities, belongs, however modestly,
to a general class of languages well-represented by PRISM
(Sato and Kameya, 1997), which is a probabilistic offspring
of Prolog, and Church (Goodman et al., 2008), which is a
probabilistic offspring of Lisp. From a theoretical perspective,

a difference between the three is that PRISM is oriented
toward logic, Church toward general modeling, while the present
implementation is oriented toward properties discussed here:
activation/recognition symmetry, grammar/neural diagrams,
grammatical inference, metaphors, and composition. Being
universal, the three languages support each other’s computational
model, but in each case less naturally than with the original.
To further illustrate this point, a language like Mathematica
(Wolfram, 1988) presents similar capabilities but is rather a
natural fit to mathematics at large. Perhaps anecdotally, I suggest
that the less natural character of advanced logic, probabilistic
modeling, or sophisticated mathematics transcribed by self-
describing activation/recognition stochastic grammars reflects
well the reality of human performance, where each of these
activities involves pragmatic graduate-level experience, whereas
grammars are arguably inherently a construct of early childhood
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FIGURE 16 | This is the implementation. The left side shows executing code, while the right side shows the result of execution for a simple grammatical and neural

description.

and a more natural human experience. This said, from a practical
perspective, my prototype could be implemented as a new
module of PRISM and Church, focused on the self-describing
activation/recognition grammatical and neural functions of this
article but benefiting from the statistical capabilities and support
found in these two systems.

Results

While grammars are one of the oldest subjects of scientific study,
neither activation/recognition grammars nor the theoretical
model of stochastic grammars recursively describing other
grammars hierarchies have, to my knowledge, been studied
before. This model describes circuits in stochastic relationships;
furthermore, it describes that very description, and keeps doing
so recursively up to self-description. At each recursion patterns
can be produced, recognized, and learned via reinforcement and
composition, building up from past descriptions.

Following is a recapitulation of the figures in this article
showing grammars, their schema, and their neural circuit, with
comments now framed by the whole of this article:

Figure 1: Activation/recognition grammars correspond to
neural circuits, with recognition represented by cell
input, and activation by cell output.

Figure 2: Activation/recognition grammars express both
parallel and sequential execution in neuronal
circuits.

Figure 3: Circuits of activation/recognition grammars
represent concepts in both space and time.

Figure 4: Probabilities of activation/recognition grammars
map synaptic probabilities.

Figure 5: Recursion in activation/recognition grammars
corresponds to recurrence in neural circuits, via
autapses or regular synapses.

Figure 6: An activation/recognition grammar and its neural
circuit can represent a Turing machine, asserting
universal computation.

Figure 7: Activation/recognition grammars with varying
terminals express a metaphor in neural circuits.

Figure 8: By varying probabilities, activation/recognition
grammars and their circuits can express gradient
patterns.

Figure 9: An activation/recognition grammar can describe
another one, and its neural circuit activates the circuit
of the grammar described.

Figure 10: Activation of one circuit by another projects
probabilities from the latter to the former.

Figure 11: An activation/recognition grammar can express a
swarm of similar circuits.

Figure 12: A branch of a swarm of neural circuits enables
reinforcement learning by forwarding results to
another circuit.

Figure 13: The root grammar can describe any other grammar,
including self, and ditto for the corresponding root
neural circuit.
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Figure 14: A self-describing neural circuit activates a
metaphor by directing the output of another neural
circuit.

Figure 15: Any two circuits can be connected dynamically by a
third one using self-description.

With this general exhibit of properties of activation/recognition
grammars and their neural circuits, a model emerges that
allows neural computations to be expressed in the well-
researched mathematical framework of grammar theory.
With their corresponding neural circuits, self-describing
activation/recognition grammars form a biologically-inspired
model that can produce, recognize, and learn neurons and
circuits of neurons from a single source, suggesting a unitary
model for their development and function.

Discussion

Theory
My goal was to provide a unified model that augments and
completes Kurzweil’s theory. Activation/recognition grammars
further that theory by allowing both activation and recognition
of patterns; this corresponds to neural activation and recognition
functions, including motor and sensory stimuli.

Stochastic grammars are one step up from Kurzweil’s
HHMMs, allowing full recursion, which maps naturally with
neural circuits that are analogically recurrent (Gilbert and
Li, 2013). The combination of activation/recognition with
probabilities warrants adaptive pattern processing that exploits
the stochastic nature of synaptic connections (Staras and Branco,
2009).

By using activation/recognition stochastic grammars with
swarming patterns, it is possible to include learning in the model.
By combining self-description with these properties, learning
extends from simple patterns to patterns of patterns, allowing the
treatment of consistency checking as yet another pattern.

Stochastic grammars can both describe patterns and generate
new ones, using a combinatorial learning process that allows
varying patterns for purpose. New patterns are modifications of
existing ones, which expresses Kurzweil’s metaphoric model of
discovery.

Validation
I now discuss in regards to validation three claims of the new
theory, which are: patterns are governing throughout; activation
and recognition share descriptions; and patterns are self-
describing. In terms of neural computation, the algebra is that of
stochastic grammars; neural circuits implement their rules; and
computation stems from recursively nested descriptions.

Back-propagation (LeCun et al., 1998) and spiking (Maass,
1997) networks are perhaps paragons of current computational
artificial neural networks. The former provides strong results on
recognition benchmarks while aiming at biological plausibility
(Bengio et al., 2015); the latter roots more in biology while
aiming at matching the former in performance (Schmidhuber,
2015). Neither addresses acquisition/recognition symmetry nor
self-description.

I suggest, however, that acquisition/recognition symmetry
and self-description are not in conflict with current artificial
networks, but are rather complimentary to them, so that the
way forward may be a mix of current practice blended with the
new requirements. Another possibility is that a new brand of
analytical (Carpenter and Grossberg, 1987; Herbort and Butz,
2012) neural networks based on stochastic grammars and their
distributional and sampling properties emerges with millions of
diachronically and synchronically learned patterns (Rodríguez-
Sánchez et al., 2015). Additionally, the same principles can
be applied to structuring biological artificial neural networks
(Markram, 2012).

The symmetry of activation and recognition has been
theorized in particular with the introduction of common coding
(Prinz, 1990), and of a shared circuit model (Hurley, 2007)
supported by the discovery of mirror neurons (Gallese et al.,
1996). The new theory supports activation and recognition
sharing a same circuit as well as them sharing a same
description but with different circuitry. It can therefore be
proposed as an underlying formalism for both common coding
(same description) and the shared circuit model (same circuit).
Neurophysiological evidence for these models would then favor
the new theory as well. Nevertheless, I think that definite
validation entails mapping the circuitry presented in this paper
(Mikula and Denk, 2015).

While stochastic grammatical self-description is new, it finds
a home in theories of neural reuse (Anderson, 2010) and cultural
recycling (Dehaene and Cohen, 2007). In both theories, it has
been recognized that co-optation of an existing circuit for a new
function does not negate pre-existing functions. For example,
hand gestures accompanying speech reflect the source domain
of a spoken metaphor (McNeill, 1992; Marghetis et al., 2014).
This is in accord with the activation mechanism of this article,
which only adds, not substitutes, to the output of a neuron.
New and old functions coexist, and may or not find an outward
expression, depending on activation of downward circuitry.
When it does, behavior consistent with the theory ensues,
such as gestures associated with speech. General validation,
however, would consist in a broad understanding of conditions
under which situations of co-opted neural output actually affect
behavior.

With the above examples a comprehensive underpinning
model of neural circuitry emerges, but ultimate validation
of the theory relates to the unity of the brain. Indeed, the
theory suggests that neural circuits are composed by self-
description into circuitry of increasing generality, up to the
root stochastic grammar describing all stochastic grammars.
Would neuroscience reach the point where neural circuits
can be followed along that path (Laumonnerie et al., 2015),
direct validation of the theory would then be effected, arguably
advancing a formal version of Aristotle’s hylomorphism.

Conclusion
I must emphasize that the PatternActivation/Recognition Theory
of Mind should reflect more than the neuronal circuitry that I
have considered. In particular, neuron/interneuron distinctions
(DeFelipe et al., 2013), columns and layers arrangements,
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modular specialization, and brain waves, are to be part of an
elaboration of the model. While I do not know that any or more
of these properties would invalidate the model at this point, I
would, a contrario, like them to reinforce it.

But crucially, the model predicts that we should find in the
brain self-descriptive neural circuits of the kind modeled by the
theory. That would be the discovery that shows that this new
model of the brain answers the millenary quest for understanding
the unity of mind.
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