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Modeling the layer 5 pyramidal neuron as a system of three connected isopotential

compartments, the soma, proximal, and distal compartment, with calcium spike

dynamics in the distal compartment following first order kinetics, we are able to reproduce

in-vitro experimental results which demonstrate the involvement of calcium spikes in

action potentials generation. To explore how calcium spikes affect the neuronal output

in-vivo, we emulate in-vivo like conditions by embedding the neuron model in a regime of

low background fluctuations with occasional large synchronous inputs. In such a regime,

a full calcium spike is only triggered by the synchronous events in a threshold like manner

and has a stereotypical waveform. Hence, in such a regime, we are able to replace the

calcium dynamics with a simpler threshold triggered current of fixed waveform, which

is amenable to analytical treatment. We obtain analytically the mean somatic membrane

potential excursion due to a calcium spike being triggered while in the fluctuating regime.

Our analytical form that accounts for the covariance between conductances and the

membrane potential shows a better agreement with simulation results than a naive first

order approximation.

Keywords: calcium spikes, pyramidal neuron, calcium spike induced somatic voltage excursion, calcium spike

approximation, calcium spike as threshold triggered fixed waveform

1. Introduction

Recent studies have shown that dendritic spikes play a significant role in the functions of neurons
in-vivo (Sivyer and Williams, 2013; Smith et al., 2013; Grienberger et al., 2014; Palmer et al., 2014).
Prior to these in-vivo experiments, dendritic spikes, in particular calcium spikes in the layer 5
pyramidal neuron, had already been extensively studied in-vitro (Stuart et al., 1997; Larkum et al.,
1999a,b, 2001; Williams and Stuart, 2002). Larkum et al. (1999a) showed that when an action
potential coincides with a distal current stimulation, the back-propagating action potential couples
with the current stimulus to trigger a calcium spike, which then propagates to the soma and triggers
further action potentials, resulting in a burst of action potentials. This coupling time window is in
the range of 20–30ms, and the stimulus required to trigger a calcium spike halves when optimally
coupled with the first back-propagating action potential. Larkum et al. (2001) subsequently
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demonstrated that a hyperpolarizing current at the proximal
dendrite prevents a calcium spike from triggering action
potentials at the soma. Larkum et al. (1999b) also showed that
if only action potential bursts alone are to trigger a calcium spike,
they have to spike above a certain critical frequency in order to
do so. In the above studies, distal synaptic inputs are typically
severely attenuated by the time they reach the soma, calling into
question their impact on the neuron’s firing activities. Larkum
et al. (2004) proposed that distal inputs could serve to increase
the gain of the pyramidal neuron, accompanied by a change of
firing modes from single action potentials to burst firing during
coincident somatic and distal inputs. In the accompanying two
compartment neuron model, the calcium spike is modeled using
first order kinetics to explain this gain modulation.

Building on the above in-vitro studies, recent studies
investigate the functional significance of the calcium spike.
Larkum et al. (2009) used both experiments and simulation
studies in NEURON (Carnevale and Hines, 2006) to determine
how synchronous local NMDA spikes and synaptic inputs on
distal tuft dendrites cooperate to activate calcium spikes which
then propagate to the soma. The interaction of these various
levels of active dendritic events are reviewed by Major et al.
(2013) who conclude that they may enable the pyramidal neuron
to function as a multi-layered computational unit, while another
review argues that the calcium spike might serve to amplify
coincident inputs, so influencing the neuronal output (Spruston,
2008). Larkum (2013) puts forward the hypothesis that calcium
spikes serve to bind top-down and bottom-up synaptic inputs,
and, in combination with the local micro-circuits, underlie the
organizing principle of the cerebral cortex.

It is notable that these hypotheses on the functional role of
calcium spikes are based predominantly on observations from
in-vitro studies. It remains largely unclear whether the observed
phenomena would also be observable in-vivo. Specifically, can a
calcium spike still be triggered by coincident inputs? Assuming
it can, under what conditions does it have an impact on the
neuron’s spiking activity? In the absence of corresponding in-
vivo experimental protocols, it is a reasonable strategy to apply a
theoretical approach supported by numerical simulations to shed
light on these questions.

The layer 5 pyramidal neuron has been extensively modeled
in NEURON and latest studies try to fit neuron parameters
to emulate experimental findings (Hay et al., 2011; Bahl et al.,
2012; Almog and Korngreen, 2014). In these studies, the calcium
spike is triggered by different kinds of voltage dependent calcium
channels such as medium voltage activated (MVA) and high
voltage activated (HVA) calcium channels. Almog andKorngreen
(2014) also call into question the hypothesis of a calcium hot spot
at the distal main bifurcation point proposed by Larkum et al.
(2009). They present an alternative hypothesis of a gradient of
calcium channels along the apical dendrite to explain calcium
spikes and action potential bursts; this has yet to be verified
experimentally.

Although these complex neuron models are useful for
understanding the biophysical mechanisms of the generation
and propagation of calcium spikes, they are less helpful for
investigating their functional role, as they are neither sufficiently

tractable to allow theoretical analysis nor sufficiently simple to
permit efficient simulation in large networks. In this article,
we address this problem by developing a neuron model that is
amenable to both analysis and efficient simulation whilst still
reproducing key in-vitro experimental results.

As an initial step, we introduce a three compartment neuron
model. The three compartments represent the soma [with basal
dendrites], proximal [apical dendrite with oblique proximal
dendrites], and distal [distal bifurcation point and tuft dendrites].
The calcium spike is modeled using first order kinetics in the
distal compartment (see 2.1). We show that this neuron model
is able to reproduce a variety of in-vitro experimental results as
shown in 3.1 for a single set of parameters.

Although this initial model already represents a considerable
simplification over complex biophysical models, it still
contains a large number of dynamic variables and is not
analytically tractable. We therefore examine the behavior of this
parameterized model under different in-vivo like conditions to
identify the conditions in which a further simplification of a fixed
calcium potential waveform triggered by a voltage threshold
would be valid. To this end, we embed the neuron model in four
different regimes, in which calcium spikes are either triggered
by large background fluctuations or large synchronous inputs
(Figure 2). We determine that the proposed model reduction is a
good approximation in the regime of low background fluctuation
with synchronous events resulting in large coincident inputs.
Both the threshold and waveform are dependent on the time
constants of the synchronous inputs which can be empirically
obtained from the calcium spike modeled using first order
kinetics (Figure 3). We show that despite the reduction in free
parameters, the model can reproduce the same experimental
results as the more complex model (Figure 8).

As the reduced model is tractable, we are able to analytically
obtain the mean contribution of the calcium spike to the somatic
membrane potential, while accounting for the background
fluctuation (3.4). This analytical form is robust to different levels
of fluctuations, whereas first order approximation using linear
response theory is not. Beyond the analysis of the contributions
of calcium spikes to a neuron’s firing activity, this study paves
the way to combined theoretical and large-scale numerical
investigations of the functional role of calcium spikes and the
relationship of correlated synaptic activity to neuronal firing
patterns in cortical networks.

2. Materials and Methods

2.1. A First Order Kinetics Model of Calcium
Spike Dynamics
The layer 5 pyramidal neuron has previously been represented
as a two-compartment point neuron model, in which the
calcium spike is modeled using first order kinetics in the
distal compartment (Larkum et al., 2004). Here, we take a
similar approach, modeling the pyramidal neuron as a system
of three connected isopotential compartments, with the somatic
compartment [representing the soma and basal dendrites], the
proximal [representing the apical dendrite before it bifurcates],
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and the distal compartment [representing the main bifurcation
point (calcium hot-zone) and distal tuft dendrites]. Three
compartments instead of two are chosen in order to capture how
a hyperpolarizing current at the proximal dendrite can prevent
a calcium spike from triggering action potentials at the soma
(Larkum et al., 2001). The dynamics of the three-compartment
neuron model of the layer 5 pyramidal neuron is described by
three coupled first order differential equations governing the time
evolution of the membrane potentials of the three compartments
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where the superscripts d, p, and s denote the distal, proximal, and
somatic compartments, respectively.C andV refer to capacitance
and membrane potential and gl is the leak conductance. Note
that by our choice of the coupling terms between compartment
x and compartment y as gxy
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injected into compartment y. This is

chosen such that the resting potential is equal to U
y

l
when

there are no external and calcium currents, IYAp = ICa = 0,

and the excitatory and inhibitory synaptic conductances vanish;
ge = gi = 0. The synaptic conductances are modeled as alpha
functions, i.e., the time course of the conductance evoked by an
incoming spike at t = 0 is
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e

τs
t exp

(

−
t
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)

, (2)

where w is the strength of the synapse and the maximum
amplitude of the alpha function, and τs is the synaptic time
constant controlling the rise time of the alpha function. The
constants gpd and gsp are the conductances across the distal-
proximal and soma-proximal compartments, and Ue and Ui are
the excitatory and inhibitory reversal potentials. We model the
calcium current Ica using first order kinetics

Ica = gcamh
(

Uca − Vd
)
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where Uca is the calcium reversal potential, gca the calcium
conductance, and m and h the activating and deactivating
functions, respectively, whereby mslope > 0 and hslope < 0.

m∞ and h∞ are the respective functions depending on the distal
voltage Vd in a sigmoidal shape, determining the asymptotic
values toward whichm and h relax.

The neuron spikes when the somatic membrane potential
crosses the adaptive threshold 2ad. At this point the threshold
is increased by 2+ from which it relaxes exponentially to 2base

with a time constant of τ th. Additionally, a refractory period
tref = 2ms is applied to the somatic compartment, during
which the somatic leak term gs

l
is set to 150 nS, as compared

to a leak value of 10 nS otherwise. This is to emulate the
membrane potential coming down to a resting potential value
of approximately −60mV from a peak value Vpeak = 30mV to
which it jumps upon threshold crossing.

To model the effects of a back-propagating action potential in
a three-compartment neuron model, we initialize alpha-shaped
currents, with dynamics analogous to the synaptic conductances
described above (2), first in the proximal compartment and then
in the distal compartment. Specifically, an alpha current I

p
AP with

maximum amplitude J
p
AP and rise time τ

p
AP is initialized in the

proximal compartment 1ms after the spike, and a current IdAP
with maximum amplitude JdAP and rise time τdAP is initialized
in the distal compartment 2ms after the spike. The complete
parameters of the model are given in Table S1.

2.2. Fitting the First Order Kinetics Model
The neuron model is fitted so as to reproduce experimental
results illustrated in Figures 1C–E of Larkum et al. (1999a) and
Figures 5C2, 6D of Larkum et al. (2001).We perform a parameter
scan in a three step procedure. In the first step, we set the spiking
threshold to the baseline value 2base, the back-propagating
currents I

p
AP and IdAP to 0 and disable the calcium current Ica.

We then fit the leak conductances and capacitance parameters
of the neuron model, with search space for capacitance from 50
to 250 pF. Each of the parameters Cd, Cp, and Cs is being varied
independently, as are the leak conductances gd

l
, g

p
l
, and gs

l
from

the range 10–50 nS. The fitting criteria are defined by Figure
1C of Larkum et al. (1999a), i.e., a step current stimulus of 1 nA
for 5ms at the soma compartment initiates an action potential,
and also by Figure 5C2 of Larkum et al. (2001) such that, with
Ica turned off, a hyperpolarizing step current of −0.2 nA lasting
50ms at the proximal compartment followed 30ms later by a beta
current with time constants 5 and 1 ms of amplitude 2.2 nA at the
distal compartment does not initiate any action potentials. Only
neuron parameter sets (leak conductances and capacitances) that
fulfill the above requirements are considered for the next step of
fitting.

In step two, Ica is enabled and we fit the parameters controlling
the calcium dynamics (τm, τh, mhalf, hhalf, Uca, and gca, with a
search space for these parameters of ±20% around those values
used in Larkum et al., 2004). The fitting procedure attempts to
reproduce (Larkum et al., 1999a) Figures 1D,E, whereby in the
first case, a step current of 1 nA is applied at the soma for 5
ms, followed 4 ms later by a beta current with time constants
5 and 1 ms and amplitude 1.1 nA at the distal compartment.
This combined stimulus causes a calcium spike and three action
potentials. In the second case, a beta current with time constants 5
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and 1 ms and amplitude 2.2 nA at the distal compartment causes
a calcium spike and two action potentials. In the following we
only consider those neuron and calcium parameters that result
in the desired response patterns for step three. In this final step,
we use the parameter set from step two to fit 2ad (both the jump
amplitude 2+ and time constant τ th) and IAP amplitudes (τAP
are set to default values of 1 ms) so as to produce the same
number of action potentials (three and two, respectively) as in
Larkum et al. (1999a) Figures 1D,E. From this step, we finally
select the parameter set with minimal values for 2ad and IAP
as parameters for the neuron model. This parameter set can be
found in Table S1.

2.3. Numerical Simulations
The numerical simulations are performed with the NEST
simulator (Gewaltig and Diesmann, 2007), with a time-step
of 0.1ms. The neuron and calcium parameters are listed in
the Table S1. In all cases, each compartment of the neuron
receives 2000 excitatory synapses and 500 inhibitory synapses,
each providing random input at a rate of 1 spikes/s.

In some experiments, coincident inputs are applied to a
fraction of the excitatory synapses in the distal compartment
according to a multiple interaction process as defined in Kuhn
et al. (2003), available in NEST as model “mip_generator.”
The coincident events are drawn from a Poissonian mother
process with a firing rate ν and copied to each synaptic input
independently with a probability p. Thus, the contribution of the
mother process to each input spike train is a Poisson process
with rate νp. In order that every pre-synaptic input has a total
firing rate of ν, we apply an independent Poissonian spike train
with a firing rate of (1–p) ν to each of the synapses receiving the
coincident input, and of firing rate ν to each synapse not receiving
coincident input.

3. Results

In this section, we first show that a three-compartment model
using first order kinetics to obtain the calcium current can
reproduce key experimental results and so is an appropriate
choice of reference model to evaluate the reduced model
developed in this study (Section 3.1). In Section 3.2 we then
investigate the response of the model to precise and imprecise
synchrony impinging on the distal compartment whilst the
neuron receives stochastic input, in order to identify in which
regime it is a reasonable approximation to replace the first order
kinetics with a fixed waveform triggered by a voltage threshold.
We develop this reduced model in Section 3.3 and analyze it in
Section 3.4, showing that this simplified calcium dynamics allows
us to obtain the voltage excursion at the soma due to a calcium
spike analytically.

3.1. First Order Kinetics Model Reproduces
Experimental Findings
We first investigate whether the three-compartment model with
calcium currents modeled using first order kinetics, as described
in Section 2.1, is capable of reproducing key experimental
phenomena. Using the three step procedure detailed in Section
2.2, we identify a set of parameters for which the neuron model is

able to reproduce qualitatively the experimental results presented
in Figures 1C–E of Larkum et al. (1999a) and Figures 5C2, 6D of
Larkum et al. (2001); the complete set of parameters is given in
Table S1.

The simulation results for these parameters are shown in
Figure 1. In Figure 1A, we reproduce Figure 1C of Larkum
et al. (1999a). A step current of 1000 pA is applied at the
somatic compartment for 5ms, triggering an action potential. In
Figure 1B (corresponding to Figure 1E of Larkum et al., 1999a), a
beta current, with amplitude 2200 pA and time constants 5.0 and
1.0ms, is applied at the distal compartment, triggering a calcium
spike which then propagates to the soma and triggers two action
potentials. If the same step current is applied again, followed
4ms later by a beta current of half the amplitude, i.e., 1100 pA
at the distal compartment (see Figure 1D of Larkum et al.,
1999a), this triggers a calcium spike at the distal compartment
which then causes two additional action potentials, as shown in
Figure 1C. If, however, 30ms before applying the beta current,
a hyper-polarizing step current of −200 pA is applied for 50ms
at the proximal compartment (Figure 5C2 of Larkum et al.,
2001), the calcium spike is still triggered but is not able to
trigger action potentials at the soma, as shown in Figure 1D.
A hyper-polarizing current of −200 pA as used in Figure 6D of
Larkum et al. (2001) is enough to prevent triggering of action
potentials by the calcium spike. Figure 1E shows the amplitude
of the distal current required to trigger a calcium spike when
applied in conjunction with the somatic step current. The time
interval refers to time of onset of the distal current relative to
the somatic current. This agrees qualitatively with Figure 2D of
Larkum et al. (1999a).

These results demonstrate that the three-compartment
neuron model with calcium currents modeled by first order
kinetics is able to reproduce key experimental results capturing
the interaction of calcium spikes with action potentials.We hence
conclude that the model is an appropriate choice of reference
model against which the reduced model can be evaluated.

3.2. Effect of Distal Calcium Currents on the
Somatic Potential
While first order kinetics is able to account for a variety
of experimental findings, as shown in the previous section,
unfortunately it is not analytically tractable. Consequently, we
can only determine the contribution of the calcium current to
the somatic membrane potential, and thus the firing behavior of
the neuron, by numerical simulation. Ideally, we would like to
replace the first order kinetics with something more amenable
to further analysis, such as a threshold triggered fixed waveform.
We therefore investigate the response of the first order kinetics
model to fluctuating input, to determine under what conditions
such a simplification would be an appropriate abstraction. In the
following we refer to a transient calcium current as a calcium
spike, and its contribution to the somatic membrane potential as
a calcium somatic potential.

3.2.1. Calcium Somatic Potential in Stochastic Input

Regimes
We first take a closer look at the dynamics of the
three-compartment neuron with first order kinetics receiving
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A B

C

E

D

FIGURE 1 | Comparison of experimental results with simulated

results using a three-compartment model with calcium currents

modeled using first order kinetics. (A–D) Top panels show the

membrane potentials for each compartment (black: soma, blue: proximal,

red: distal), while the lower panels show the corresponding DC stimulation

injected at each compartment. See main text for the stimulation details. (E)

Minimum amplitude of the beta current at the distal compartment required to

trigger a calcium spike when applied together with the step current as in (A).

noisy input with and without synchronous inputs, as shown
in Figure 2. To this end, we apply coincident inputs to the
distal dendrite as described in Section 2.3; the input settings
for each panel of Figure 2 are given in Table 1. In the weak
fluctuating regime, small coincident inputs elicit only small
calcium spikes, as shown in Figure 2A. However, with increased
probability of coincident inputs as in Figure 2B, a full calcium
spike is triggered, which is very consistent in its form across all
instances. Calcium spikes elicited not by synchronous inputs
but by medium or highly fluctuating inputs as in Figures 2C,D,
have much more variable waveforms, even if most calcium
spikes are of small amplitudes, with larger ones occurring more
frequently in Figure 2D. This is due to the fact that each time
a calcium spike is triggered in Figures 2C,D, the underlying
excitatory synaptic conductances are noisy and have very
different waveforms and amplitudes, unlike in Figures 2A,B.

As the calcium spike has been hypothesized as the mechanism
by which the layer 5 pyramidal neuron detects coincident inputs
(Larkum et al., 1999a, 2009; Spruston, 2008) it is reasonable
to assume that it is only triggered by highly coincident inputs,
resulting in burst firing. At other times, the neuron should
then fire only sparsely given the fluctuating inputs. This is

represented by the scenario depicted in Figure 2B, i.e., highly
synchronous events with low fluctuating inputs, such that
occasional large synchronous inputs trigger calcium spikes, while
random synaptic inputs do not. We therefore focus our attention
on this scenario for the rest of the manuscript.

We next stimulate the neuron model with different
magnitudes of synchronous input, without the background
fluctuations. If the synaptic current has a short time constant
compared to the membrane voltage, (Section 2.1) suggests
that the amplitude of the membrane voltage deflection mainly
depends on the temporal integral of the synaptic conductance.
We hence use this parameter to measure the strength of a
synaptic input. For small integral conductances Figure 3A

shows that the membrane potential quickly relaxes back to the
resting level and no calcium current is triggered. Increasing the
integral conductance, a full calcium spike is elicited that has a
stereotypical form that stays invariant even if the amplitude of
the stimulation is further increased. The appearance of a calcium
spike can be regarded as a bifurcation. The zoom in into the
region of this bifurcation in Figure 3B shows that a full calcium
spike is initiated once the membrane potential is above a certain
voltage.
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A B

C D

FIGURE 2 | Calcium spikes generated by stochastic input. Gray curves

are instances of calcium spikes while the black curve is the mean calcium

spike for the entire simulation. See main text for details of input. (A) Low

fluctuation regime with small synchronous inputs. (B) Low fluctuation regime

with large synchronous events. (C) Medium fluctuation inputs with no

synchronous events. (D) High fluctuation regime with no synchronous events.

TABLE 1 | Parameters of stochastic and synchronous input used in

Figures 2A–D.

A B C D

% of distal excitatory synapses

receiving correlated inputs

10.0 20.0 0.0 0.0

Copy probability (pair-wise

correlation)

0.3 0.5 – –

Excitatory synaptic weight 0.6 nS 0.6 nS 5.0 nS 12.0 nS

Inhibitory synaptic weight 1.0 nS 1.0 nS 21.2 nS 54.4 nS

Due to the relation of the peak membrane potential to
the integral conductance, this threshold-like behavior can
alternatively be observed with respect to this input parameter,
as shown in Figure 3C. However, the initiation of a calcium
spike cannot perfectly be described by a threshold that solely
depends on the instantaneous membrane voltage, as shown by
the dependence of the calcium waveform on the synaptic time
constant in Figure 3D. The reason is that the activating and
de-activating functions m(t) and h(t) that control the calcium
spike are first order differential equations following the sigmoidal
functions m∞(Vd(t)) and h∞(Vd(t)), respectively, only with a
certain time lag. As a consequence, the initiation of a calcium
spike depends to some extent on the time course of Vd(t) and
as a result there is a small parameter range in which intermediate
waveforms appear (see Figure 3B, the voltage excursion in green)
that are located between no spike and a full calcium spike.
However, given this intermediate parameter range is small, the
all or nothing threshold-like behavior prevails. The actual value
of the threshold naturally depends on the parameters of the
neuron model, such as the membrane capacitance and the leak

conductances. These results show that we can approximate the
calcium spike with a threshold triggered fixed waveform when in
the weak fluctuating regime with occasional large synchronous
inputs.

To investigate if the reduction to a threshold-triggered
waveform holds true even for full compartmental neuron models
such as those in Hay et al. (2011); Almog and Korngreen
(2014), we stimulate the neuron model in Hay et al. (2011)
with the same simulation settings as Figure 3A. The model
is modified such that the sodium channels are deactivated
so that the spike generation does not interfere with the
membrane potential waveforms at the distal dendrites. An
AMPA receptor is then introduced at the calcium hot zone
650µm from the soma and the local membrane potential and
calcium currents from both low and high voltage activated
calcium channels are recorded. Figure 4A shows the time
course of the local membrane potential when a synaptic input
is applied. The voltage waveforms look rather stereotypical
whenever a full calcium spike is triggered. The variability,
though, is slightly increased compared to the responses shown
in Figure 3A. Figure 4B shows the maximum membrane
potential reached as a function of the amplitude of the
synaptic input. Again a threshold effect is observed and the
maximum amplitudes stay relatively constant with increasing
synaptic input beyond the threshold value. This constant
amplitude is largely due to the reversal potential of excitatory
synapses. If a current is used as a stimulus instead of an
input from a conductance-based synapse, the threshold effect
is still observed, while the membrane potential amplitude
continuously, but gradually, increases beyond the threshold. The
latter increase is explained by the additional synaptic current
stimulus alone; calcium current waveforms and amplitudes
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A B

C D

FIGURE 3 | Response of distal membrane potential to calcium

currents triggered by synaptic inputs. (A) Time course of distal

membrane potential for integral of synaptic conductance time course from

180 to 220pF, illustrated from blue to green to red. (B) A zoomed-in view of

the bifurcation point in (A). (C) The maximum membrane potential reached as

a function of the integral of the synaptic conductance time course. (D) Distal

membrane potential excursions caused by minimal synaptic conductances

eliciting a calcium spike (solid curves) and the voltage excursion (dashed

curves) due to synaptic conductance excursions reduced by 1pF. The

different colors denote synaptic inputs with different synaptic time constants.

A B

C D

FIGURE 4 | Response of neuron model from Hay et al. (2011)

to synaptic inputs. (A) Time course of distal membrane potential

(650µm from soma) for amplitude of synaptic conductance from 2

(blue) to 500 nS (red), in intervals of 10 nS. (B) The maximum

membrane potential reached as a function of the amplitude of the

synaptic conductance. (C) Time course of distal calcium current for

high voltage activated calcium channels (650µm from soma). Same

color code as in (A). (D) The maximum calcium current amplitude

reached as a function of the amplitude of the synaptic

conductance.

are very similar for the increasing current stimuli after the
threshold is reached. The corresponding figures for calcium
currents and maximum calcium current amplitudes are shown
in Figures 4C,D.

3.2.2. Effect of Imprecise Synchrony on Calcium

Somatic Potential
In the previous section we investigated the response of the
neuron to precisely synchronous inputs. In particular, we
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A B

C D

E F

FIGURE 5 | Calcium spikes elicited by imprecise synchrony. The delays

of the synchronous inputs are drawn from a Gaussian distribution with mean

µ = 200ms and standard deviation σ varying from 1 (light gray) to 10 ms

(black). (A) Histogram of maximum amplitude of calcium distal potential for

σ = 1ms. (B) Histogram of maximum amplitude of calcium distal potential for

σ = 8ms. (C) Time course of the mean difference in distal membrane

potential following a synchronous input for the three-compartment neuron

model with and without calcium currents enabled. The average is taken over

all calcium events with difference in membrane potentials exceeding a

threshold of 0.001mV. (D) The difference in distal membrane potentials is

categorized according to its maximum amplitude being larger (solid curves) or

smaller (dashed curves) than 30mV. The mean time course is then computed

within each category separately. (E) Time course of the corresponding mean

excitatory conductance, analytical results (Equation 4, solid curves) and

simulation results (black circles). (F) Proportion of synchronous events

eliciting calcium currents as a function of the standard deviation of the

Gaussian distribution for all amplitudes of calcium distal potential (black), for

amplitudes ≥ 30mV (red) and for amplitudes < 30mV (blue).

are interested in synchronous inputs with low background
fluctuation as in Figure 2B. Using the same settings as in
Figure 2B, we now examine whether the approximation of a
fixed waveform still holds in a biologically more plausible setting
of imprecise synchrony, which would reduce the efficacy of
the inputs in eliciting a calcium spike. To this end, we draw
the synaptic delays of the inputs mediating the synchronous
stimulus to the distal compartment from a Gaussian distribution,
truncated at zero.

The histogram of maximum amplitudes of calcium distal
potential is shown for σ = 1ms in Figure 5A, and for
σ = 8ms in Figure 5B, whereby both small calcium currents
and full calcium spikes are triggered due to the jittered
synchronous inputs. The bimodal distribution is a consequence
of the threshold effect of the calcium dynamics, leading to
an all-or-nothing behavior. We hence define a calcium spike
as one that triggers a distal voltage excursion such that
Vd
Ca − Vd ≥ 30mV.

Averaging over all calcium events, Figure 5C demonstrates
that the mean distal response to a synchronous stimulus is
both delayed and weakened as the standard deviation of the
delay distribution increases. The difference in distal membrane
potentials between an active and passive neuron model during
the time course of calcium spikes are first obtained from the
simulation. The time courses are then averaged to compute
the mean calcium distal potential. In Figure 5D, the difference
in distal membrane potentials are first classified according to
their maximum amplitudes, those with maximum amplitudes <

30mV and those withmaximum amplitudes≥ 30mV. Themean
distal membrane potential is then computed within each class:
solid curves for ≥ 30mV and dashed curves for < 30mV. For
σ ≤ 5ms, there are no differences in distal membrane potentials
with maximum amplitudes < 30mV.

The reduction of the mean calcium potential shown in
Figure 5C is hence mostly a consequence of each dispersed
synchronous synaptic conductance triggering a calcium spike
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with a lower probability. Given that when a full calcium
spike is triggered, its amplitude is mainly determined by the
intrinsic parameters of the first order kinetics and as shown
in Figures 5A,B,D, it is rather insensitive to the dispersion
of the incoming pulses. The corresponding mean excitatory
conductance for the case of all calcium spikes is shown in
Figure 5E, which agrees with its analytical form

〈gde (t)〉 =
[

g ∗N (µ, σ 2)
]

(t), (4)

obtained by convolving the original synaptic conductance
waveform with the Gaussian distribution. As the breadth of
the delay distribution increases, the conductances are more
spread out but their integrals remain the same. As the calcium
spike is a threshold triggered event, synaptic inputs having the
same integral but spread over a longer time period will be
less effective in triggering it. Figure 5F shows the frequency of
calcium spikes given the synchronous inputs, whereby all calcium
spikes are considered (black), calcium spikes resulting in distal
potential with maximum amplitude ≥ 30mV (red) and calcium
spikes resulting in distal potential with maximum amplitude <

30mV. Therefore, with increased jittering, full calcium spikes
are triggered with lower frequency, which are also reflected in
the mean distal potential (Figures 5C,D). Hence, with imprecise
synchrony, the calcium spike can still be approximated by a
threshold triggered fixed waveform (as suggested in Figure 5D),
although the waveform will have to be adjusted accordingly.
How the threshold and waveform may be obtained for the fixed
waveform calcium spike is discussed in the following section.

3.3. A Reduced Model of Calcium Spike
Dynamics Using a Fixed Waveform with
Threshold
In the previous sections, we have demonstrated that the calcium
spike modeled using first order kinetics can be approximated
with a threshold-triggered fixed waveform in the regime of weak
fluctuating input with occasional large synchronous events. The
waveform is obtained empirically from the mean calcium spike
of the neuron model with first order kinetics, which depends on
τ e and the background fluctuations, as illustrated in Figure 2B.
The neuron model with first order calcium kinetics is embedded
in background fluctuations with occasional larger synchronous
inputs, with parameters given in Table 1. The calcium current
waveform ICa is then obtained from themean of calcium currents
triggered by the large synchronous inputs. The waveform needs
to be obtained empirically as it is very sensitive to different τ e, as
shown in Figure 3D and an analytical treatment seems difficult.
What remains to be determined is the value of the effective
threshold at which a calcium current is triggered.

3.3.1. Determining the Calcium Spike Threshold

Using Voltage Slope
To determine the calcium threshold, we systematically vary
the time constant of the post-synaptic response (we denote by
0 ms the δ impulse, and by 0.2–5.0 ms alpha conductances
with the respective time constant) and determine the minimum
conductance required to trigger a calcium spike in the first

order kinetics model. As the maximum amplitude of a full
calcium spike is much higher than that of sub-threshold calcium
currents and is effectively independent of input amplitudes
and time constants (see Figure 3C), we determine a calcium
spike to have been triggered if the calcium current Ica exceeds
1100 pA. Having established the minimum conductance required
to trigger a calcium spike for each synaptic time constant,
we then determine the corresponding membrane potential
threshold to be that at which

∣
∣V̇

∣
∣ is minimal, i.e., the flattest

part of the membrane potential trajectory before the calcium
spike excursion (Figures 6A,B). The results of this analysis are
illustrated in Figure 6C.

We next investigate analytically the emergence of the
threshold-like behavior to understand its origin and to find the
parameters that determine the threshold voltage. A threshold-
like behavior becomes apparent from Figures 3A,B: two EPSP
trajectories that lead to either a full calcium spike or not,
pass through the same narrow range of voltages with close
to vanishing slope V̇ ≃ 0. If we can analytically obtain the
voltage value at which this bifurcation appears, we can compare
it to simulation results to check if our analysis captures the
essential mechanism underlying this threshold-like behavior. It
is sufficient to consider the special case of a δ-shaped current,
because the weak dependence of the threshold on the synaptic
time constant in Figure 6C suggests that the mechanism can
be understood without taking synaptic filtering into account.
A δ input causes the membrane potential to instantaneously
jump from rest to an elevated level. To determine the threshold,
we are hence looking for the voltage levels in all three
compartments at which their rate of change vanishes, i.e. where
V̇d = V̇p = V̇s = 0. Hence from (2.1) follows






−gcamh
(

Uca − Vd
)

0
0




 =





−gd
l
− gpd gpd 0

gpd −g
p
l
− gpd − gsp gsp

0 gsp −gs
l
− gsp









Vd

Vp

Vs





+





gd
l
Ud
l
− gpdU

p
l
+ gpdU

d
l

g
p
l
U

p
l
− gpdU

d
l
+ gpdU

p
l
− gspU

s
l
+ gspU

p
l

gs
l
Us
l
− gspU

p
l
+ gspU

s
l



 .

Solving for the steady-state voltage, we get

(M)−1





−gcamhUca − gd
l
Ud
l
+ gpdU

p
l
− gpdU

d
l

−g
p
l
U

p
l
+ gpdU

d
l
− gpdU

p
l
+ gspU

s
l
− gspU

p
l

−gs
l
Us
l
+ gspU

p
l
− gspU

s
l



 =





Vd

Vp

Vs





(5)

wherebyM =





−gd
l
− gpd − gcamh gpd 0

gpd −g
p
l
− gpd − gsp gsp

0 gsp −gs
l
− gsp



.

For a typical set of parameters, τm ≪ τh, and τm is close
to 0. Consequently, just after the input current we can take an
adiabatic approach form and assumem = m∞ and h ≃ 1.
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A B

C D

FIGURE 6 | Determining the calcium spike threshold using voltage

slope. (A) Distal membrane potential excursion due to a calcium spike

triggered by a δ pulse synaptic input. Black dashed line denotes the

determined threshold value (see text). (B) As in (A), but for an alpha

synaptic conductance with a time constant τe = 5ms. (C) Membrane

potential V0 at which the calcium potential slope
∣
∣V̇

∣
∣ is minimal as a

function of τe. (D) Threshold for δ input. The intersection of Vd (red)

against m ∈ [0,1] (numerically obtained from Equation 5) and the

inverse function of m∞ (Vd ) ∈ [0,1] (blue) against m (obtained by

numerically inverting m∞ (Vd ), derived from Equation 3) denotes the

theoretical threshold for calcium spikes triggered by δ pulse synaptic

inputs.

We use this steady state fixed point to approximate the
calcium spike threshold at the distal compartment.We determine
the threshold numerically by plotting Vd against m and the
inverse function of m∞ against m, as shown in Figure 6D. The
steady state is obtained from the point of intersection, which
is −23.1mV, while from simulation, the threshold for δ input
is −22.5mV (Figure 6C), which is in quite good agreement,
despite the approximations made.

3.3.2. Determining the Calcium Spike Threshold using

EPSP Amplitude
An alternative definition of the voltage threshold is themaximum
membrane potential reached by the EPSP for the smallest
synaptic input that triggers a full calcium spike (see Figure 7A),
without considering the contribution of the calcium spike to
the membrane potential. This can be obtained by giving the
same stimulus to the neuron models, one with calcium dynamics
turned on and another off. The thresholds obtained from the first
definition for the different τe fall within a relatively small range of
−21.8 to −22.5 mV (see Figure 6C). As the distal compartment
represents the main bifurcation point on the apical dendrite and
the distal tuft dendrites, the membrane potential at this location
may be highly depolarized and yet have little impact on the soma.
In our neuron model, this small impact is manifested in the weak
conductances between compartments. In our kinetics calcium
model the half activation voltages are mhalf = −21mV and
hhalf = −24mV, values that are close to the thresholds obtained
above.

The threshold obtained for the second definition ranges
from 8 to −26 mV, with the biggest discrepancy between the
two definitions for τ e ≤ 0.5ms. This can be understood by

considering that for small τ e, synaptic conductances have to be
large so as to allow the first order kinetics of m to reach values
close to 1. This high conductance is reflected in the EPSP and
hence also in themaximummembrane potential. However, this is
not reflected in the first definition of a threshold, where

∣
∣V̇

∣
∣ ≈ 0.

As it is not a priori clear which threshold definition is
more appropriate when the neuron model is bombarded with
low background fluctuations and occasional large synchronous
events, we compared the values derived from the two threshold
definitions to values obtained from simulation. To this end, we
first determine the firing rate of the neuronmodel with first order
kinetics as a function of the pairwise correlation of synchronous
input to the distal compartment, as described in Section 2.3;
the parameters of the input spike trains are given in Table 2.
We then systematically vary the threshold of the fixed waveform
model and likewise determine the firing rate curves. An example
of this for τe = 0.4ms is shown in Figure 7B. The empirical
threshold is obtained by finding the best fit of the firing rate curve
of the fixed waveform model to the first order kinetics model,
as measured by the mean square error (MSE) between the two
curves.

Figure 7C shows the values of the threshold obtained from
simulation as a function of the time constant of the excitatory

synaptic input compared with the values obtained from the
two threshold definitions discussed above. For each choice of
time constant, the excitatory and inhibitory synaptic weights
were adjusted to result in mean somatic membrane potential
of −60mV, as detailed in Table 3. These results show that the
maximum EPSP amplitude provides a better approximation of
empirically obtained calcium threshold for small τ e, but for larger
values the two approximations give very similar results. This can
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A

B

C

FIGURE 7 | Determining the calcium spike threshold using EPSP

amplitude. (A) Maximum amplitude of the EPSP (without contribution from

calcium spikes) evoked by the minimal conductance required to trigger a full

calcium spike as a function of τe. (B) Firing rates for the neuron with first order

kinetics (solid black curve) and with fixed waveform and different calcium

thresholds (dashed curves, from blue to green, −20 to −10mV), against

different amount of synchronous inputs with τe = 0.4ms. (C) Comparison of

calcium spike threshold obtained by different approaches: results from

simulation with background noise (black); derived from the minimum of the

calcium potential slope (blue); derived from the maximum EPSP amplitude of

the minimal spike triggering conductance (red).

be understood from the δ input analysis. Firstly, the dynamics of
m has to be taken into account to obtain the effective threshold,
which in the analysis of Section 3.3.1 is assumed to be infinitely
fast. Secondly, the EPSP amplitude that just triggers a calcium
spike, implicitly contains the temporal dynamics of m to some
extent, as the membrane potential first relaxes before the calcium
spike sets in [namely whilem(t) approachesm∞(Vd) on the time
scale τm]. This effect is best observed in the case of small τ e.

A similar method of comparison using the number of
calcium spikes triggered instead of the firing rate yielded the

TABLE 2 | Parameters of stochastic and synchronous input used in

Figures 7B,C.

# excitatory synapses per compartment 2000

# inhibitory synapses per compartment 500

Rate of Poisson input per synapse (spikes/s) 1.0

Rate of mother process (spikes/s) 1.0

% of distal excitatory synapses receiving inputs from mother process 30.0

TABLE 3 | Synaptic configurations leading to a mean somatic membrane

potential of −60mV in Figure 7C.

Time constant of excitatory synapses τe (ms) 0.2 0.4 1.0 2.0

Excitatory synaptic weight (nS) 2.9 1.5 0.6 0.4

Inhibitory synaptic weight (nS) 1.0 1.0 1.0 2.2

same results (data not shown). This can also be intuitively
understood by considering that in the low fluctuating regime
with large synchronous inputs, calcium spikes are only triggered
by sufficiently large synchronous events. This means that
synchronous inputs must result in an EPSP of a certain
minimum amplitude for a calcium spike to be triggered. In
a low fluctuating regime, this minimum amplitude is close to
the EPSP amplitude of the minimal calcium spike triggering
conductance, i.e., the second definition of the threshold. We
therefore conclude that the definition based on the maximum
EPSP amplitude is more appropriate for our activity regime of
interest.

Next, we obtain a calcium spike threshold of −25mV (as
defined by maximum EPSP amplitude following a beta-shaped
current stimulus to the distal compartment with time constants
of 5.0 and 1.0ms) and the corresponding waveform of the
calcium current. We use the threshold and the waveform to set
up the simplified calcium dynamics, thus effectively removing
the eight dynamic variables required for the first order kinetics
to obtain a reduced three-compartment neuron model. All
other neuron parameters remain unchanged. We then assess
the ability of the reduced model to reproduce key experimental
findings, using the same stimuli and protocols described in
3.1 and Figure 1, corresponding to Figures 1C–E of Larkum
et al. (1999a) and Figures 5C2, 6D of Larkum et al. (2001).
Figure 8 demonstrates that despite the substantial reduction
in model complexity, the threshold triggered fixed waveform
neuron model reproduces all the experimental results just as
accurately as the first order kinetics model, with no further
parameter tuning required.

3.4. Contribution of the Calcium Potential to the
Somatic Potential
In the previous sections, we showed how to arrive at the threshold
and waveform in the simplified model. In this section we first use
the simplified model to derive the analytical form of the somatic
membrane potential excursion due to a calcium spike treating
the calcium current as a small perturbation to linear order. As
it turns out that this result only agrees well with simulation when
background fluctuations are small, in Section 3.4.2 and Section
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A B

C D

FIGURE 8 | Simulation results using a threshold and fixed

waveform for the calcium spike, simulation settings as in

Figure 1. (A–D) Top panels show the membrane potentials for each

compartment (black: soma, blue: proximal, red: distal), while the lower

panels show the corresponding DC stimulation injected at each

compartment.

3.4.3 we derive two alternative forms which also agree well in the
case of large background fluctuations.

3.4.1. Approximating the Calcium Potential Using

First Order Approximation
Using the empirical values of the mean calcium spike obtained
earlier from Figure 2B as the fixed waveform for the simplified
calcium dynamics, the calcium potential in the fluctuation regime
can be linearly approximated (Papoulis, 1991; Kuhn et al., 2004).
The dynamics of the neuron model in the steady state can
be expressed using mean conductances and mean potential.
Rearranging (1) in the steady state and for I

p
AP = IdAP = 0 and

without the contribution due to the calcium spike Ica = 0 we get
with the definition of the 3 by 3 matrix

M =





−(gd
l
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d
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p
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the time-averaged equation
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from which we determine the stationary voltage 〈Vx〉. If
the system is perturbed with a calcium spike at the distal
compartment, we can write the perturbed solution as a small
deflection ǫ from the stationary state 〈V〉, such that with





Vd (t)
Vp (t)
Vs (t)



 =





〈Vd〉 + ǫd (t)
〈Vp〉 + ǫp (t)
〈Vs〉 + ǫs (t)



 (7)

we obtain a set of linear differential equations for the deviations
ǫ. The contribution of the calcium spike to the free membrane
potential of each compartment can be expressed as
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
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(8)

=

∫ t

0





φ1

φ2

φ3



 (t − s) Ica (s) /Cd ds,

whereby Ica refers to the calcium fixed waveform and the
functions φ1,...,3 can in principle be obtained as the matrix
exponential in Equation (8).

However, this first order approximation works well for small
fluctuating inputs and underestimates the calcium potential
under large fluctuating inputs, as shown in Figure 9A. The
mean calcium potential is obtained from the mean difference
in somatic membrane potential between two neurons receiving
exactly the same synaptic inputs, one with and one without
calcium currents. We investigate the dependence of this effect on
the strength of the excitatory weights in Figure 9B. In order to
have comparable results, we analytically derive the corresponding
inhibitory weights so as to maintain a mean free membrane
potential of −60mV at the soma. The discrepancy between the
theoretical prediction and the simulated result becomes more
pronounced at larger synaptic weights, due to an increase in
the correlation of the membrane potential and conductances.
The deviation is even greater if the calcium spike is elicited at
thresholds above mean distal membrane potential, as there is a
jump at the onset of the calcium potential (see Figure 9C).

The deviation of the theoretical approximation from
simulated results are hardly affected by the amplitude of the
calcium spike (see Figure 9D), and reversal potential (results
not shown). This can be understood by considering that the
differential equation in this approximation (Equation 8) is linear,
so the contribution ǫ to the membrane potential due to the
calcium current is additive and fulfills

Cǫ̇ (t) = −glǫ (t) − ge (t) ǫ (t) − gi (t) ǫ (t) + Ica (t) . (9)

From (9), we observe that synaptic conductances act as
multiplicative noise on the voltage contribution of a calcium
spike. The covariance between membrane potential and
excitatory conductance increases with synaptic weight, as shown
in Figure 9E. The average effect of—for example—the excitatory
driving force is 〈ge(t)V(t)〉 = 〈ge(t)〉〈V(t)〉 + Cov(ge,V),
hence it contains the term from first order approximation,
〈V(t)〉〈ge(t)〉, and in addition the covariance between the voltage
and the conductance. Neglecting the covariance explains why
the first order approximation begins to deviate from simulation
results as the fluctuating inputs get larger. The magnitude
of the effect of the excitatory conductance depends on the
amplitude of fluctuations in the membrane potential and
excitatory conductances and on their co-fluctuations as shown
by Cov(ge,V) = Corr(ge,V) σ (ge)σ (V), where Corr is Pearson’s
correlation coefficient. Hence, while the correlation coefficient
between membrane potential and conductances decreases with
synaptic weights (see Figure 9F), the larger fluctuations in
membrane potential and conductances more than make up for

it. The decrease in correlation coefficient can be explained by
the fact that with larger conductances, the membrane potential
approaches the reversal potential Ue, effectively reducing the
driving force and therefore the contribution of excitatory
conductances to the membrane potential. In the following,
we derive alternative forms for the excursion of the somatic
membrane potential following a calcium spike to improve the fit
to the simulated results for large fluctuating inputs.

3.4.2. Accounting for the Deviation Semi-analytically
Accounting for the correlations between membrane potential
and fluctuating synaptic inputs, we arrive at a better theoretical
approximation. To illustrate the main effect, it is sufficient to
consider a single compartment and a δ-shaped calcium current
Ica = Aδ (t), where A is the pre-factor determining the
amplitude. Integrating (9) from t = 0 to t = ∞, we get

∫ ∞

0
ǫ̇ (t) dt

︸ ︷︷ ︸

ǫ(∞)−ǫ(0)= 0

= −
gl

C

∫ ∞

0
ǫ (t) dt

−
1

C

∫ ∞

0

(

ge (t) + gi (t)
)

ǫ (t) dt + A
C , (10)

so with gei(t) = ge(t)+ gi(t)

∞∫

0

gei (t) ǫ (t) dt = A− gl

∞∫

0

ǫ (t) dt

we get an equation relating the effective driving force due to
the conductance to the integral of the post-synaptic potential.
From observation in simulation, the calcium potential decays
exponentially. We therefore assume that it follows an effective
differential equation of the form

CV̇eff = −glVeff − geffVeff + Ica,

where the effective conductance geff is a constant to be
determined. Hence, integrating the latter equation as above,
we get

∞∫

0

geffVeff (t) dt = A− gl

∞∫

0

Veff (t) dt,

which, by re-arranging, yields an expression for the effective leak

∞∫

0

Veff (t) dt =
A

geff + gl
.

By assuming that the driving force can be expressed by the
effective conductance geff

∫ ∞

0 Veff (t) dt =
∫ ∞

0 gei (t) ǫ (t) dt,

geff =
A

∫ ∞

0 ǫ (t) dt
− gl. (11)
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A B

C D

E F

FIGURE 9 | First order approximation of calcium somatic potential.

(A) The mean calcium somatic potential evoked by randomly triggered

calcium spikes obtained from simulation (solid: red, black) and first order

approximation (dashed: cyan, magenta) for synaptic weight 0.6,12 nS,

respectively. (B) Ratio of the maximum amplitude of first order approximation

to that of simulated calcium somatic potential as a function of excitatory

synaptic weights; for calcium spikes triggered randomly (black), using a

threshold of −30mV (blue), and using a threshold of −21mV (green). (C)

Difference in calcium somatic potential between simulation results and first

order approximation; colors as in (B). (D) Ratio of the maximum amplitude of

first order approximation to that of simulated calcium somatic potential as a

function of multiplicative factor of calcium spike waveform; colors as in (B).

(E) Covariance of distal membrane potential Vd and excitatory conductances

gde as a function of excitatory synaptic weights. (F) Correlation coefficients of

distal membrane potential Vd and excitatory conductances gde as a function

of excitatory synaptic weights.

The calculation above shows that the effective leak of the
neuron model in the fluctuation regime (where conductances
and membrane potential are correlated) can be corrected by
considering the integral of the calcium potential. This correction
is semi-analytic as we need to determine the calcium potential
through simulation to obtain a better theoretical approximation.
For our three compartment model we obtain from Equation (1)
the coupled set of first order differential equations





Cdǫ̇d (t)
Cpǫ̇p (t)
Csǫ̇s (t)



 = −
(

M0 +M1(t)
)





ǫd (t)
ǫp (t)
ǫs (t)



 +





Aδ(t)
0
0



 , (12)

where we defined the time-independent matrix

M0 =





gd
l
+ gpd −gpd 0

−gpd g
p
l
+ gpd + gsp −gsp

0 −gsp gs
l
+ gsp





and the time dependent matrix

M1(t) =





gde (t)+ gdi (t) 0 0

0 g
p
e (t)+ g

p
i (t) 0

0 0 gse(t)+ gsi (t)



 .

Integrating both sides of Equation (12) from t = 0 to t = ∞ as
before we obtain

∞∫

0

M1 (t)





ǫd (t)
ǫp (t)
ǫs (t)



 dt =





A
0
0



 −M0

∞∫

0





ǫd (t)
ǫp (t)
ǫs (t)



 dt.

Replacing the left hand side by an effective term,

∫ ∞

0 M1 (t)





ǫd (t)
ǫp (t)
ǫs (t)



 dt ≃
∫ ∞

0






gd
eff

ǫd (t)

g
p
eff

ǫp (t)

gs
eff

ǫs (t)




 dt, where we

assume that the effective conductance mainly depends on the
voltage of the corresponding compartment, we get the effective
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conductances for a three-compartment neuron model with a
calcium spike of any fixed waveform as





gd
eff

g
p
eff

gs
eff



 =







(
∫ ∞

0 ǫd (t) dt
)−1

0 0

0
(∫ ∞

0 ǫp (t) dt
)−1

0

0 0
(∫ ∞

0 ǫs (t) dt
)−1















A

0

0



 −M0

∞∫

0





ǫd (t)

ǫp (t)

ǫs (t)



 dt



 ,

where A refers to the integral of the calcium current time course.
The values for geff obtained above can then be used in place of
the respective 〈ge〉 + 〈gi〉 in (8) to obtain the corrected calcium
potential approximation. If we assume that the conductances
in Equation (10) can be sufficiently well-approximated by their
mean, then the above consideration yields

geff = 〈ge〉 + 〈gi〉,

which is the same as our first order approximation presented
above.

3.4.3. Accounting for the Deviation Analytically
The semi-analytical approach requires the integral of the calcium
potential for approximating the potential waveform, which must
be obtained empirically. We now develop a purely analytical
approach capable of approximating the waveform of the calcium
potential. From Richardson and Gerstner (2005), the mean
membrane potential for a single compartment neuron model in
the fluctuation regime can be corrected as

〈V〉 = E0 −
σ 2
e

G2
0

(

〈ge〉 − E0
) τ e

τ e + τ 0
−

σ 2
i

G2
0

(

〈gi〉 − E0
) τ i

τ i + τ 0
,

where G0 = gl+〈ge〉+ 〈gi〉, τ 0 =
C
G0
, τ e and τ i are the excitatory

and inhibitory synaptic time constants. E0 =
glUl +〈ge〉Ue +〈gi〉Ui

G0
is

themeanmembrane potential from the first order approximation
and σ 2

e and σ 2
i are the variances of the excitatory and inhibitory

conductances. Rearranging, we obtain

G0〈V〉 = glUl + 〈ge〉Ue + 〈gi〉Ui −

σ 2
e

G0

(

〈ge〉 − E0
) τ e

τ e + τ 0
−

σ 2
i

G0

(

〈gi〉 − E0
) τ i

τ i + τ 0
.

(13)

As we are interested in a small deviation of the membrane
potential from the value E0 resulting from static conductances,
〈V〉 = E0+δV , we can let E0≃ 〈V〉. Substituting and rearranging
(13), we get

0 ≃ gl (Ul − 〈V〉) +

(

〈ge〉 −
σ 2
e

G0

τ e

τ e + τ 0

)

(Ue − 〈V〉)

+

(

〈gi〉 −
σ 2
i

G0

τ i

τ i + τ 0

)

(Ui − 〈V〉)

Hence the effective conductance follows as the factors
multiplying the mean membrane potential

geff =

(

〈ge〉 −
σ 2
e

G0

τ e

τ e + τ 0

)

+

(

〈gi〉 −
σ 2
i

G0

τ i

τ i + τ 0

)

.

The analytically obtained geff for a single compartment can be
applied analogously to each of the three compartments in our
neuron model so as to obtain gx

eff
for x ∈ {s, p, d}.

The semi-analytical and analytical results are shown in
Figure 10. In the case of a randomly triggered calcium spike,
both approaches give the same approximation (see Figure 10A),
whereas in the case of a threshold-triggered calcium spike, the
two approaches give slightly different results, but still perform
better than first order approximation (see Figure 10B). The semi-
analytical approach slightly over-estimates, while the analytical
result is very close to the simulation result after the initial jump
that is exhibited by the simulated results (Figure 10B). If we
consider the ratio of peak amplitudes (as shown in Figure 10C),
this initial jump in the onset of the calcium potential causes both
approaches to slightly underestimate the simulation results. The
initial jump increases for higher calcium thresholds and synaptic
weights, exacerbating this effect. As before, the deviations
of the theoretical approximations from simulated results are
hardly affected by the amplitude of the calcium spike (see
figure 10D).

The deviation of the theoretical predictions from the
simulation results with threshold-triggered calcium spikes can
be explained by the fact that when a calcium spike is threshold-
triggered, the mean excitatory and inhibitory conductances
deviate from their stationary values as shown in Figure 11: the
excitatory conductances are higher than the stationary value
indicated by the convergence of the curves, the inhibitory
conductance is lower. Both conductances relax back to their
respective stationary means on the time scales of their
respective synaptic time constants. With a lower net mean
conductance 〈ge (t)〉 + 〈gi (t)〉 at the onset of the calcium
spike, the initial calcium potential from simulation is larger
than the analytical results (Figure 9C). This is however not the
case for randomly triggered calcium spikes, where the mean
synaptic conductances stay the same throughout (results not
shown).

The semi-analytical result makes use of the integral of the
calcium potential to obtain an effective leak conductance geff,
which is a time average considering the whole time course
of the calcium potential. Hence, the simulated and semi-
analytically obtained calcium potential have the same integral,
by construction. Consequently, the jump at the onset of the
calcium potential is averaged over the entire time course of the
calcium potential, resulting in an overall slight over-estimation
of the simulation results as shown in (Figure 10B). Thus, the
analytical approximation agrees with simulation other than
during the onset of the calcium potential, while the semi-
analytical approximation generally over-estimates the simulated
calcium potential.
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A B

C D

FIGURE 10 | Comparison of different approaches to account for

multiplicative synaptic noise. (A) The mean calcium somatic potential

evoked by randomly triggered calcium spikes obtained from simulation (red

curve) and derived from first order approximation (yellow), semi-analytical

(cyan), analytical (magenta) approaches. (B) As in (A) for calcium spike

triggered at a threshold of −21mV. (C) Ratio of maximum amplitude of

calcium potential for analytical (solid curves) and semi-analytical (dashed

curves) approximations to the simulated results as a function of the excitatory

synaptic weight, for randomly activated calcium spikes (black) and for

voltage-triggered calcium spikes with a threshold of −30mV (blue)

and −21mV (green). (D) As in (C) but as a function of the multiplicative factor

of calcium spike waveform.

FIGURE 11 | Mean excitatory (solid curves) and inhibitory (dashed

curves) conductances during an average calcium spike triggered by

threshold of −21mV: distal (black), proximal (blue), somatic (green).

4. Discussion

In this study we have shown that a three compartment neuron
model with calcium dynamics modeled using first order kinetics
is able to reproduce a variety of experimental findings gathered
using in-vitro protocols (Larkum et al., 1999a, 2001). In general,
the generated calcium spike has neither a fixed waveform nor
a threshold (see Figure 2). However, we have shown that when
the calcium spike is triggered by large synchronous inputs in
the regime of low background fluctuations, it does so in a
threshold-like manner, and has a stereotypical waveform (see
Figure 3) that depends on the given synaptic time constant

τ e. Using analysis and simulation, we extracted the parameters
of the threshold and waveform from the first order kinetics
model. The threshold depends on the time constant τm of
the calcium activating function as well as the membrane time
constant. It turns out that the threshold that agrees best with
simulation is empirically obtained from the maximum EPSP
amplitude (without contribution from calcium spikes) evoked
by the minimal conductance required to trigger a full calcium
spike (see Figure 7). With both the threshold and waveform
known, the calcium spike can be modeled with the analytically
tractable threshold-triggered fixed waveform. We use threshold
and waveform to define a threshold-triggered fixed waveform
model of the calcium spike. The number of calcium parameters
are hereby considerably reduced, while the remaining neuron
parameters remain unchanged. We have demonstrated that this
simplified model is able to reproduce the experimental results
mentioned above (see Figure 8) as well as themodel based on first
order kinetics. This enabled us to obtain the mean contribution
of a calcium spike to the somatic membrane potential, both
semi-analytically and analytically. The analytical expressions
improve on first order approximation by taking into account
the covariance of synaptic conductances andmembrane potential
(see Figure 10).

The reduction of the first order kinetics to a threshold-
triggered additive current is of a similar computational
complexity as a common integrate-and-fire type model neuron.
A difference is, though, that the model needs to store the
empirically obtained waveform of the calcium current generated
by the first-order kinetics. In terms of performance, this
reduction is a considerable gain, which is evident by comparing

Frontiers in Computational Neuroscience | www.frontiersin.org 16 July 2015 | Volume 9 | Article 91

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Chua et al. Modeling calcium spike

the run times for simulating the three different variants
of the model whilst applying a step current of 100 pA to
the soma for 100 s: (i) The model by Hay et al. (2011)
simulated with the NEURON simulator (Carnevale and Hines,
2006) takes 6.15 s to run the simulation. (ii) The three
compartment model with first-order kinetics implemented in
NEST takes 2.15 s. The reduction of the first order kinetics to
a threshold-triggered waveform reduces the simulation time to
1.04 s.

In the three compartment neuron model, the calcium spike
is modeled at the distal compartment. As we are taking a
reductionist approach in modeling the interacting dynamics of
the calcium spike and the action potential generation with the
aim to reproduce experimental results of action potentials and
calcium spikes, we do not concern ourselves with microscopic
properties of layer 5 pyramidal neurons, such as the distribution
of calcium ion channels. These important characterizations
remain open for future research.

The experimental results that we aim to reproduce in our
model can be summarized as follows:

1. A large synaptic current at the distal compartment triggers
a calcium spike that in turn triggers a burst of action
potentials.

2. The distal current required for eliciting a calcium
spike is considerably reduced if an action potential
co-occurs.

3. A calcium spike does not result in a burst of action
potentials if a hyper-polarizing current arrives at the proximal
compartment.

While these by no means capture all experimental results of the
calcium spike in the layer 5 pyramidal neuron [for instance, one
very important result is that of critical frequency (Larkum et al.,
1999b)], they are in our opinion sufficient to illustrate the role
calcium spikes play in coincidence detection (both between an
action potential at the soma and input at the distal compartment
and multiple inputs at the distal compartments). While the two-
compartment model by Larkum et al. (2004) reproduces some of
these experimental results equally well, by construction, however,
it cannot explain how a hyper-polarizing current at the proximal
compartment prevents the calcium spike from triggering bursts
at the soma. This is a crucial feature when investigating the role
of calcium spikes e.g., in a model of a cortical column where
synaptic inputs arrive at specific parts of the pyramidal neuron
(Spruston, 2008).

In our analytical treatment to obtain the mean calcium
somatic potential, a calcium threshold that deviates from the
mean distal membrane potential results in an initial jump in the
calcium somatic potential (see Figure 10B). This is intuitively
explained by the conductances deviating from mean when the
membrane potential is at the calcium threshold. Our analytical
treatment hence accounts for the covariance of membrane
potential and conductances in the mean but not whenmembrane
potential and conductances are far from their respective mean
values, which occurs at the calcium threshold. We have also not
further extended our work to examine how the calcium somatic
potential contributes to action potential generation. Such an

attempt will have to take into account the adaptive threshold for
action potentials.

Equipped with the presented reduced neuron model, in future
work we may proceed to address earlier experimental findings
in which a calcium spike generates burst of action potentials
when triggered by coincident somatic and distal inputs (Larkum
et al., 1999a) and the hypothesis that calcium spikes in-vivo
may be involved in the detection of coincident inputs across
compartments (Spruston, 2008). By introducing synchronous
inputs at one or more of the compartments and systematically
varying their magnitudes, while the neuron is embedded in
background fluctuations, we can investigate the conditions under
which calcium spikes are triggered and how they influence
spiking activities.

Further work involving a network of these neurons can then
be pursued to better understand its emergent properties. For
example, different neurons are known to target different parts
of the layer 5 pyramidal neuron. From Figure 1D, we know
that a hyperpolarizing input at the proximal compartment will
prevent a calcium spike from triggering action potential bursts.
Hence, future work can investigate in network simulations how
interneurons can be recruited by layer 5 pyramidal neurons to
suppress other pyramidal neurons from bursting.

In Larkum et al. (2009), a 2 layered neuron model is proposed,
where NMDA spikes from two or more compartments need to
co-occur to trigger a calcium spike. Hence, calcium spikes may
also be triggered by slow, local NMDA spikes. If the waveforms of
NMDA-triggered calcium spikes are uniform, a similar analysis
as presented here applies. To facilitate work in this direction, a
neuron model with more compartments arranged in a 2 layered
structure will have to be developed. The amount of synchronous
inputs required to trigger an NMDA spike is also likely to be
less than that required of calcium spikes. This would effectively
make the neuron model more sensitive to synchronous inputs.
The three compartment neuron model therefore helps to lay the
groundwork necessary for future work involving other forms of
dendritic spikes.

Our approach of introducing dendritic spikes in iso-potential
compartment neuron models uses a relatively small number
of variables (and thus can be simulated with moderate effort)
and is not limited to single-cell studies but can be scaled up
to understand the behavior of large-scale network models of
neurons with dendritic spikes. This could lead to new insights,
as typically studies of the interaction of structure and activity in
large-scale neuronal networks have been limited to point neuron
models (e.g., Kunkel et al., 2011; Potjans and Diesmann, 2014) or
very complex neuron models (e.g., Hay et al., 2011; Bahl et al.,
2012), whereas our model would allow the researcher to profit
from both the speed and analytical tractability of the former
approach and dynamic richness of the latter.
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