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Themajority of distinct sensory andmotor events occur as temporally ordered sequences

with rich probabilistic structure. Sequences can be characterized by the probability of

transitioning from the current state to upcoming states (forward probability), as well as

the probability of having transitioned to the current state from previous states (backward

probability). Despite the prevalence of probabilistic sequencing of both sensory and

motor events, the Hebbian mechanisms that mold synapses to reflect the statistics of

experienced probabilistic sequences are not well understood. Here, we show through

analytic calculations and numerical simulations that Hebbian plasticity (correlation,

covariance, and STDP) with pre-synaptic competition can develop synaptic weights

equal to the conditional forward transition probabilities present in the input sequence.

In contrast, post-synaptic competition can develop synaptic weights proportional to the

conditional backward probabilities of the same input sequence. We demonstrate that to

stably reflect the conditional probability of a neuron’s inputs and outputs, local Hebbian

plasticity requires balance between competitive learning forces that promote synaptic

differentiation and homogenizing learning forces that promote synaptic stabilization.

The balance between these forces dictates a prior over the distribution of learned

synaptic weights, strongly influencing both the rate at which structure emerges and the

entropy of the final distribution of synaptic weights. Together, these results demonstrate

a simple correspondence between the biophysical organization of neurons, the site

of synaptic competition, and the temporal flow of information encoded in synaptic

weights by Hebbian plasticity while highlighting the utility of balancing learning forces to

accurately encode probability distributions, and prior expectations over such probability

distributions.
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Introduction

Many complex behaviors, ranging from the mating rituals of
insects, to the vocalizations of humans and birds, unfold overtime
not as a single, ballistic movement, but as coordinated sequences
of movements (Lashley, 1951; Sternberg et al., 1978; Rhodes et al.,
2004; Glaze and Troyer, 2006; Bouchard and Chang, 2014). The
sensory world also exhibits temporal/sequential structure, and so
perception can be thought of as processing a series of sequential
events (Mauk and Buonomano, 2004; Yang and Shadlen, 2007;
Bouchard and Brainard, 2013). A hallmark of many complex
behaviors (as well as the sensory world) is that the sequencing
of elements is, generally speaking, not stereotyped (i.e., not a
linear sequence) but instead exhibits rich statistical structure that
characterizes the probabilities with which one event transitions
to/from any other event. For example, within a given language,
a speech sound will transition to any other sound with some
conditional probability, and this probability has perceptual
and behavioral affects (Saffran et al., 1996; Peña et al., 2002;
Vitevitch and Luce, 2005). Another example of a learned behavior
(and sensory stimulus) exhibiting a rich probabilistic sequential
structure is the song of the Bengalese finch, a songbird in which
the probability of transitioning between distinct “syllables” is
variable (Jin, 2009; Jin and Kozhevnikov, 2011; Katahira et al.,
2011; Warren et al., 2012) (Figure 1A). In both humans and
birds, vocal sequencing is not the result of a genetic program,
and so must be learned (Figure 1B). The existence of these
learned, probabilistically sequenced behaviors demonstrates that
neural circuits are capable of learning to encode the transition
probability between one elementary behavioral action and
another. Furthermore, recent electrophysiological recordings
from both humans and birds have shown modulations of
neural activity that encode the conditional probability of sensory
events (Bouchard and Brainard, 2013; Leonard et al., 2015).
The ubiquity of such learned probabilistic sequences suggest
that the learning mechanisms that engrain this probabilistic
structure in neural circuits are just as general. However, these
mechanisms are not fully understood. Our goal is to more fully

understand the properties of local Hebbian plasticity rules that
allow the development of synaptic weights directly proportional
to the probabilistic structure of sequential activations imposed on
neural networks.

In the nervous system, the biophysical substrate of learning
and memory is instantiated, in part, by the strength of the
synaptic connections between neurons (Dayan and Abbott, 2001;

Koch, 2004). Furthermore, a large body of experimental work
supports the notion that the modification of the synaptic weight
between two neurons is dictated, in part, by the correlation

between their activations (“neurons that fire together, wire
together”) (Hebb, 1949; Dan and Poo, 2004). Prior theoretical
studies of such “Hebbian-type” plasticity rules revealed that
competition between synapses is required to shape synaptic
weight distributions to reflect input/output correlations (Miller,
1996; Kempter et al., 2001; Sjöström et al., 2001; Gütig et al.,
2003). Synaptic competition imbues Hebbian learning with the
property that, as one set of synapses increases its weight, the other
synapses decrease their weights (Miller et al., 1989; Miller, 1996;

Song et al., 2000; Babadi and Abbott, 2010). The competitive
Hebbianmechanisms typically used to model changes to synaptic
weights will tend to drive those weights toward a binary
distribution (min or max values), and in some situations this
is the desired outcome (Amari, 1972; Abbott and Blum, 1996;
Rubin et al., 2001; Song and Abbott, 2001; Gütig et al., 2003;
Babadi and Abbott, 2010; Fiete et al., 2010). However, how this
competition is tempered to engrain synaptic weights that span
the entire range of values and represent the rich structure of
probabilistic sequences is not fully understood.

Probabilistic sequences can be simultaneously characterized
by the forward probabilities and the backward probabilities
of transitions between states. Given the current state of a
system, the forward probability [alternatively referred to as
divergence probability (Bouchard and Brainard, 2013)] is the
probability of transitioning to upcoming states from the present
state [PF(si,sj) = P(sj(t+1)|si(t))]; it is the distribution of
future events given the present (Figure 1C). Conversely, the
backward probability [alternatively referred to as convergence
probability (Bouchard and Brainard, 2013)] is the probability
of transitioning from previous states to the present state
[PB(si,sj) = P(si(t−1)|sj(t))]; it is the distribution of past
events given the present (Figure 1C). Classical supervised
synaptic learning rules (“outstar” and “instar” learning) suggest
that learning these distinct probabilities is accomplished by
modifying the outgoing (i.e., pre-synaptic) and incoming (i.e.,
post-synaptic) synaptic weights, respectively (Amari, 1972;
Grossberg, 1986). More recent approaches have designed
learning algorithms that either modify synaptic weights to
directly minimize the difference between neuronal activations
(Brea et al., 2013), or to match the probability that a stimulus
leads to a reward (Soltani and Wang, 2010). In contrast to
these supervised learning rules, recent modeling attempts to
learn linear sequences with unsupervised timing-based Hebbian
plasticity rules have suggested the importance for both pre- and
post-synaptic competition in learning (Jun and Jin, 2007; Fiete
et al., 2010), but have not disentangled their individual roles.
Thus, the role of pre-synaptic and post-synaptic competition in
learning of forward and backward probabilities has not been fully
examined.

A specific motivating example comes from our recent
electrophysiology results in nucleus HVC of Bengalese Finches
(Bouchard and Brainard, 2013). Here, it was found that auditory
responses of HVC neurons to a syllable increase in a monotonic,
nearly linear fashion as a function of increasing backward
probability of sequence production. Another motivating example
comes from recent work in humans demonstrating that auditory
neural responses in the superior temporal gyrus can be (linearly)
positively modulated by both the forward and backward
probabilities of speech sequences occurring in English (Leonard
et al., 2015). Both of these results are at odds with theories of
efficient or predictive sensory coding, which generally theorize
that neural responses should decrease for more predictable
stimuli (Barlow, 1961; Bastos et al., 2012). However, we note
that for neurons operating in the linear regime of firing rates
as a function of synaptic input, the observed linear increase
in responses as a function of conditional probability implies a
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FIGURE 1 | Production and learning of sequences and their

probabilistic characterizations. (A) (top) Example spectrogram (power at

frequency vs. time) of the song from one Bengalese finch. Songs are

composed of categorical vocalizations (syllables), organized into probabilistic

sequences. (bottom) Forward probability transition diagram for the song

displayed above. Here, each node corresponds to a syllable, and edge width

corresponds to conditional probability of transitioning to a syllable from a given

syllable. Dots at the end of each edge denote the forward direction of song

during production. (B) Example spectrograms of the song of one Bengalese

finch recorded at a juvenile age (55 days of age, top) before exposure to tutor

song, the song from the same bird after 10 days of tutoring, (65 days of age,

middle), and the song of the tutor (bottom). To ease visual demonstration of

learning, we have chosen a bird trained with a linear sequence of syllables. (C)

Backward and forward probabilities have different semantics. For a given state

of the system (e.g., “x”), the backward probability describes the distribution of

previous states [PB(si, sj) = P(si(t−1)|sj(t))]. In contrast, the forward probability

describes the distribution of upcoming states [PF(si, sj) = P(sj(t+1)|si(t))].

Generally speaking, for a given transition, the backward and forward

probabilities will not be equal [e.g., PB(xc) = 1, PF(xc) = 0.4].

similar relationship between synaptic weights and conditional
probabilities. We therefore hypothesized that Hebbian plasticity
could mold synaptic weights to be directly proportional to
either the forward or backward probabilities experienced by
a network (Bouchard and Brainard, 2013; Leonard et al.,
2015).

We focus on the specific problem of shaping the synaptic
weights between two nodes in a network to reflect the probability
of transitioning between those nodes. Throughout, sequential
structure is imposed on the nodes of the network from external
sources, but synaptic connectivity also contributes to network
activity. This has been termed “learning with a teacher” in the
literature (Legenstein et al., 2005). If we conceptualize the nodes
as being neural elements in a motor network that are associated
with distinct actions, then we can think of this problem as
understanding how an experienced sequence of actions (and the
corresponding sequence of activations of the nodes representing
those actions) can shape the connections between nodes to
engrain transition probabilities to produce those sequences (Jin,
2009). Alternatively, if we conceptualize the nodes as being
elements of a sensory network that are associated with distinct

events, then we can think of this problem as understanding
how an experienced sequence of sensory events can shape the
connections between nodes to engrain transition probabilities
to recognize those sequences (Bastos et al., 2012). Therefore,
our framework is equally applicable to the questions of how
a network learns to produce probabilistic sequences or how a
network learns to encode information about the statistics of
variably sequenced sensory input.

Our results emphasize two key features of such probabilistic
encoding by Hebbian plasticity. First, we show that either
the forward or backward probabilities can be engrained in
neural networks with unsupervised learning rules, depending
on whether synaptic competition is exhibited pre-synaptically or
post-synaptically. Second, we demonstrate that an appropriate
balance between homogenizing forces (that tend to equalize all
weights) and competitive forces (that tend to “binarize” the
weights) can result in the stable development of weights that
continuously span the range of transition probabilities, and that a
small range of this balance can be optimal to encode a wide range
of distributions.

Methods

Ethics Statement
All procedures were performed in accordance with established
animal care protocols approved by the University of California,
San Francisco Institutional Animal Care and Use Committee
(IACUC).

Probabilities
The forward probability characterizes the frequency of
transitioning from the current state (si) to any other state sj on
the next time-step: PF(si, sj) = P(sj(t+1)|si(t)). The backward
probability characterizes the frequency of transitioning to
the current state (si) from any other state sj on the previous
time-step: PB(si, sj)= P(sj(t−1)|si(t)).

Recurrent Network Simulations
Our neural network simulations consisted of a two-layer network
composed of an input layer that projected in a feed-forward
manner to a recurrently connected layer. We conceptualize
the input layer as corresponding to a sensory area and the
recurrent layer as corresponding to a sensory-motor layer used
for sequence generation, though this need not be the case. To
simulate sequence learning in recurrent networks, one input
unit is activated on each time step probabilistically based on the
forward probabilities. A network of n linear-saturating firing rate
based units (firing rates yk(t), k ∈ [1 n]) with Poisson background
rates (η) are connected by recurrent weight matrixM (Mt=0 ∼

1/n). On each time step, one unit is activated by a large input
signal (δ(t)):

y(t) = min(My(t− 1) + δ(t) + η, rmax) (1)

Here, the min function imposes a hard, saturating non-linearity
on the maximum firing rate (rmax) of each unit. Thus, the firing
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rate of recurrent units is a linear combination of the current input
units and recurrent units, up to rmax.

All simulations of the recurrent neural networks began with
a randomly seeded initial weight matrix (±5% deviation from
1/n). During each simulation, the network experienced a unique
sequence of syllable transitions that obeyed the 1st-order Markov
probabilities of a transition matrix, starting with a randomly
selected syllable. All simulations were run for 1000 iterations of
simulated “song” experience; here, one “song” was defined as a
stochastic sequence of length 5 × n, n = number of states in the
transition matrix. All results are averaged over five runs of the
simulations that were initialized with different random weight
matrices (Mt= 0 = (1/n)+ε) and experienced unique stochastic
instantiations of the forward probabilities.

For simulations involving Gaussian transition matrices,
because each state experienced nearly identical statistics and
started from a random value from the same distribution,
each state can be treated as an independent run. Thus,
these simulations were run only once. Gaussian transition
matrices consisted of 19-states with normally distributed
forward probabilities between states, with the maximal transition
probability (mean of Gaussian) from the ith state located at the
i+9th state: P

(

sj|si
)

= N(i+ 9, σ2).

Hebbian Covariance Rule
At each time step, the elements of the synaptic weight matrix M
are changed according to a modified Hebbian covariance rule:

1mij =

{

A+σiσjf+
(

mij
)

if σi > 0 ∨ σj > 0
A−σiσjf−

(

mij
)

if sign (σi) 6= sign
(

σj
) (2)

Here, si is the firing rate deviation of pre-synaptic unit i at
time t−1 (σi = yi(t−1)−yi), σj is the firing rate deviation of
post-synaptic unit j at time t (σj = yj(t−1)−yj), and A± are
the learning rates. In the simulations, the average (y) is taken
over the previous 5 time points. The value of 5 was arbitrarily
chosen; similar results were obtained taking the average over the
entire history. The functions f±(mij) describes the magnitude of
synaptic changes as a function of the current synaptic weight
(see below). In this Hebbian covariance plasticity rule (HCP),
a synapse between pre-synaptic unit i and post-synaptic unit j
(mij) is potentiated if and only if the firing rate of both the pre-
synaptic (yi) and post-synaptic units (yj) are above their mean
(σi > 0

∨

σj > 0) while depression is induced if either pre-
or post-synaptic firing rates is below its mean while the other
is above the mean ([σi > 0

∨

σi < 0]
∧

[σi < 0
∨

σj >

0]). If both yi and yj are below their means, no change in
synaptic weight occurs. Heterosynaptic competition was induced
through the use of divisive normalization to maintain the sum
of either pre- or post-synaptic weights at 1 (the denominator
for presynaptic-competition:

∑N
j=1m.j; the denominator for

post-synaptic-competition:
∑N

i=1mi.). Also, all weights were
constrained to be positive (i.e., M ∈ [0, 1]) after every weight
update by clipping. The exact schedule of enforcement of these
constraints was found to not be crucial.

We use α to denote the relative magnitude of LTD (A−) to LTP
(A+) and refer to it as the depression-potentiation ratio:

α =
A−

A+

(3)

In the simulations, α is modulated by increasing the magnitude
of depression while holding the magnitude of potentiation
constant, and affects the amount of competition in Hebbian
plasticity, which pushes weights toward their boundaries (Song
et al., 2000). Here, we allowed α to range from [1 2] to stay
within neurobiologically plausible values. In our simulations, the
parameter β ∈ [0 1] controls the weight dependence of synaptic
change via the power-law equations (from Gütig et al., 2003):

f+(mij) = (1−mij)
β

f−(mij) = mij
β (4)

Gutig et al. have shown that β controls the amount of
homogenization expressed by temporally asymmetric Hebbian
plasticity, which pulls weights toward a single intermediate value.

Quantification of Simulation Results
We performed a grid search over α (α ∈ [1:0.05:2]) and β

(β ∈ [0:0.02:1]), and calculated the average absolute difference
between the weight matrices and the conditional probabilities for
each [α, β] pair. The accuracy of learning as a function of time was
measured as the mean absolute difference (L1-norm) between the
weight matrix and the appropriate transition matrix:

Err (t) =
1

N2

∑N

i,j= 1
|mij (t) − Pij| (5)

We did not use the Kullback-Leibler Divergence to measure
learning accuracy because many entries in the transition matrices
are 0, leading to division by zero in the denominator. A subset
of simulations was run using L2-norm, and results did not
qualitatively change.

Here we introduce the function 9(α, β) to describe the
combined effect of α and β on learning:

9(α, β) =

{

2(β− 0.5)
α

; β ≥ 0.5
α (β − 0.5) ; β < 0.5

(6)

For the values of α and β examined here, 9(α, β) ranges from
[−1 1], taking [α = 2, β = 0] to −1 and [α = 1, β = 1]
to 1. Although not a theoretically derived quantity, the function

9 is useful to simultaneously capture the effects of α and β on
learning by quantifying the relative strengths of competitive and
homogenizing forces expressed by HCP.

The average entropy of the weight matrix as a function of time
was calculated as:

H (t) =
1

N

∑N

i= 1

(

∑N

j= 1
mij (t) log2

(

mij (t)
)

)

(7)

We additionally calculated the transition of entropy of single
syllables as:

h(si) =
∑N

j= 1
P

(

sj|si
)

log2
(

P
(

sj|si
))

(8)
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The average final error and entropy surfaces as a function of
the learning parameters α and β Err(α, β, t = 1000), H(α, β, t =
1000) resulting from the 16 unique transition matrices (derived
from Bengalese finch songs) were smoothed by convolution
with a 3 × 3 square of ones. All derivatives were computed as
the slope from linear regression. All regressions for both linear
and non-linear functions were done using built-in functions in
Matlab.

Spiking Network Simulations
Our spiking network consisted of a single pre-synaptic neuron
contacting 17 post-synaptic neurons to examine learning of
forward probability, and a single post-synaptic neuron with 17
pre-synaptic neurons to examine learning backward probability.
All neurons had background Poisson spike rate of ∼5Hz.
These neurons were driven by a “training signal” that injected
current to produce spike trains in the network according
to a predefined spike probability distribution conditioned on
spiking in the presynaptic neuron. Specifically, for learning
PB, “signal” spikes in the presynaptic neurons (xj) occurred
every 20ms (50Hz mean rate) and preceded spikes in post-
synaptic neuron (y) by 5ms. The underlying conditional spike
probability distribution P(y|xj) was a Gaussian centered on
the 8th post-synaptic unit [N(8, 2)]. Time progressed in 1ms
intervals. We used conductance based leaky integrate-and-fire
neurons with the following generic parameter values: Vth =

−54mV, Vreset = −60mV, τm = 10ms, Eleak = −70mV,
Eex = 0mV, Ein = −80mV. The spiking activity of all neurons
had an absolute refractory period of 5ms (200Hz max firing
rate). All conductances had a decay constant of 2ms. Synaptic
conductances from the training signal to each neuron were
large (gsignal = 2.5mS/cm2), such that a spike was generated
on every input pulse (as long as not within refractory period).
We are interested in cases where the training signal dominates
the dynamics of the network, and for simplicity synapses from
the pre-synaptic neurons had small maximal conductance (gff
= 0.1mS/cm2), which generally did not cause spiking activity.
Generally speaking, we require that the training signal dominates
the correlated spiking in the network, and deviations from this
will likely interfere with learning of the training signal. Learning
was modestly affected by increasing the background Poisson
spiking rate, mostly resulting in a slower rate of learning.

STDP
According to the STDP rule (Song et al., 2000; Kempter et al.,
2001; Gütig et al., 2003), the change in synaptic strength
between a pre-synaptic and post-synaptic neuron (1mij) decays
exponentially (with decay rates τ± = 10ms) as the temporal
difference in their spike times (1t) increases:

1mij(1t) =

{

A+exp(1t/τ+)f+
(

mij
)

1t < 0
A−exp(−1t/τ+)f−

(

mij
)

1t ≥ 0
(9)

A+ = 0.001 and A− = αA+, describe the magnitude of
synaptic change. f±(mij) are functions that describe the relative
magnitudes of synaptic potentiation and depression differ and
how the magnitude of synaptic change depends on the current
synaptic weight.

Song Collection and Analysis
Sixteen adult male Bengalese finches (age > 110 days) were
used in this study. During the experiments, birds were housed
individually in sound-attenuating chambers (Acoustic Systems,
Austin, TX), and food and water were provided ad libitum. 14:10
light:dark photo-cycles were maintained during development
and throughout all experiments. Birds were raised with a single
tutor. All behavioral analyses were done using custom code
written in Matlab (The Mathworks, Natick, MA). An automated
triggering procedure was used to record and digitize (44,100Hz)
several hours of the bird’s singing. These recordings were then
scanned to ensure that more than 50 bouts were obtained.
Bouts were defined as continuous periods of singing separated
by at least 2 s of silence. Bengalese finch songs typically consist
of between 5 and 12 distinct acoustic events, termed syllables,
organized into probabilistic sequences. Each bout of singing
consists of several renditions of sequences, with each sequence
containing between 1 and approximately 40 examples of a
particular syllable. The syllables from 15 to 50 bouts were hand
labeled. These transition matrices for the 16 birds used here are
representative of the structure of Bfs songs, and exhibit diversity
in the number of syllables (range = [5−10]) and degree of
sequence entropy (range= [0.1−2.8] bits).

Results

The Site of Synaptic Competition Dictates the
Temporal Flow of Information Engrained by
Correlation Based Hebbian Learning
We initially considered a feed-forward network of a single
post-synaptic unit (y) connected to pre-synaptic units (xj)
through weights mj. This network is activated by an input
sequence such that during some plasticity window (1t), xj and
y are sequentially activated with probability PB = P(xj=1|y=1)
(Figure 2A) (below, for notational simplicity, we use e.g., “y”
for “y = 1”). With such a network, our first objective was
to show analytically that Hebbian plasticity can shape initially
unstructured weights to reflect PB under simplified conditions.
Therefore, for analytic tractability, we considered the situation
in which the units of this network exhibit binary activations
(i.e., 0 or 1), which can be loosely associated with whether
or not a neuron discharged an action potential. With such
binary activations, correlation based Hebbian plasticity dictates:
a synapse between x and y changes only if the post-synaptic
neuron fires (y = 1). Then if the correlation between x and
y exceeds the total correlation between y and all the other
synapses, the synapse is potentiated, otherwise the synapse
is depressed (Figure 2B). We aim to show that Hebbian
plasticity with post-synaptic competition can develop synaptic
weights equal to the probability that the pre-synaptic unit is
active with a post-synaptic unit, conditioned on the activity
of the post-synaptic unit; that is, the backward conditional
probability:

mj → P(xj|y) (i)
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FIGURE 2 | Learning conditional probabilities with correlation based

Hebbian plasticity in binary networks. (A) Feed-forward network

architecture and inputs. A single post-synaptic unit with binary activation (y)

receives feed-forward synaptic contacts from a population of binary

pre-synaptic units (xj). This network is activated such that at each point in

time, one pre-synaptic unit (xj) is co-activated with the post-synaptic unit (y)

(e.g., dark gray nodes). (B) Hebbian correlation learning rule for networks with

binary activation units. A synapse between x and y can change only if the

post-synaptic neuron fires (y = 1). Then if the correlation between x and y

exceeds the total correlation between y and all the other synapses, the

synapse is potentiated (+); otherwise the synapse is depressed (−).

Under a correlation based Hebbian learning rule with weight
decay based on the sum of the pre-synaptic weights, synapses
change according to the equation:

△mj ∝ xjy−
∑N

k= 1

(

xky
)

mj (ii)

Thus the weight change is proportional to the difference of
two terms, where the constant of proportionality is a fixed,
small learning rate. The first term on the right-hand side is
the correlation between post-synaptic unit (y) and the pre-
synaptic unit (xj) (i.e., the Hebbian term), and the second term
imposes a leak, or decay on the post-synaptic weights whose
coefficient is equal to the summed correlation between inputs
and the output, which induces heterosynaptic competition. For
a small enough learning rate, the weight dynamics in Equation
(ii) temporally integrates the statistics of pre and post-synaptic
activity and approaches, on average, a steady state determined by
the equation:

0 =
〈

xjy
〉

−
∑N

k= 1

〈

xky
〉

mj (iii)

Because both and x and y are binary, the expected value of the
correlation between xj and y (<xjy>) is equal to P(y|xj)P(xj).
Therefore we can re-write (iii) as:

0 = P
(

y|xj
)

P
(

xj
)

−
∑N

k= 1
P

(

y|xk
)

P (xk)mj (iv)

Solving for mj gives:

mj =
P

(

y|xj
)

P(xj)
∑N

k= 1 P
(

y|xk
)

P(xk)
(v)

The denominator simplifies via marginalization over xk to P(y),
yielding:

mj =
P

(

y|xj
)

P(xj)

P(y)
(vi)

which, by Bayes’ Rule, gives:

mj = P
(

xj|y
)

(vii)

The proof for learning forward probability with pre-synaptic
Hebbian plasticity in networks of a single pre-synaptic unit
(x) connected to multiple post-synaptic units (yi) follows by
appropriate replacement of variables: if △mi = yix −
∑N

k=1

(

ykx
)

mi, thenmi → P(yi|x).
Together, these results demonstrate that Hebbian plasticity

with a post-synaptic locus of competition can develop weights
equal to backward conditional probabilities, while a pre-synaptic
locus of competition can develop weights equal to the forward
conditional probabilities. We note that for the very simple case
of binary neural activations, we could have simply replaced
the coefficient of the leak term in Equation (ii) with the
post-synaptic activity y, and the entire proof for learning
conditional probabilities would go through. We chose the more
complex scheme to maintain a level of parallelism with the
more biologically realistic rules below that can learn sequential
statistical structure without the need for high SNR binary neural
activations.

Pre-synaptic and Post-synaptic Competition in
Hebbian Covariance Plasticity Engrain Forward
and Backward Conditional Probabilities
With the intuition gained above, we next investigated the
Hebbian mechanisms that engrain conditional probabilities in
the synaptic weights of fully recurrent networks of rate-based
units. For these networks, each node is initially connected to each
other node in the network. As before, each node can be associated
with a neural element that represents a discrete motor action or
sensory event, and each element is activated by a single external
input (“teaching” signal). The goal of learning, then, is to engrain
the transition probabilities between events in the synaptic weights
connecting nodes in the network. As we will describe, the
proposed network properties and learning rule provide an
intermediate framework between the analytically tractable binary
network trained with correlation based Hebbian plasticity and
more biophysically realistic spiking network trained with STDP
examined at the end of the paper.

A network of linear-saturating firing rate based units (firing
rates yk(t), k ∈ [1 n]) with Poisson background rates (η)
are connected by recurrent weight matrixM (Mt=0 ∼ 1/n)
(Figure 3A). On each time step, one unit is activated by
a large input signal (δ(t)) (Equation 1). The distribution of
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FIGURE 3 | Pre-synaptic and post-synaptic competition in

Hebbian covariance plasticity engrain forward and backward

conditional probabilities. (A) Recurrent network architecture and

inputs. Rate-based units (y, light-gray nodes) were recurrently

connected by the excitatory weight matrix M. Each y corresponds to

a unique sequence element, and receives strong “sensory” input

(dark-gray nodes) corresponding to the presentation of that element

in the sequence. The activity of recurrent units is a linear up to a

hard-threshold to ensure stable network dynamics, and is a

combination of recurrent inputs from excitatory synaptic connectivity

and the sequential activity imposed by the inputs. (B) Hebbian

covariance plasticity rule. A synapse between pre-synaptic unit i and

post-synaptic unit j (mij) is potentiated if the firing rate of both the

pre-synaptic (yi) and post-synaptic units (yj) is above there mean

(positive variances, green quadrant, Q+), while depression is induced

if either pre- or post-synaptic firing rate is below mean its mean

while the other is above the mean (negative covariance, red

quadrants, Q−). If both yi and yj are below their means, no change

in synaptic weight occurs (blank quadrant). (C) Weight dependence

of synaptic change. The weight dependence of synaptic potentiation

[f+(m), green] and synaptic depression [f−(m), red] for three values of

the parameter β. When β = 0, the magnitude of potentiation and

depression are independent of the synaptic weight (“additive” HCP).

In contrast, when β = 1, the magnitude of potentiation decreases

linearly with increasing synaptic weight, while the magnitude of

depression increases linearly (“multiplicative” HCP). (D) (top) Example

forward transition diagram (left) used as input to the recurrent

network, and the corresponding backward transition diagram (right).

Here, as in Figure 1B, each node in the diagram corresponds to a

unique element of the sequence and the edges connecting nodes

are proportional to the transition probabilities connecting those nodes.

(bottom) Synaptic connectivity displayed as network graphs resulting

from pre-synaptic competition (left) post-synaptic competition (right).

Here, each node in the diagram corresponds to a network element

and the edges connecting nodes are proportional to the synaptic

weight connecting those nodes. Focusing on the global structure of

these graphs, it is apparent that presynaptic competition takes the

weight matrix to the forward probability distribution (M ∼ PF), while

post-synaptic competition takes the weight matrix to the backward

probability distribution (M ∼ PB). (E) Mean absolute error (mean ±

s.d., N = 8) between the learned weight matrices (M) and the

forward and backward probability matrices when either pre-synaptic

competition (black) or post-synaptic competition (gray) was instantiated

in HCP.

δ(t) determines the probabilistic sequence experienced by the
network and is completely determined by the forward transition
probabilities, PF(si,sj) and the (randomly chosen) initial state. In
this network, the activity of recurrent units is a function of both
the imposed sequence and the recurrent connectivity matrix.

Hebbian plasticity was applied toM based on the firing rate
vectors at consecutive times (y(t−1), y(t)). Here, we implemented

a biologically plausible, Hebbian covariance learning algorithm
(Figure 3B). In Hebbian covariance plasticity (HCP), a synapse
between pre-synaptic unit i and post-synaptic unit j (mij) is
potentiated if and only if the firing rate of both the pre-synaptic
(yi) and post-synaptic units (yj) is above their mean (green
quadrant, Q+), while depression is induced if either pre- or
post-synaptic firing rates is below its mean while the other is
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above the mean (negative covariance, red quadrants, Q−). If
both yi and yj are below their means, no change in synaptic
weight occurs (blank quadrant) (Equation 2). The HCP learning
rule reflects the intuition that changes in synaptic weight should
be sensitive to the co-variation of pre- and post-synaptic firing
rates. Furthermore, incorporating both pre and post-synaptic
“deviations” makes HCP insensitive to changes in the mean firing
rate, as is the case for STDP (Song et al., 2000; Kempter et al.,
2001). Finally dictating that no plasticity occurs when both pre
and post-synaptic firing rates are below their mean removes
the un-biological potentiation of synapses when both neurons
have negative deviations, and hence a positive covariance (Miller,
1996). It is noteworthy that the geometry of synaptic change in
Hebbian covariance plasticity is similar to the correlation based
learning rule for sequentially active binary units used for the
analytic calculations (compare Figure 2B and Figure 3B).

Two major issues with Hebbian plasticity rules are
competition and stability (Miller and MacKay, 1994; Miller,
1996; Song et al., 2000; van Rossum et al., 2000; Kempter
et al., 2001; Rubin et al., 2001; Kepecs et al., 2002; Gütig et al.,
2003; Babadi and Abbott, 2010). The relative magnitudes of
LTD and LTP expressed by temporally asymmetric Hebbian
plasticity (STDP) have been shown to affect the competitive force
expressed during learning (Song et al., 2000; Kempter et al., 2001;
Rubin et al., 2001; Gütig et al., 2003). Increasing the competitive
force expressed by STDP pushes synaptic weights toward binary
distribution (∀mij = [mmin ∧ mmax]). We use α to denote the
relative magnitude of LTD (A−) to LTP (A+) and refer to it as
the depression-potentiation ratio (Equation 3). When α = 1
(Figure 3C), the maximal incremental amount of LTP and LTD
are matched; when α = 2, the magnitude of LTD is twice as
strong as LTP.

The weight dependence of synaptic change expressed by
temporally asymmetric Hebbian plasticity has been shown to
have dramatic affects on the steady state synaptic weight
distributions induced by the learning process (van Rossum et al.,
2000; Rubin et al., 2001; Kepecs et al., 2002; Gütig et al.,
2003). The weight dependence of synaptic change influences
the homogenizing force expressed by STDP, which pulls the
synaptic weights toward a uniform distribution (∀m = 1/n, n =

number of distinct inputs). In our simulations, the parameter β

controls the weight dependence of synaptic change via the power-
law equations (Figure 3C, from Gütig et al., 2003) (Equation
4). When β = 0, these equations dictate that the amount of
LTP and LTD are independent of the current synaptic weight
(“additive” rules) (Abbott and Blum, 1996; Song et al., 2000;
Kempter et al., 2001; Rubin et al., 2001; Gütig et al., 2003).
Conversely, when β = 1, the magnitude of LTP decreases
linearly with increasing synaptic weight and the magnitude of
LTD increases linearly with synaptic weight (“multiplicative”
rules) (Kistler and van Hemmen, 2000; van Rossum et al., 2000;
Rubin et al., 2001; Kepecs et al., 2002; Gütig et al., 2003). Varying
β between these extreme values gives weight dependencies that
smoothly interpolate between the additive and multiplicative
STDP conditions (Gütig et al., 2003).

The emergence of synaptic weights that reflect the statistics
of pre and post-synaptic firing patterns requires competitive

mechanisms that dictate that as some synaptic weights increase,
the other synaptic weights decrease (Miller and MacKay, 1994;
Miller, 1996; van Rossum et al., 2000; Gütig et al., 2003).
However, the most naïve formulation of Hebbian plasticity, even
if mechanisms for depression are included, lacks the competitive
force necessary to mold an initially random and statistically
homogenous initial weight matrix into one that reflects the
statistical structure of inputs and outputs (Miller and MacKay,
1994; Miller, 1996). Because of the positive feedback character
of Hebbian plasticity (strong synapses lead to higher correlations
between pre and post-synaptic activity, leading to potentiation,
yielding stronger synapses, resulting in more potentiation),
synaptic potentiation tends to grow to unrealistic values unless
constrained in some way (Miller and MacKay, 1994; Miller,
1996; Song et al., 2000). Here, this positive feedback would be
mediated by the recurrent synaptic weight matrix,M (Equation
1). In the correlation-based rule used for analytic calculations,
competition is generated by the weight decay term in the
update rule, while in STDP, competition is generated by having
the magnitude of depression slightly larger than potentiation
(i.e., α > 1). For rate-based Hebbian plasticity, it has been
shown that divisively constraining the sum of synaptic weights
solves both these problems (Miller and MacKay, 1994; Miller,
1996), and thus we incorporate divisive normalization in HCP.
Normalizing the sum of synaptic weights to 1 also affords the
interpretation of synaptic weights as probability distributions,
enabling direct comparison of weights to transition probabilities.
In this way, the goal of learning is to develop synaptic weights
that are equal to the transition probabilities present in the input
sequence.

We confirmed that HCP (with optimized parameters)
instantiating pre-synaptic competition resulted in synaptic
weight matrices that reflect the forward probability of the
experienced sequences while post-synaptic competition
developed weights that reflect the backward probabilities. For
these simulations, the input sequence consisted of 19 states, each
state having the same Gaussian forward conditional probabilities
(PF(si, sj) = N(i+9,σ2); si, sj ∈ [1 19]). An example of the
difference in learned synaptic weights developed by pre vs.
post-synaptic competition in HCP is displayed in Figure 3D.
The forward transition diagram for this sequence is presented in
the top-left and the corresponding backward transition diagram
is on the top-right. The learned weight distributions presented
in the bottom row (shown as network graphs), suggest that
HCP with pre-synaptic competition developed recurrent weight
matrices that reflect the forward probabilities of the experienced
sequence (M∼ PF, bottom-left) while post-synaptic competition
developed recurrent weight matrices that reflected the backward
probabilities of the same sequence (M ∼ PB, bottom-right). This
is quantified for a variety of Gaussian transition matrices with
varying σ2 in Figure 3E (data presented as mean ± s.d. across
N = 8 different transition matrices, pre-synaptic competition
black, post-synaptic competition gray). Together with the results
of the previous section, these results demonstrate that the site of
synaptic competition dictates whether the forward or backward
probabilities of an input sequence are engrained in synaptic
weights of neural networks.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 July 2015 | Volume 9 | Article 92

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bouchard et al. Hebbian encoding of sequence probabilities

Hebbian Encoding of Bengalese Finch Song
Sequences: an Example
The above results demonstrate that Hebbian learning rules
can shape synaptic weights to reflect conditional probabilities.
However, these rules required a “balance” of the weight
dependence of synaptic change and the depression-potentiation
ratio. To more fully understand the Hebbian mechanisms that
enable learning of biologically relevant, probabilistic sequences,
we trained rate-based recurrent networks to encode the
song sequences of Bengalese finch songs. Using the forward
transition matrices derived from 16 Bengalese finch songs
as our data set, we investigated how probabilistic encoding
depends on the magnitude of competitive and homogenizing
forces expressed by asymmetric Hebbian covariance plasticity.
The network architecture and learning rules are the same
as described in the previous section (Figures 3A–C), except
that the number of nodes in the network varied according
to the number of syllables in a given Bengalese finches’
song.

We found that minimizing the mean difference between
the experienced forward probabilities and the learned synaptic
weights (Equation 5) required a balance between the magnitude
of competitive force (α) and the magnitude of homogenizing
force (β). Example results from simulations using the forward
probabilities in Figure 4A are displayed in Figures 4B,C, where
final synaptic weight matrices are displayed as network graphs
(Figures 4Bi–iii) and learning curves (Figures 4Ci–iii) are
shown for three regimes of HCP. Here, we compare results from
the optimal balance of α and β (α = 1.2, β = 0.4; b,c. ii) to
results obtained from regimes that approximately correspond to
additive HCP (α = 1, β = 0; b,c. i) and multiplicative HCP
(α =1, β = 1; b,c. iii). As can be seen in Figure 4Bi, additive
HCP (β = 0) results in a final weight matrix (Mt= 1000) that
over-strengthened the most probable transitions at the expense
of the less probable transitions. This regime resulted in learning
dynamics that were rapid: the majority of error reduction
occurred within the first 10 “bouts” (one bout corresponds to 50
syllable presentations) (Figure 4Ci). In contrast, we found that
multiplicative HCP (α = 1, β = 1) resulted in a final weight
matrix that was a poor approximation of the experienced forward
probabilities (Figure 4Biii). In further contrast to the additive
condition, multiplicative HCP resulted in learning that was much
slower (Figure 4Ciii). Finally, HCP with optimal values of α

and β (α = 1.2, β = 0.4, inset in Figure 4Cii) resulted in
a final weight matrix that was a good approximation of the
experienced forward probabilities (Figure 4Bii). Here, we see

that balancing the magnitudes of competitive and homogenizing

forces allowed for synaptic weights that span the full dynamic
range [0, 1], and still retained values intermediate between
the extremes. Furthermore, the initial rate of learning was
intermediate between the additive and multiplicative conditions.
These results suggest that learning neurobiologically relevant
probability distributions requires a balance of competitive and
homogenizing forces, and that these forces affect both the final
synaptic weight distribution and the rate at which structure
emerges in those weights.

The balance of Competitive and Homogenizing
Forces Strongly Influences the Accuracy of
Probabilistic Encoding
We found that balanced HCP was able to mold initially
unstructured synaptic weights to reflect the transition
probabilities of Bengalese finch songs with high fidelity.
We performed a grid search over α (α ∈ [1:0.05:2]) and β

(β ∈ [0 : 0.02 : 1]), and calculated the average absolute difference
between the weight matrices and the forward conditional
probabilities for each α, β pair (Equation 5). The results for
the optimal weight dependence of synaptic change (β) and the
depression-potentiation ratio (α) for each of the 16 unique
Bf songs used in our simulations are displayed in Figure 5A.
Here, we plot the experienced forward probabilities for each
transition vs. the learned synaptic weights corresponding to
that transition (n = 1018, thick black line is local mean). As
suggested by the examples in Figure 4, optimizing α and β

resulted in synaptic weights that where highly correlated with
the experienced forward probabilities of the input sequences
(R = 0.97). Although there is a strong correlation between the
final synaptic weights and the experienced forward probabilities,
there is a fair amount of spread about the line of unity (which
corresponds to a perfect encoding of forward probability in
synaptic weights), an issue we return to later.

We systematically examined how the magnitudes of
competitive and homogenizing forces affect the ability of HCP to
engrain the experienced forward probabilities by parametrically
varying α and β across the range α ∈ [1 2] and β ∈ [0 1]. The
plot in Figure 5B displays the average normalized error surface
as a function of α and β, which shows that optimal learning
required a balance of the magnitudes of the weight dependence
of synaptic change and the depression-potentiation ratio (mean
optimal values are α = 1.25, β = 0.38, black dot with white
interior). Furthermore, we observed that the lower-left region
of the error surface generally had the lowest errors, suggesting
that, for the transition matrices used here, relatively lower values
of α and β result in more accurate learning. The error exhibits
a smooth concave structure as the magnitude of the weight
dependence of synaptic change increases, with a broad trough for
intermediate values of β (mean width at 10% max= 0.3, i.e., 30%
of β range). Both the width and minimum of the error surface
exhibited linear dependencies on the depression-potentiation
ratio: the width decreased (1 = −0.14, R2 = 0.96 from linear
regression) and the minimum shifted to the right as α increased
(1 = 0.27, R2 = 0.93 from linear regression). The error surface
is relatively flat around the mean optimal values (black/white
dot), suggesting that a single [α, β] pair could have been used for
all input matrices with little effect on the final results.

For intermediate values of β (β ∼ 0.5), the error surface
exhibited a negligible dependence on the magnitude of α. In
contrast, for β values approaching the extremes, the error surface
exhibited an approximately anti-symmetric dependence upon the
depression-potentiation ratio. That is, when HCP expresses a
weak homogenizing force (small β), increasing the competitive
force (α) results in increased error. Conversely, when HCP
exhibits strong homogenizing force (large β), increasing the
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FIGURE 4 | Example of Hebbian encoding of Bengalese finch

song sequences. (A) The forward probabilities displayed in this

diagram, derived from one Bf (same as Figure 1B), served as input

to the recurrent network (A). (B,C) Final synaptic connectivity (B,

same format as in C) and learning time courses (C) for different

magnitudes of competitive (α) and homogenizing forces (β). (i)

Additive HCP (α = 1, β = 0). (ii) Optimal HCP (α = 1.2, β = 0.4). (iii)

Multiplicative HCP (α = 1, β = 1). Insets in (C) display the

corresponding weight dependence of synaptic change (green, LTP;

red, LTD).

competitive force (α) results in decreased error. The approximate
anti-symmetry of the error surface described above suggests that
a single, piece-wise defined function can capture the net affect of
α and β on learning error. Here we use the function 9(α, β) to
describe the combined effect of α and β on learning (Equation 6).
For the values of α and β examined here, 9(α, β) ranges from
[−1, 1], taking [α = 2, β = 0] to −1 and [α = 1, β = 1] to
1. In Figure 5C, we remap the error surface in Figure 5B using
9 , which exhibits a well-defined global minimum (here, each
point corresponds to one pixel in Figure 5B and colored points
in Figure 5C correspond to colored points in Figure 5B).

We further sought to understand how the balance of
competitive and homogenizing forces affected the dynamics of
the learning process. In Figure 5D we present the average error
trajectories for the five regimes demarcated in Figures 5B,C. As
suggested by the examples in Figure 4, we found that regimes
with the strongest competitive tone (blue, α = 2, β = 0 and
green, α = 1, β = 0 curves), resulted in the most rapid
initial learning while regimes with the strongest homogenizing
tone (red, α = 1, β = 1 and orange, α = 2, β = 1)
resulted in the slowest initial learning. We quantified the rate
of learning by measuring the initial linear slope of the learning
curves (between dashed vertical lines, Figure 5D) and plot the

magnitude of these slopes as a function of 9 in Figure 5E. We
found that the magnitude of initial error reduction decreased
nearly monotonically as the homogenizing tone increased (i.e.,
as 9 went from −1 to 1). We observed that error time-courses
for individual Bf transition matrices could exhibit an initial
minimum in error followed by a slow increase to asymptote
thereafter. However, the learning dynamics across the different
transition matrices used here were heterogeneous, and so this
aspect was washed out in the mean.

Entropy of the Learned Synaptic Weight
Distribution Depends Monotonically on the
Balance of Competitive and Homogenizing
Forces
Visual examination of the networks graphs in Figures 4Bi–iii

suggested that, for a given target matrix, the balance of
competitive and homogenizing forces expressed by HCP effects
the variability of the synaptic weight matrices: as the magnitude
of the homogenizing force increased, the variability of the steady-
state weight matrix increased. We quantified the variability of
synaptic weight matrices by calculating the average entropy,
where the average is taken over states (e.g., syllables) (Equation
7). We systematically examined how the balance of competitive
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FIGURE 5 | The balance of competitive and homogenizing forces

strongly influences the accuracy of probabilistic encoding. (A)

Conditional forward probabilities vs. learned synaptic weights resulting

from HCP with optimal values of α and β. Here, each point

corresponds to one transition/weight pairing (n = 1018 transitions).

Thick black line is the locally smoothed mean, dashed line is unity.

(B) Average normalized error surface as a function of the

homogenizing forces (β) and the competitive forces (α) expressed by

HCP. Colored dots demarcate the corners of the parameter space,

and the black/white dot is the mean of the individual optimal values

across the 16 different Bf transition matrices [ α = 1.25, β = 0.38].

(C) Average normalized error as a function of the

homogenization-competition ratio 9(α, β) (see text). Colored circles map

to colored circles in (B). Here, each dot corresponds to a pixel in

(B). (D) Average error across time. Five different regimes resulting from

varying magnitudes of homogenizing and competitive forces are shown:

“additive” (green: α = 1, β = 0); average optimal values (black: α = 1.25,

β = 0.38), “multiplicative” (red: α = 1, β = 1); (orange: α = 2, β = 1); and

(blue: α = 2, β = 0). Dashed gray vertical lines demarcate time period

of slope measurements. (E) Magnitude of initial error reduction

(∂Err(9,t)/∂t) generally decreased as a function of increasing the

magnitude of the homogenizing force.

and homogenizing forces expressed by HCP affect the steady-
state entropy of synaptic weight matrices. Unlike learning error,
which describes the synaptic weights relative to the input (i.e.,
target) transition probabilities, calculation of entropy makes no
reference to an external model. Entropy thus provides a measure
of the intrinsic structure of the synaptic weight distributions.

We found that the balance of competitive and homogenizing
forces expressed by HCP monotonically modulated the entropy
of the final synaptic weight matrix. Figure 6A displays the
average entropy of the steady-state synaptic weight matrices
resulting from HCP learning of the 16 Bf song sequence
probabilities for varying α and β. Here we see that increasing
β resulted in a corresponding increase in the entropy of the
synaptic weights. In contrast to β, increases in α resulted
in decreased entropy of the synaptic weight distributions.
Additionally, changes in β resulted in larger changes to entropy
then did changes in α: that is, changing β for a given value of
α had a larger effect on entropy than changing α for a given
value of β. This suggests that the magnitude of homogenization
had a larger influence on final entropy than the magnitude of
competition. We summarized how the balance of competitive
and homogenizing forces effected the entropy of the steady-state
synaptic weight distributions using the function 9(α,β). The plot
in Figure 6B shows that the entropy of the synaptic weights
monotonically increased as the value of 9 went from −1 to 1.

Here, the colored points correspond to the regimes demarcated
in Figure 6A, and the dashed black line displays the best-
fitting hyperbolic tangent function (R2 = 0.99). Thus, entropy
increased with increased homogenization (van Rossum et al.,
2000; Gütig et al., 2003).

We next examined the time-course of the entropy of synaptic
weight distributions over learning. In Figure 6C we plot the
average entropy trajectories for the same five conditions of
α and β (colors), and we see that as time progressed, the
entropy of the weight matrices steadily declined to asymptote.
HCP with a stronger homogenizing tone (red and orange)
gave rise to slower entropy reduction dynamics than HCP with
stronger competitive tones (blue and green), while the optimal
balance (minimum error, black) was again intermediate between
these extremes. In contrast to the error trajectories, the rank
ordering of entropy reduction was generally maintained across
time (Figure 6C). The rate of entropy reduction (quantified
as linear slope between dashed vertical lines in Figure 6C)
was a monotonically decaying function of the magnitude of
homogenization relative to competition (Figure 6D). The final
entropy of the minimum error-learning rule (black) was slightly
less than the average entropy of the input probabilities (gray
horizontal dashed line). These results show that as the amount
of homogenization relative to competition increased, the rate
of change of synaptic modification decreased. Together, the
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FIGURE 6 | Entropy of the learned synaptic weight distribution

depends monotonically on the balance of competitive and

homogenizing forces. (A) Mean entropy of final synaptic weight

distributions as a function of the homogenizing forces (β) and the

competitive forces (α) expressed by HCP. Colored dots demarcate

corners of parameter space and black/white dot corresponds is the

mean of the individual optimal values across the 16 different Bf

transition matrices [α = 1.25, β = 0.38]. (B) Average final entropy of the

synaptic weight matrices as a function of 9. Colored points correspond

to colored points demarcated in (A). Black dashed line is best fitting

hyperbolic tangent, which explains 99% of the variability (R2 = 0.99) in

final entropy as a function of 9. (C) Mean entropy of synaptic weight

distributions across time. Five different regimes from varying magnitudes

of homogenizing and competitive forces are shown (colors same as in

A). Gray horizontal dashed line is average entropy across the input

matrices (0.62 bits). Gray vertical lines demarcate times at which slopes

were measured. (D) Magnitude of initial entropy reduction (∂H(9,t)/∂t)

decreased as a function of increasing 9.

results of these analyses demonstrate that the entropy of the
final synaptic weight distribution is strongly influenced by
the balance of competitive and homogenizing forces expressed
by HCP.

Encoding Backward Probabilities from
Experienced Forward Probabilities
The results described above were for simulations in which the
network experienced the forward conditional probabilities of BF
song sequences, and used HCP with pre-synaptic competition.
This engrained the forward conditional probabilities into the
synaptic weight matrixM connecting the nodes in the network.
As described in the Introduction, one of the motivating examples
for the present study was our observation of a nearly linear
encoding of the backward conditional probabilities in the
auditory responses of HVC neurons (Bouchard and Brainard,
2013). Thus, we additionally examined learning backward
probabilities using the same network architecture, learning rule
and sequence statistics described above, with the only difference
being that post-synaptic competition was induced by divisively
normalizing the sum of post-synaptic weights.

As expected, overall, the results for learning backward
probability and forward probability exhibit similar dependencies
on the balance of competitive and homogenizing forces expressed

by HCP. The results of these simulations are summarized
in Figure 7. In Figure 7A, we plot the conditional backward
probabilities for the n = 1018 transitions from 16 birds used
here vs. the learned synaptic weights resulting from HCP with
optimal values of α and β. Here we see that the backwards
probabilities were learned with a similar degree of fidelity to
the forward probabilities, but with a slightly reduced accuracy
(R = 0.94 for backward probabilities vs. R = 0.97 for
forward probabilities). The plots in Figures 7B,C display the
average final error and rate of initial error reduction as a
function of function 9(α,β). The plots in Figures 7D,E display
the average entropy and rate of initial entropy reduction as
a function of function 9(α,β). These curves are very similar
to those presented in Figures 5, 6 in many regards. The most
salient difference is the reduced normalized error for learning
backward probabilities at very negative values of 9 relative to
learning the forward probabilities. This small difference likely
results from the differences in distributions between forward and
backward probabilities (Bouchard and Brainard, 2013). We note
that if firing rates are a linear function of synaptic weights, the
synaptic weights generate neural responses that increase linearly
as function of backward probability, qualitatively matching the
experimentally observed auditory responses in Bouchard and
Brainard (2013).
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FIGURE 7 | Encoding of backward probabilities from experienced

forward probabilities. (A) Conditional backward probabilities vs.

learned synaptic weights resulting from HCP with optimal values of α

and β. Here, each point corresponds to one transition/weight pairing

(n = 1018 transitions). Dashed line is unity. (B) Average normalized error

as a function of the homogenization-competition ratio 9(α,β) (see text).

Coloring correspondence same as in Figures 5, 6. (C) Magnitude of

initial error reduction (∂Err(9,t)/∂t) generally decreased as a function of

increasing the magnitude of the homogenizing force. (D) Average final

entropy of the synaptic weight matrices as a function of 9. Black

dashed line is best fitting hyperbolic tangent, which explains 99% of the

variability (R2 = 0.99) in final entropy as a function of 9. (E) Magnitude

of initial entropy reduction (∂H(9,t)/∂t) decreased as a function of

increasing 9.

The Optimal Magnitude of Homogenizing Force
Depends on the Signal-to-noise Ratio in the
Network
We additionally investigated how the optimal values of the
homogenizing force (β) and competitive force (α) depended
on the relative amount of noise in the teacher signal. We
modulated the signal-to-noise ratio of the network by changing
the magnitude of the Poisson noise in each node in the network
from (on average) the same size as the activation signal (SNR= 1)
to no noise (SNR = ∞). The plots in Figures 8A,B show
the optimal values of homogenizing force (β) and competitive
force (α) as a function of increasing signal-to-noise ratio. Each
dot corresponds to the average values for one of 11 birds (a
subset of the 16 total used in this study; overlap of points
indicated by opacity). The large dots demarcate regime used in
Figures 4–7; for the other SNRs, a coarser spacing was used
in the grid search. Here, we see that increasing the signal-to-
noise ratio resulted in higher optimal values of (β), with SNRs
over 10 requiring very large homogenization terms (Figure 8A).
Furthermore, even for an SNR of 1, optimal values of β were
around 0.2, suggesting that even in this case, homogenizing
forces played an important role in stable learning (though
strong conclusions cannot be drawn because of potential edge
effects in the range of this parameter). In contrast, the optimal
values of α did not change in a consistent manner for varying
SNR. This suggests that the magnitude of homogenizing force
expressed by Hebbian learning rules required to learn a given
weight distribution depends on the amount of noise in the
network.

FIGURE 8 | The optimal magnitude of homogenizing force depends on

the signal-to-noise of the network. (A) Optimal value of β as a function of

the signal-to-noise ratio in the network. Each dot corresponds to the value

derived from one of 11 birds used here (subset of the 16 used in this study).

Dashed black line is best fitting exponential function. Large dots correspond to

SNR used for main results. (B) Optimal value of α as a function of the

signal-to-noise ratio in the network. Each dot corresponds to the value derived

from one of 11 birds used here (subset of the 16 used in this study). Dashed

black line is best-fitting line. Large dots correspond to SNR used for main

results.

The Optimal Balance of Competitive and
Homogenizing Forces Depend on the Entropy of
the Target Distribution
We have shown that optimal learning of conditional probability
distributions by Hebbian learning requires a balance of
competitive and homogenizing forces. These forces, in
combination with the statistics of the target matrix, dictate
the entropy of the steady-state synaptic weight distributions.
Indeed, the results presented in Figures 6B, 7D suggest
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that to achieve optimal learning, the relative strength of
homogenization should increase as the entropy of the target
distribution increases. In the most extreme case, it could be that
optimal learning requires the relative magnitudes of these forces
to be finely tuned to the statistics of the target distribution. Such
a situation would suggest that neural systems must maintain a
very delicate balance of these forces, which would potentially
reduce their robustness. To systematically investigate how the
optimal balance of α and β depended on the entropy of target
transition probability distributions, we again used Gaussian
transition matrices with 19 states. The recurrent network
architecture and inputs are the same as before (Figure 3A).
We varied the entropy of the forward probability distributions
by steadily increasing the standard deviation of the Gaussian
distribution. The gray curves in Figure 9A display the family of
distributions used, which range from completely deterministic
(PF = 0 or 1, Entropy = 0 bits, black) to an approximately
uniform distribution (PF ∼ 1/19, Entropy = 4.25 bits, lightest
gray).

We found that, as the entropy of the target distribution
increased, so did the magnitude of homogenization relative to
competition required for optimal learning. Two examples of
learning Gaussian forward probabilities with different entropies
are displayed in Figures 9B,C. In Figure 9B, the forward
probabilities of the experienced transitions (left) had 0 bits of
entropy and the final synaptic weights of the network (right)

was a near perfect copy (Entropy = 0.06 bits, Error =

0.0007). Optimal learning in this condition expressed a strongly
competitive tone in HCP (α = 1.9, β = 0.18, 9 = −0.61).
In Figure 9C, the forward probabilities of the experienced
transitions were more variable (2.2 bits of entropy) and the
learned recurrent weight matrix was again a very good match
(Entropy = 2.25, Error = 0.007). Optimal learning in this
condition required a stronger homogenizing tone in HCP (α =

1.05, β = 0.34, 9 = −0.17).
Across the range of distributions tested, optimally tuned

HCP was able to mold the synaptic weights to be a close
approximation of the experienced forward probabilities, with
an average error of 0.0066 ± 0.0026 (mean ± s.d.). The
optimal balance of competition and homogenization exhibited a
systematic dependence on the entropy of the forward probability
distribution (Figure 9D, the dashed black line is the best fit
hyperbolic sine (sinh), R2 = 0.93). Associating negative values
of 9 with strong competition and positive values of 9 with
strong homogenization, these results show that distributions
with low entropy required relatively stronger competitive tone
while distributions with high entropy required relatively stronger
homogenizing tone (Figure 9D). Thus, the optimal strength of
homogenization increased as the entropy of the experienced
transition probabilities increased. However, it was not the case
that the relative amounts of homogenization and competition
had to be finely tuned for each distribution. Strikingly, ∼80% of

FIGURE 9 | The optimal balance of competitive and homogenizing

forces depend on the entropy of the target distribution. (A) Profile of

the Gaussian forward transition probabilities (19 states, centered at the i+9

state) for varying standard deviations. As the standard deviation (entropy) of

the distributions increases, the gray scale lightens. (B,C) Examples of

learning Gaussian forward probabilities with different entropies. Both low

entropy (0 bits) (B) and medium entropy (2.2 bits) (C) could be well learned

with different values of the homogenizing force (β) and the competitive force

(α) expressed by HCP. The graphs on the left are depict the forward

probability diagrams (nodes are states, edges are transitions), while the

graphs in the center depict the synaptic connectivity of the learned network

(nodes are network elements, edges are synaptic connections). The

histograms on the right show the distributions of forward probabilities (black

bars), and learned synaptic weights (red bars). (D) The optimal value of 9

exhibited a non-decreasing dependence on the entropy of the target forward

transition matrix. The hyperbolic sine (sinh, dashed black line) dependence of

optimal 9 on target entropy explained 93% of the observed variability

(R2 = 0.93). Dashed light gray line is maximum entropy for a 19 state matrix

(∼4.26 bits). Approximately 80% of the distributions could be well learned

with homogenization and competition values that occupied only ∼10% of the

range of 9 (gray shaded region). (E) Learning transition matrices composed

of mixed distributions (in this case alternating the 0 bit and 2.2 bit

distributions) resulted in increased learning error relative to learning the

individual distributions.
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the distributions were optimally learned with homogenization-
competition values that occupy ∼10% of the range of 9 (gray
shaded region in Figure 9D). Furthermore, all but the two most
entropic distributions resulted in optimal 9 values less than
0, showing that, in general agreement with the results from Bf
sequences (Figures 5, 7), accurate Hebbian encoding of sequence
probability requires β < 0.5. Thus, HCP operating within a
limited regime of homogenizing and competitive forces is capable
of learning the vast majority of probability distributions tested.

The systematic dependence of 9 required to optimally
learn transition probability distributions of increasing entropy
suggested that learning transition matrices with a mixture of
low and high entropy transitions should be problematic. The
example shown in Figure 9E provides a demonstration of such
a case. Here, the entropy of transition probabilities alternated
between 0 (Figure 9B) and 2.2 bits (Figure 9C). Optimal learning
in this case resulted in a larger learning error than either of
the two pure distributions (Error = 0.016) and the final average
entropy (Entropy = 0.94 bits) was considerably less than the
average entropy of the input sequences (Entropy = 1.03 bits).
These results provide insight into the origin of deviations from
a perfect encoding observed for learning Bf songs in Figures 5A,
7A. In our simulations, the parameters α and β were jointly
optimized to minimize the average error across all transitions
for all syllables simultaneously. Therefore, because the song
sequences of an individual Bengalese finch can exhibit a large
range of forward entropies across different syllables (with a bias

toward low-entropy distributions), these results suggest that a
single α and β that are optimal across all transitions may not exist
for these sequences. In agreement with this, across the transition
matrices for the 16 birds examined here, we observed that average
learning error was positively correlated with the variability in the
entropy of individual syllable transitions (R = 0.52, P < 10−7)
(Equation 8).

Balanced Spike-timing Dependent Plasticity
(STDP) Learns Conditional Probability of spiking
Activity
The results above demonstrate that Hebbian plasticity develops
synaptic weights equal to conditional probabilities. We next
investigated whether such results hold under more biologically
realistic conditions. To this end, we again considered a feed-
forward network architecture of a single post-synaptic neuron
(y) connected to pre-synaptic neurons (xj) through weights
mj. The network is activated by an input sequence such that
during some plasticity window (1t), xj and y are sequentially
activated with probability P(xj|y) (Figure 2A). This time, units
are modeled as conductance based, leaky integrate-and-fire units
(using generic parameters) with Poisson background spikes
(Methods). In addition to the background Poisson spiking,
probabilistic sequential spiking is imposed on the pre-synaptic
and post-synaptic neurons through large excitatory conductances
(the “teaching” input to the network). Specifically, a spike is
imposed on a pre-synaptic neuron according to a Gaussian

FIGURE 10 | Balanced spike-timing dependent plasticity (STDP)

learns conditional probability of spiking activity. (A) Spike-timing

dependent plasticity rule. The amount of synaptic change depends on

the temporal difference (1t) between pre and post-synaptic spike times.

Synaptic potentiation (green curve) decays exponentially from a maximum

magnitude of A+as the difference between pre-synaptic spike preceding

post-synaptic spikes (−1t) increases. Conversely synaptic depression

(red curve) decays exponentially from a maximum magnitude of (A) as

the difference between post-synaptic spike preceding pre-synaptic

spikes (1t) increases. (B–D) Learning conditional probabilities with STDP.

(B) Additive STDP, (C) Balanced STDP, (D) Balanced STDP with

pre-synaptic normalization. (top) Synaptic weights (gray scale) as a

function time. (middle) Difference between synaptic weight distribution

and the underlying conditional probability of a presynaptic spike

preceding a post-synaptic spike. (bottom) Probability distribution of final

weight vector (red) and underlying probability distribution (black).
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distribution over the identity of pre-synaptic cells and 5ms later
(1t = −5ms), a spike is generated in the post-synaptic cell. We
used standard temporally asymmetric Hebbian plasticity based
on spike timing (spike-timing dependent plasticity, STDP), to
modify the synaptic weights (Figure 10A). These simulations
test the specific hypothesis that STDP molds synaptic weight
distributions to reflect the conditional probability of spike
sequences experienced by a feed-forward network.

According to the STDP rule, the change in synaptic strength
between a pre-synaptic and post-synaptic neuron (1mj) decays
exponentially (here, with equal decay rates τ±) as the temporal
difference in their spike times (1t) increases (Figure 10A)
(Kistler and van Hemmen, 2000; Song et al., 2000; Kempter
et al., 2001; Rubin et al., 2001; Kepecs et al., 2002). Synapses are
potentiated if the pre-synaptic neuron spikes with some short
latency before the post-synaptic neuron, and are depressed if
post-synaptic spikes precede pre-synaptic spikes (Figure 10A)
(Equation 9). As with HCP, A± describe the magnitude of
synaptic change (learning rates) and f±(mj) are functions that
describe how the magnitude of synaptic change depends on the
current synaptic weight (Song et al., 2000; Kempter et al., 2001;
Rubin et al., 2001; Gütig et al., 2003). The temporal asymmetry
in STDP has been interpreted as organizing potentiation and
depression to reflect the degree to which pre-synaptic spikes
caused post-synaptic spikes (Sjöström et al., 2001; Dan and Poo,
2004).

We found that STDP with a modest depression/potentiation
ratio (α = 1.1) and no weight dependence of synaptic
change (β = 0, the “additive” STDP rule), did not shape
synaptic weights to reflect the forward conditional probability
of spiking. The top plot of Figure 10B shows the synaptic
weights over 20 s of simulation (corresponding to 1000 imposed
spike pairs), and we see that the weight distribution steadily
becomes more concentrated on the neurons that have the
highest transition probability at the expense of the less probable
neurons. This results in an initial reduction in the error (mean
absolute difference) between weight and transition probability
distributions, which then increased after ∼5 s (250 imposed
spike pairs) (Figure 10B, middle). The final weight distribution
(Figure 10B, bottom, red) is more sharply peaked than the
underlying conditional probability distribution (Figure 10B,
bottom, black). In contrast, we found that STDP with the same
depression/potentiation ratio (α = 1.1) and a modest amount of
weight dependence of synaptic change (β = 0.2), could shape
synaptic weights to reflect the backward spiking conditional
probability. In Figure 10C, we show that such “balanced STDP”
was able to maintain the values of small synaptic weights
(top), with learning dynamics that decayed monotonically
(middle), resulting in a synaptic weight distribution that is very
well matched to the underlying conditional spike probability
distribution (bottom).

To next examine if STDP can encode forward probabilities we
again considered a feed-forward network architecture of a single
pre-synaptic neuron (y) connected to post-synaptic neurons (xj)
through weights mj. The neurons are activated as described
above. In line with our HCP learning rule and previous modeling
work (Fiete et al., 2010), we augmented the standard STDP rule

(Figure 10A), by divisively normalizing pre-synaptic weights.
As shown in Figure 10D, this learning rule rapidly shapes the
synapses from the pre-synaptic neuron on to the post-synaptic
targets to reflect the conditional probability with which they
were active. Together, these results demonstrate that, with an
appropriate balance of homogenizing and competitive forces,
STDP in a feed-forward network can engrain either the forward
or backward probability.

Discussion

We have studied the properties that enable a variety of Hebbian
learning rules (correlation, HCP, STDP) to engrain conditional
Markov transition probabilities in the synaptic weights of
sequentially active networks. We found that Hebbian plasticity
rules with pre-synaptic competition resulted in synaptic weights
that reflected the forward probabilities of the input sequences
while post-synaptic competition resulted in synaptic weights that
reflected the backward probabilities of the same input sequence.
Furthermore, to accurately and stably reflect the statistics of
input sequences, Hebbian plasticity (STDP and HCP) required
a balance of the competitive and homogenizing forces expressed
by plasticity rules. Together with the statistics of the inputs, the
balance of these forces strongly influenced both the entropy of
the steady-state synaptic weight distribution as well as the rate
at which structure emerged. We demonstrate that the optimal
balance of these forces depends on the entropy of the probability
distribution to be learned; however, a large proportion of
distributions could be learned within a small range of parameters.
Together, these results reveal properties of Hebbian plasticity
that allow neural networks to encode conditional probabilities of
sequences.

Learning Forward and Backward Probabilities
with Pre and Post-synaptic Competition
The geometry of many neurons exhibits a pronounced
asymmetry between their dendrites and axons, and this
physical asymmetry suggests an asymmetry in information
processing (Abeles, 1991; Dayan and Abbott, 2001; Koch,
2004). The distribution of post-synaptic weights describes a
neuron’s receptive field (i.e., how information flowing into
the neuron affects its activity), while the pre-synaptic weights
describe a neuron’s projective field (i.e., how information
flows out of the neuron) (Abeles, 1991; Dayan and Abbott,
2001; Koch, 2004). Based on these functional/anatomical
considerations and previous theoretical studies, we hypothesized
that Hebbian plasticity with a post-synaptic locus of competition
would develop weight distributions that reflect the backward
probabilities of the input sequence, and conversely, that Hebbian
plasticity with a pre-synaptic locus of competition would develop
weight distributions that reflect the forward probabilities of the
same input sequence (Grossberg, 1969; Amari, 1972; Miller and
MacKay, 1994; Fiete et al., 2010).

Our results demonstrate that the synaptic weights of neural
networks will come to reflect different probabilistic structures
of the same input sequence depending on the site of synaptic
competition. We show that when synaptic competition is
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instantiated pre-synaptically the weights converge on the
forward conditional transition probabilities. Conversely, when
competition is instantiated post-synaptically the synaptic weights
converge to the backward conditional transition probabilities
of the same sequence. These two probabilistic structures have
different semantics attached to them. The forward probability
describes the future of the system; it is the probability of
transitioning from the current state to any state. In contrast,
the backward probability describes the past of the system; it is
the probability of transitioning to the current state from any
state. From a functional standpoint, synaptic encoding of forward
probabilities are not only potentially useful for producing
sequences with a given probabilistic structure (Jin, 2009), but also
to make predictions about upcoming (sensory) events (Bastos
et al., 2012). The backward probabilities, on the other hand, are
useful for recognition processes, among other things (Gentner
and Margoliash, 2003; Bouchard and Brainard, 2013). The
specifics of how synaptic weights proportional to probabilities
get used for these different functions depend on the precise
mechanism by which the weights are transformed into neuronal
activities. No matter how weights are transformed to outputs
for specific functions, our results demonstrate an important
and remarkably simple correspondence between the biophysical
organization of neurons, the site of synaptic competition, and
the temporal flow of information encoded in synaptic weights by
Hebbian plasticity (Grossberg, 1969; Miller and MacKay, 1994;
Dayan and Abbott, 2001; Koch, 2004).

Previous studies in humans and birds have demonstrated
neural responses that increase (linearly) with increasing
conditional probabilities of experienced vocal sequences
(Bouchard and Brainard, 2013; Leonard et al., 2015). For
neurons operating in a linear regime, synaptic weights that
are linearly proportional to experienced probabilities would
generate auditory responses to sequence playback that linearly
increases with increasing probability. Therefore, intuitively, the
networks trained here could qualitatively re-produce previously
published results in humans and birds described above. We note
that the Hebbian encoding of sequence probability observed
here, in which weights are directly proportional to conditional
probabilities, is at odds with the most basic formulations
of efficient/predictive coding theories (Barlow, 1961; Bastos
et al., 2012). These powerful theories generally predict that
neural responses should encode sensory “surprise,” and thus
be inversely proportional to experienced probability (e.g., in
“odd-ball” experiments). We note that for both humans and
birds, the statistics of vocal sequences (speech and birdsong,
respectively) are highly behaviorally relevant (Bouchard and
Brainard, 2013; Leonard et al., 2015), and are learned over long
time scales. Our study supports the hypothesis that the neural
responses observed in these studies can emerge through local
Hebbian plasticity operating on the experienced statistics of
ethologically important sensory sequences.

Recent modeling studies that have aimed to generate
connectivity matrices capable of producing unary chains of
activity (i.e., linear sequences) from initially random connectivity
have incorporated some form of pre-synaptic plasticity (Jun
and Jin, 2007; Fiete et al., 2010). While these previous studies

suggested an important role for pre-synaptic plasticity in forming
weight matrices capable of generating linear sequences, the
precise statistical structure being captured by this plasticity was
not examined. Of particular relevance to our work are the
results of Fiete et al. (2010), which showed that connectivity
matrices capable of generating unary chains of spiking activity
in recurrent neural networks (i.e., linear sequences) can emerge
spontaneously from an initially randomly connected matrix. For
this result, the crucial components of the learning algorithm
were a temporally asymmetric Hebbian plasticity rule combined
with constraints on both the sum of pre-synaptic and the sum
of post-synaptic weights (Fiete et al., 2010). As shown here,
constraining the sum of the pre-synaptic weights generates
pre-synaptic competition, while constraining the sum of the
post-synaptic weights generates post-synaptic competition. In
the context of Fiete et al, constraining both presynaptic and
post-synaptic weighs during STDP creates a highly competitive,
essentially “winner-take-all” regime, giving rise to the completely
unary chain of synaptic connectivity. Our results demonstrate
that a specific probabilistic representation, conditional forward
probability, emerges through pre-synaptic competition. This
emphasizes the importance of pre-synaptic competition in
formation of synaptic weight matrices that underlie behavioral
sequence generation and prediction in neural networks.

Neurobiological Mechanisms of Pre-and
Post-synaptic Competition
The importance of heterosynaptic competition hypothesized
by modeling studies raises the question of the biophysical
plausibility of this type of synaptic modification. There is
both electrophysiological and structural evidence supporting the
hypothesis that neurons conserve the total synaptic weight they
receive, which could induce heterosynaptic competition post-
synaptically (Abraham et al., 1985; Royer and Paré, 2003; Bourne
and Harris, 2011). Of particular relevance is the observation
that when one group of synaptic inputs to a neuron is
potentiated through activity dependent homosynaptic LTP, the
other synapses can undergo heterosynaptic LTD (Royer and
Paré, 2003). In this way, the sum of synaptic inputs to the
neuron is held constant (Royer and Paré, 2003). This is direct
electrophysiological evidence for heterosynaptic competition
induced by the conservation of post-synaptic weights, as used
here for HCP.

On the pre-synaptic side, the existing experimental literature
supports the possibility of heterosynaptic competition/plasticity
expressed pre-synaptically. It has been shown that axonal
terminals originating from the same pre-synaptic neuron can
vary their synaptic strength depending on the post-synaptic
target, demonstrating the ability to regulate pre-synaptic strength
(Koester and Johnston, 2005). Activity dependent homosynaptic
plasticity of existing synapses has been observed to be
pre-synaptically expressed at several synapses, including bi-
directional plasticity at the CA3 to mossy-fiber synapse in the
mammalian hippocampus (Nicoll and Schmitz, 2005) and in
aplysia (Bailey et al., 2004), and LTD at L4 to L2/3 synapses in
the barrel cortex (Bender et al., 2006a,b). Additionally, activity
dependent, Hebbian competition of axonal territory and synaptic
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strength has been observed for retino-tectal projection (Ben Fredj
et al., 2010; Munz et al., 2014). Finally, strong evidence exists for
a pre-synaptic site of expression underlying activity dependent
homeostasis at the Drosophila neuro-muscular junction (Frank
et al., 2006) and in dissociated hippocampal (Branco et al., 2008)
and cortical cultures (Turrigiano et al., 1998). Together, these
results support the neurobiological plausibility of heterosynaptic
competition through constraints on the total out-going weight
of a pre-synaptic neuron. A key testable physiological prediction
is that Hebbian protocols for inducing synaptic plasticity (e.g.,
STDP) between a single pre-synaptic neuron contacting two
(or more) independent post-synaptic neurons should conserve
the total magnitude of synaptic potentials across post-synaptic
neurons.

Balancing Synaptic Homogenization and
Competition to Match Statistics
Independent of the site of synaptic competition, we found
that optimal learning of conditional probabilities by biologically
inspired Hebbian plasticity rules required a balance of the weight
dependence of synaptic change and the relative magnitudes of
depressing and potentiating events. Competitive forces push
synapses toward the binary synaptic weight distribution (i.e.,
low entropy), while homogenization pulls synapses toward the
uniform synaptic weight distribution (i.e., maximal entropy).
Therefore, the difference in the initial dynamics of learning as a
function of the amount of homogenization/competition can be
understood in terms of the stability of the initial weight matrices
(Mt= 0 ∼ 1/n) under the forces induced by the various amounts
of homogenization and competition. The weight dependence
of synaptic change and the depression-potentiation ratio did
not operate independently, as we found that the magnitude of
the effects mediated by either α or β was modulated by the
other (Figures 5B, 6A). As competition and homogenization
are, at a very basic level, antagonistic forces, an interaction
between the two is to be expected. We note that the observed
dependencies of accuracy and speed of learning on these forces
is not simply a reformulation of a “speed-accuracy trade-off,” as
we found that accuracy depended non-monotonically on9 while
learning rate decreased in an approximately monotonic fashion.
Interestingly, it has recently been shown that the detailed shape of
the STDP window function near the transition from depression
to potentiation is critical in determining the consequences
of STDP (Babadi and Abbott, 2010). This may serve as a
biophysical mechanism for shifting the balance of homogenizing
and competitive forces, and is an interesting direction of future
research.

In an elegant paper using a similar training paradigm to
ours, Legenstein, Naeger, and Maas have proven that through
post-synaptic STDP, a neuron can implement a wide variety of
transformations of its inputs (Legenstein et al., 2005). A recent
study on reward based synaptic plasticity has shown that post-
synaptic plasticity can engrain posterior probabilities of decisions
based on cues given rewards (Soltani andWang, 2010). However,
the plasticity rule was not based on activity levels, and long-
term instabilities in weights can be observed in the simulations
(Soltani andWang, 2010). Our work suggests that equipping this

rule with parameters to balance homogenizing and competitive
forces would stabilize its long-term behavior. Specifically, our
results show that Hebbian plasticity expressing a balance of
homogenizing and competitive forces resulting from a limited
range of parameters (here, ∼10% of the parameter space) is
capable of stably learning the vast majority of distributions to
which it is exposed (here, ∼80%). This suggests that a nervous
system with Hebbian plasticity operating within this regime
would be well poised to learn all but the most extreme statistical
distributions it encounters. However, the converse of this is also
true, namely that the balance of these forces dictates a prior
expectation of the randomness of the sequence to be learned.
Therefore, in the context of sequence learning, the balance of
these forcesmay be tuned through evolution to bias the sequences
of one species to be different from other species. For example, in
songbirds the zebra finch sings a nearly deterministic sequence
of syllables, while the closely related Bengalese finch (which
served as our ethological data set) exhibits a song with complex
probabilistic sequence structure. Hence, a specific prediction
is that over generations, the sequences produced by a given
birdsong species will converge to a common entropy value,
set by the biophysical properties of synaptic plasticity for that
species. At the same time, some of the variability observed
in the accuracy of biological sequence learning may result
from individual differences in the balance of the homogenizing
and competitive forces, possibly creating a mismatch between
intrinsic learning parameters and the statistics of the sequence
to be learned. Thus, like all priors, the prior dictated by
the balance of homogenization and competition is a “double-
edged sword,” enhancing learning when experiences matches
its structure, but hindering learning when experiences deviate
from it.

Together with previousmodeling and analytic work, our study
illustrates the importance of understanding the neurobiological
processes that give rise to the competitive and homogenizing
forces expressed by synaptic plasticity (Miller and MacKay,
1994; Miller, 1996; Song et al., 2000; Rubin et al., 2001;
Sjöström et al., 2001; Kepecs et al., 2002; Gütig et al., 2003;
Legenstein et al., 2005; Babadi and Abbott, 2010). What balance
of homogenization and competition does synaptic plasticity
in the nervous system express? Is this balance specific to
a given brain region? Does the site of synaptic plasticity
depend on the computation required of the network? The
answer to these questions awaits further experimental work. For
example, the development of ocular dominance columns requires
connectivity matrices that are essentially binary, suggesting
that the Hebbian mechanisms underlying this development
exhibit a relatively strong competitive tone (Miller et al.,
1989; Song and Abbott, 2001). In contrast, the distribution
of EPSC’s measured experimentally from a variety of brain
areas (Sayer et al., 1990; Mason et al., 1991; Sjöström et al.,
2001; Feldmeyer et al., 2002; Barbour et al., 2007) seems
to suggest a more multiplicative type rule (van Rossum
et al., 2000; Babadi and Abbott, 2010). Together, these results
suggest that the amounts of homogenization and competition
expressed by Hebbian mechanisms may vary from area-to-
area, or maybe developmentally regulated, depending on the
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“desired” structure of the weight matrix. For example, the
development of sparse neural representations, which require
the majority of feature encoding weights to be 0, may be
aided by strongly competitive Hebbian plasticity, while more
dense representations could emerge from strongly homogenizing
Hebbian plasticity (Olshausen and Field, 1996; Perrinet, 2010;
Ganguli and Sompolinsky, 2012). Put another way, the balance of
homogenizing and competitive forces dictates a prior expectation
of the distribution of the synaptic weights to be learned, and
therefore the computational goal of the circuit should constrain
these forces (Legenstein et al., 2005; Barbour et al., 2007).
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