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The dynamics of neuronal networks connected by synaptic dynamics can sustain long

periods of depolarization that can last for hundreds of milliseconds such as Up states

recorded during sleep or anesthesia. Yet the underlying mechanism driving these periods

remain unclear. We show here within a mean-field model that the residence time of

the neuronal membrane potential in cortical Up states does not follow a Poissonian

law, but presents several peaks. Furthermore, the present modeling approach allows

extracting some information about the neuronal network connectivity from the time

distribution histogram. Based on a synaptic-depression model, we find that these peaks,

that can be observed in histograms of patch-clamp recordings are not artifacts of

electrophysiological measurements, but rather are an inherent property of the network

dynamics. Analysis of the equations reveals a stable focus located close to the unstable

limit cycle, delimiting a region that defines the Up state. The model further shows that

the peaks observed in the Up state time distribution are due to winding around the

focus before escaping from the basin of attraction. Finally, we use in vivo recordings

of intracellular membrane potential and we recover from the peak distribution, some

information about the network connectivity. We conclude that it is possible to recover the

network connectivity from the distribution of times that the neuronal membrane voltage

spends in Up states.

Keywords: modeling, inverse problem, synaptic depression, Up states, non-poissonnian distribution, first passage

times, mean-field model, neuronal networks

Significant Statement

Neuronal networks generate complex patterns of activity that depend on functional synapses.
Synaptic dynamics generates network dynamics characterized by long periods of depolarization
called Up states, that can last for hundreds of milliseconds. Yet understanding the network
connectivity and the mechanisms underlying these periods remain unclear. Using a mean-field
model, we find that the distribution of times in Up states does not follow a Poissonian law,
but presents several unexplained peaks. These peaks are not artifacts of electrophysiological
measurements, but result from the inherent dynamics properties of the network. Moreover,
the present method allows resolving a reverse problem: how to extract the neuronal network
connectivity from the distribution of times in a time series (Up states). We conclude that the
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distribution of times in Up states is due to synaptic dynamics in
a neuronal network with sufficient connections and the position
of peaks in the time distribution characterizes the degree of
functional network connectivity, usually difficult to estimate.

1. Introduction

The cerebral cortex is continuously active even in the absence
of external stimuli, showing patterns of activation that resemble
the ones generated by direct stimulations (Kenet et al., 2003;
Chen et al., 2013). Recurrent patterns have also been found
in neuronal ensembles (Cossart et al., 2003). Yet the origin
of this recurrent activity based on network properties remains
unexplained. Several computational studies have addressed
successfully the role of noise in generating oscillations in
recurrent networks (Verechtchaguina et al., 2006; Nesse et al.,
2008). The spontaneous activity of the membrane potential
of connected neurons has further revealed that it can switch
between an Up and a Down state (Lampl et al., 1999; Anderson
et al., 2000; Chen et al., 2013).

This Up and Down state phenomena has been modeled for
excitatory network by synaptic-depression mean-field equations
(Tsodyks et al., 1998; Torres et al., 2002; Holcman and
Tsodyks, 2006), where early simulations suggested that the
residence time of the membrane potential in the cortical Up
state does not follow a Poissonian law, but presents several
unexplained peaks. Using a mean field model, we show here that
these peaks are neither artifacts of numerical simulations nor
electrophysiological measurements, but are rather an inherent
property of the underlying dynamics.

Using excitatory synaptic transmission only, we shall see that
the model used in this manuscript reproduces experimental
settings, where inhibition is shut down in picrotoxin condition.
By analyzing the times in Up states, we will show that
their distribution presents oscillation peaks, allowing a novel
characterization of time series recording of Up and Down states.
We show in Supplementary Information that adding inhibition
affects but do not change the nature of the oscillation peaks. Note
that these peaks were never reported before and are completely
different from the phenomenon of stochastic amplification of the
voltage in Up state, where fluctuations of the mean rate in the Up
states shows a single peak in the power spectrum (Hidalgo et al.,
2012).

We present here a model and a method to analyze the mean
properties of neuronal networks and in particular to recover
the degree of connectivity from the distribution of times in
depolarized states. We apply our analysis to in vivo recordings of
intracellular membrane potential. The first part of our approach
consists in studying a mean-field model and we find that the Up
states are characterized by a basin of attraction where the stable
focus is located near the unstable limit cycle. For a specific range
of the noise amplitude, we demonstrate that the distribution of
times in Up states, which is the survival probability of the Fokker-
Planck equation has periodic decreasing peaks. The period of
this oscillatory resonance is surprisingly exactly the imaginary
part of the eigenvalue of the jacobian of the vector field at the
focus, in agreement with asymptotic computations, obtained for

generic dynamical systems (Dao Duc et al., 2014). We conclude
that neuronal network driven by synaptic depression operates in
a regime of parameters that leads to non-Poissonian residence
time in the Up state. Finally, recovering the network connectivity
from the distribution of times of the mean neuronal membrane
voltage or in general from the distribution of firing rates, is a
general concept that should be applied to neuronal networks of
various sizes.

2. Materials and Methods

2.1. Mean-field Equations for
Synaptic-depression
A neuronal network connected by excitatory connections is
described here by its mean firing rate averaged over the neural
population. When the neuronal network is mostly connected
with depressing synapses, the state of a synapse is represented by
the depression parameter µ (Tsodyks and Markram, 1997). The
mean neuronal activity follows the stochastic system (Bart et al.,
2005; Holcman and Tsodyks, 2006)

τ V̇ = −V + JUµR(V)+
√

τσ ω̇ (1)

µ̇ =
1− µ

tr
− UµR(V),

where V is an average voltage (measured in mV with a base line
at 0 mV), J is the average synaptic strength in the network, U
and tr are utilization parameters and recovery time constants
of the synaptic depression respectively (Tsodyks and Markram,
1997; Bart et al., 2005). We use a δ-correlated white noise ω̇

of mean zero and variance one (Schuss, 2010). The first term
on the right-hand side of the first equation of Equation (1)
accounts for the intrinsic biophysical decay to equilibrium. The
second term represents the synaptic input, which is scaled by
the synaptic depression parameter µ. The third one summarizes
all uncorrelated sources of noise with amplitude σ . R(V) is the
average firing rate (in Hz) approximated by a threshold-linear
voltage dependence function

R(V) =
{

α(V − T) if V > T
0 else.

(2)

where T > 0 is a threshold and α = 1Hz/mV is a
conversion factor. In general, the function R(V) is a sigmoid
because it should account for the saturation of the neuronal firing
rate. However, due to the synaptic-depression, the dynamics
never reaches the saturation regime and we can thus use the
function R(V) defined above. The second equation in 1 describes
the activity-dependent synaptic depression according to the
classical phenomenological model (Tsodyks andMarkram, 1997):
briefly, every incoming spike leads to an abrupt decrease in the
instantaneous synaptic efficacy, measured by a utilization factor
U, due to depletion of neurotransmitters. Between spikes, the
synaptic efficacy recovers to its original state (µ = 1) with a
time constant tr (see parameters in Table 1). Entering into an
Up state corresponds to an escape event in the region between
the separatrices and the unstable limit cycle. It is known that the
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TABLE 1 | Simulation parameters (Holcman and Tsodyks, 2006).

τ U J σ T tr

0.05 s 0.5 12.6 mV/Hz 2.2 mV 2 mV 0.8 s

dynamics shows a fast rotation (population spike) around the
unstable limit cycle and a small noise fluctuation can produce
the impulsion necessary to push a trajectory into an Up state
(Holcman and Tsodyks, 2006). This model has been used to
describe excitatory neuronal network.

2.2. Experimental Protocols
2.2.1. In vivo Whole-cell Recording in the Barrel

Cortex
Experimental procedures were performed in accordance with the
recommendations of the French Institut National de la Santé et
de la Recherche Médicale animal care and use committee and
the European Council Directives (2010/63/UE). A male wistar
rat (P27/87 g) was anesthetized briefly with isoflurane followed
by urethane (1 g/kg body weight, i.p.) plus additional doses of
a mixture of ketamine (50mg/kg) and xylazine (2.5mg/kg) as
needed then head-fixed into a stereotaxic frame. A local analgesic
(lidocane) was injected under the skin before the first incision.
The skull was exposed and a small craniotomy was performed
over the somatosensory cortex (2.5mm posterior and 5.5mm
lateral to the bregma). Blind in vivo whole-cell recordings were
obtained using previously described procedures (Margrie et al.,
2002). Borosilicate glass patch pipettes (resistance 5–7 M?) were
filled with an intracellular solution containing (in mM): 130
KMeSO4, 5 KCl, 5 NaCl, 10 HEPES-K, 2.5 MgATP, 0.3 NaGTP,
0.2 EGTA and 0.1 % of biocytin (pH adjusted to 7.2) and
advanced into the brain perpendicular to the surface of the cortex.
The cell membrane potential was recorded in current clamp
mode without any current injection. The signal was amplified
using an Axoclamp-2B amplifier (Molecular devices, Sunnyvale,
California), low-pass filtered online at 3 kHz and digitized with a
digidata 1440A (Molecular devices) at 20 kHz.

2.2.2. In vivo Whole-Cell Patch-Clamp Recording of

Layer 2/3 Neurons in the Auditory Cortex
Whole-cell patch-clamp recordings of layer 2/3 neurons in the
auditory cortex of C57BL/6 mice (30–50 postnatal days old)
were obtained using the procedure as described previously
(Kitamura et al., 2008; Jia et al., 2010; Chen et al., 2011).
Briefly, the mouse was placed onto a warming plate (37.5–
38◦C) and anesthetized with 0.8–1.2% isoflurane in pure O2.
The recording chamber was perfused with normal Ringer’s
solution containing (in mM): 125 NaCl, 4.5 KCl, 26 NaHCO3,
1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 20 glucose , pH
7.4, when bubbled with 95% O2 and 5% CO2. The body
temperature of the mouse was maintained in the range of
36.5–37.5◦C throughout the recording period. Somatic current-
clamp recordings were performed with an EPC-10 amplifier
(USB Quadro Amplifier, HEKA Elektronik, Lambrecht/Pfalz,
Germany) under two-photon imaging guidance. Borosilicate
glass pipettes with open tip resistance of 5–7 M� were filled

with an intracellular solution containing: 112 mM K-gluconate,
8 mM KCl, 10 mM HEPES, 4 mMMg-ATP, 0.3 mM Na2GTP, 10
mM Na-Phosphocreatine, titrated to pH 7.20–7.25. The pipette
series resistance was continuously measured and neurons were
rejected for data analyses if the resistance was higher than 30M�.
Electrophysiological data were filtered at 10 kHz and sampled
at 20 kHz using Patchmaster software (HEKA, Lambrecht,
Germany). Two-photon imaging was performed with a custom-
built video-rate two-photon microscope based on a resonant
scanner (Leybaert et al., 2005) and a mode-locked femtosecond
pulse laser, operating at 710–920 nmwavelength (MaiTai, Spectra
Physics, Mountain View, CA). The scanner was mounted on an
upright microscope (BX61WI, Olympus, Tokyo, Japan) equipped
with a 40/0.80 water-immersion objective (Nikon, Japan).

2.3. Fitting Procedure
We fitted the distribution of time in the Up state using the
following fitting procedure:

1. We first fitted the first exponential Ae−λ0t using the Matlab
fitting toolbox using the constraint: 0.9λ̃0 ≤ λ0 ≤ 1.1λ̃0.λ̃0 =
1/MFPT, where the MFPT is computed by averaging the time
in the Up state.

2. We fitted the second exponential Be−λ1t by subtracting the
first one from the data and by considering the convex hull of
the resulting curve. λ1 was manually adjusted maintaining the
condition that it is larger than λ0.

3. We fitted the periodic part cos(ωt + φ) by manually finding
the period T between two consecutive peaks on the histogram
with ω = 2π

T .

The Up state histogram is obtained from electrophysiological
recordings lasting 300 s of neurons located in the barrel cortex.
The data were down-sampled by 100 Hz and the minimal value
was subtracted so that now it is equal to zero.We annotate the Up
states defined by a starting spike, followed by a period of stable
depolarized membrane potential and the end is usually a single
exponential decay. From the Up and Down states classification,
we extracted the histogram of the Up states duration. It is
composed of 325 Up states, that we bin into epochs of 0.0293 s
(70 bins for 2.05 s). The histogram is presented in Figure 8A.

We also analyzed the histogram of Up states, recorded in the
auditory cortex from 5 different electrophysiological traces, each
lasting 32 s, obtained in vivo from a neuron of the L2 cerebral
cortex in an anesthetized mouse (Chen et al., 2013). We extracted
the histogram of the Up states duration, composed of 79Up states
that were put into bins each representing 0.0622 s (50 bins for
3.1 s). The histogram is presented in Figure 8B.

3. Results/Discussion

3.1. The Phase-space Analysis Unveils the Origin
of the Peak Oscillation
We now represent the Phase-Space (V, µ) in Figure 1A, which
contains three critical points: two attractors P1 (located at V =
0, µ = 1), P2 and one saddle point PS. The basin of attraction
for the stable focus P2 is delimited by an unstable limit cycle C
(dashed line in Figure 1A), which defines the Up state region.
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A B

FIGURE 1 | Transition to an Up state. (A) Phase portrait (V, µ) defined by

Equation (1), containing a stochastic trajectory (blue). The phase space shows

a limit cycle C (dashed line) containing a stable focus P2, a saddle point PS
and a stable attractor P1. The Up state is the domain inside the limit cycle C.

(B) transition of a trajectory to an Up state in the time domain for the variable V

and µ.

This basin of attraction (Up state) appears when the network
connectivity J exceeds a minimal value (see Holcman and
Tsodyks, 2006). Indeed, as the parameter J increases, following
a super-critical (with a minus sign) Hopf-bifurcation, the point
P2, which was previously a repulser becomes an attractor and an
unstable limit cycle appears around it (Figure 1A). Intuitively,
this bifurcation occurs when the recurrent connections are
becoming sufficiently strong.

A trajectory enters the limit cycle by a noise induced transition
(see Figure 1B). The stable focus is at the intersection of
nullclines (in red in Figure 3). The time in the Up state is
precisely the mean first passage time for a trajectory before it
reaches the unstable limit cycle (dashed line) which is the basin
of attraction and defines the Up state in the phase space. Once
a trajectory exits through the limit cycle, the dynamics relaxes
exponentially to the Down-state. We study here the distribution
of times spent in the Up states (DTUS) only. The mean of this
time has been estimated asymptotically and is the reciprocal
of the escape rate (Schuss, 1980, 2010; Matkowsky and Schuss,
1982; Freidlin and Wentzell, 1998). It characterizes the escape
in the generic activation problem. However, this analysis is not
sufficient to characterize escape when the focus is located close
the separatrix as it is the case here. Indeed, the DTUS shows
various oscillation peaks in Figure 2, confirming that it is non-
Poissonian and in addition, the amplitude of the DTUS, but
not the frequency of DTUS oscillation depends on the noise
size. As the noise decreases, the distribution of exit time evolves
from an initially decaying exponentially to an oscillatory decay
with several apparent peaks. We conclude that these peaks are a
direct consequence of the dynamics induced by the geometrical
organization of the recurrent ensembles, where the focus is very
close to the unstable limit cycle. In the remaining part of this
article, we study these peak oscillations.

Already, we see that for a focus located near the limit cycle, the
vector field vanishes close at the boundary, leading to a dynamics
dominated by the noise. Thus, escape should occur in a small
region of the limit cycle close to the focus. Consequently, if a

FIGURE 2 | Distribution of exit times from Up States for various noise

amplitudes (σ = 0.0014,0.0016,0.0018, and 0.002 mV). With each

histogram, we computed the MFPT, which is a decreasing function of σ (total

of 100,000 runs).

FIGURE 3 | Distribution of exit points from the Up states. The exit points

(green) for trajectories are located on a small portion of the limit cycle (dotted

blue) with nullclines (dotted red) and the vector field (black arrows) (100,000

runs). In each sub-figure, a trajectory reaches the limit cycle after 0, 1, 2, and 3

rotations. All trajectories start at the initial point (µ0,V0 ) = (0.2,20).

trajectory does not exit in that small region, it winds around the
focus before returning to the region where it can escape. This is
shown in Figure 3. This rotation phenomena is responsible for
the peaks in the DTUS. Moreover, the periodic peaks in DTUS
is associated with a distribution of exit points concentrated in a
very small part of the limit cycle, as shown in Figure 4. These
periodic peaks in DTUS are in contrast with the Down-states
distribution that shows a simple exponential (see Supplementary
Information).

We further characterize the peak oscillations as follows: we
find that the oscillation frequency in DTUS is equal to the
imaginary part of the Jacobian of the deterministic vector field
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FIGURE 4 | Exit point distribution along the unstable limit cycle. The

distribution of exit points (associated to the green points in Figure 3) peaks in

a very small region of the boundary. The x-axis is the arc length along the limit

cycle oriented counterclockwise. The origin is (µ,V ) = (0.035,40) and the total

arclength is 130. The initial point for all trajectories is (0.3, 30). Number of

runs = 10000.

of system 1 at the focus point. Indeed, the coordinate of the focus
in the phase-space is given by Holcman and Tsodyks (2006)

V∗ =
1

2

(

−1+ αJ + Utr +
√

1

αUtr

)

, (3)

µ∗ =
V∗

αJ(V∗ − T)
. (4)

where 1 = (1 − αJ − Utr)
2 − 4Uα2 JtrT. Using parameters of

Table 1, we find the coordinates (µ∗,V∗) = (0.1882, 12.7865).
The Jacobian matrix at a point (µ,V) is

Jac(µ,V) =







1

τ
(−1+ µJα) −Uαµ

Jα(V − T)

τ
−
(

1

tr
+ Uα(V − T)

)







and the imaginary part of the eigenvalues is

I(µ,V) =
1

2

√

4det (Jac(µ,V))− Tr2(Jac(µ,V)). (5)

Applying formula 5, we find that the imaginary part of the
eigenvalues of the Jacobian matrix at the Up state is I(µ∗,V∗) =
10.04. The associated period is thus Tloop = 2π

I(µ∗,V∗)
= 0.6258,

which is very close to the period that we obtained with Brownian
simulations (see Figure 1) T̃loop = 0.6. This result shows that
the oscillation frequency in the DTUS is determined by the
deterministic property of the field at the focus only, a situation
that is exact for a large class of dynamical system (Dao Duc et al.,
2014). Finally, the oscillation frequency I(µ∗,V∗) is an increasing
function of the connectivity J, as shown in Figure 5.

3.2. Winding-decomposition for the Time
Distribution in Up State
We explore now the contribution to the DTUS of each
trajectory making exactly k-turns before exit. We decompose the
empirical distribution of exit times by peaks, which are precisely

FIGURE 5 | The imaginary part of the eigenvalues of the linearized

system at the Upstate. It increases with the connectivity J (the value of J

used in the previous simulations is J = JT0 = 12.6).

determined by the winding number of a trajectory around the
focus: the first peak is mainly composed of trajectories making
no rotation, the second one is made of trajectories making
exactly one rotation and so on (see Figures 6A,B). However,
the dispersion of exit times for trajectories making several turns
(Figure 6C) smoothes out the shape of the next peaks. To gain a
better understanding of the DTUS, we decompose the exit time
based on the turning number: after k turns, the exit time is the
sum τ e

k
= τ1 + .. + τk + τ e, where τ e is the time to exit

without turning and τq is the winding time between the qth and
q−1th turn. The variables τq are i.i.d because a trajectory restarts
independently of its previous initial position close to the focus.
Defining the probability p = Pr{τ e < τ r} to rotate before exit
(τ r is the first time to complete a rotation), we use Bayes’law to
decompose the distribution of exit times as

Pr
(

τ e < t
)

=
∞
∑

k=0

Pr
(

τ e < t|k
)

Prrot{k}, (6)

where Prrot{k} is the probability of making exactly k rotations
before exit. Due to the independence of the renewal process after
each rotation, it is equal to the probability to make exactly k − 1
turns multiplied by the probability p to exit

Prrot{k} = p(1− p)k−1. (7)

We confirm the exponential decay of the probability Prrot{k}
to exit after k turns (Equation 7). It is well approximated by
empirical stochastic simulations (Figure 6D). Furthermore, by
computing the empirical ratio of the number of trajectories that
exit after a single turn to the ones that rotate, we obtain the
probability p = 0.12 (using parameters of Table 1). Finally,
using the i.i.d property of the rotation times τq, the conditional
distribution probability to exit after k rotations Pr

(

τ e < t|k
)

is
the k-convolution of the distribution of times of a single rotation
f1(t) = Pr (τ1 = t) by the distribution of exit time without
turning f0(t) = Pr (τ e = t|0):

Pr
(

τ e < t|k
)

= f
∗ (k−1)
0 (t) ∗ f0(t) = f1 ∗..∗ f1(t) ∗ f0(t),
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A B

C D

FIGURE 6 | Decomposition of the DTUS with respect to the winding

number. (A) Distribution of exit times. (B) Distribution of exit times

conditioned on the winding number. (C) Mean exit time and variance

increase linearly with the winding number. (D) Exponential approximation of

the winding probability. The probability of escaping after n turns is

f (n) = p(1− p)n−1, where p is computed empirically as the ratio of trajectories

making one turn to the total number. We use 106 runs, trajectories start at

(µ0,V0) = (0.21,20mV ) with σ = 0.0015.

where f
∗ (k)
0 is the kth convolution power of f0 (f ∗ g(x) =

∫ x
0 f (t)g(x− t)dt). Thus, the pdf of exit time is given by

fτ (t) =
+∞
∑

k=0

f1
∗ (k)(t) ∗ f0(t)p(1− p)k−1. (8)

To validate Equation (8), we estimated f
∗ (k)
1 (t) ∗ f0(t) for all

successive peaks and compared them to Brownian simulations as
follows: the distributions f0 and f1 are exponentially distributed
at infinity and can be approximated by

fk(x) = Ck

[

1+ er f

(

x− ak

bk

)]

e−λkx, (9)

where k = 0, 1 and the normalization constants Ck are obtained
by
∫ +∞
0 fk(t)dt = 1. Fitting the empirical histograms conditioned

on a winding number < 1, we obtain for f0 the following
parameters a0 = 0.43, b0 = 0.1, λ0 = 4.8. By simulating
trajectories that are making one turn, we obtain for f1: a1 =
0.48, b1 = 0.1, λ1 = 5.5. Then we use these analytical

expressions f
∗ (k)
0 (t)p(1 − p)k−1 and compare them with the

Brownian simulations (see histograms obtained for k = 1, 2, 3, 4
in Figures 7A,B).

The oscillations in the Up state histogram shown in Figure 7

were not reported before and are for instance completely different
from the stochastic amplification phenomena for the voltage
in the Up states reported in Hidalgo et al. (2012), which
concerns fluctuations of the mean firing rate with a peak in the
power spectrum. This effect is fundamentally different: while the
frequency of the peak depends on the noise amplitude in Hidalgo
et al. (2012), it is independent here and determined only by the
Jacobian of the deterministic system at the attractor.

Moreover, the oscillation peaks that we found here are a
consequence of the close proximity between the two-dimensional
limit cycle and the point attractor. For that same reason, our
findings also differ from that of Mejias et al. (2010), in which
the stochastic dynamical system is reduced to a one dimensional
Ornstein-Uhlenbeck process. Computing the power distribution
under this reduction implies that the attractor is far enough
away from the basin of attraction of the Up state. However, this
situation is not the one obtained from parameters accounting for
physiological conditions (Tsodyks and Markram, 1997; Holcman
and Tsodyks, 2006; Dao Duc et al., 2015), where the attractor
is located in the boundary of the basin of attraction (see
Figure 1). In this case, the exit time distribution cannot be well
characterized simply by the first eigenvalue of the associated
Fokker-Planck equation. Indeed, the second one is also needed
and contains an imaginary component (Dao Duc et al., 2014), a
phenomenon that is only possible for nonself-adjoint operator in
two dimensions at least.

3.3. Extracting the Neuronal Network
Connectivity from the Distribution of Times in Up
States
The distribution of times in Up states is non-Poissonian, because
the underlying dynamics is a non-classical escape problem
(Holcman and Schuss, 2014). Analysis of the Fokker-Planck
equation for generic dynamical systems (Dao Duc et al., 2014)
reveals that the distribution of time can be expanded in
eigenvalue series

fUp(t) = A0e
−λ0t +

∑

n,m

Cn,me
−λn,mt, (10)
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A B

FIGURE 7 | Distribution of exit time conditioned by the winding number. (A) Comparison between histograms of trajectories of 1, 2, 3, and 4 turns and

formulae 9 and 8 (in red) (B) Comparison between the histogram of exit time obtained from subfigure A with the analytical formula (in red) Equation (8).

where A0,Cm,n are constants, λn,m complex-valued higher-order
eigenvalues and λ0 is the principal eigenvalue of the Fokker-
Planck in the domain that defines the Up state (basin of
attraction delimited by an unstable limit cycle). The second order
approximation is

fUp(t) = Ae−λ0t + Be−λ1t cos(ωt + φ) (11)

where A,B are constants and the intrinsic parameters are
λ0, λ1, ω, φ. All these constants needed to be identified. The
theory predicts (Schuss, 2010) that λ0 ≈ 1

τ̄
, which is the

mean time the voltage membrane stays in Up states. It can be
directly estimated from the histogram by computing the mean
(first moment). The other parameters should be fitted from the
histogram with the constraint that λ1 > λ0 and T = 2π

ω
is the

period between two consecutive peaks and can be determined
from histograms.

We apply the present theory to two different intracellular
recordings obtained in the barrel cortex and the auditory cortex
(see Section 2) (Figure 8) and we obtain for the first exponent
λ0 = 1.92 and λ0 = 1.48 respectively (see Table 2). We
found that the period interval between two consecutive peaks
T = 2π

31 = 0.2 and T = 2π
21 = 0.29, leading respectively

to J = 37 and J = 18.2, where we used the graph
presented in Figure 8. We can recover the connectivity from
the imaginary part of the eigenvalue of the field at the attractor,
which is exactly the period T. We obtained for each case the
degree of connectivity using τ = 0.02. The fitted curves are
represented in Figure 8 where we also plotted Gaussian fits

f (t) = A exp −(t−B)2

C (Table 3). It is remarkable that in both cases,
the first and the second eigenvalues λ0 and λ1 are sufficiently
close, leading to the oscillation phenomena in the distribution of
exit times.

We conclude that in both cases, we obtain that the distance
between two peaks is the period T = 0.2, which is related

to the imaginary of the eigenvalue at the attractor. Using
Figure 8, we obtain that the degree of connectivity J responsible
for such dynamics is J = 30. It is possible to relate the
abstract degree of connectivity J used in the equations to
the actual number of synapses by calibrating the model
with experimental data. This procedure has been applied in
neuronal cultures, where we recently related the connectivity
J = 40 (for τ = 0.05) to an approximating 3000 synapses
per neuron in hippocampal islands containing 5–30 neurons
homogenously connected (Dao Duc et al., 2015). Finally, the
present analysis based on the depression-facilitation model
differs significantly from the hidden-Markov model approach
(McFarland et al., 2011), where several exponential distributions
including the gamma distribution and inverse Gaussian
distribution and the geometric distribution were used to fit the
distribution.

4. Conclusion

Using a mean-field model, we have shown here that the
distribution of times in the Up state of the neuronal membrane
potential shows several oscillation peaks. These oscillations
are due to the intrinsic synaptic dynamics in the depression
model. The peaks frequency is independent of the noise
amplitude, but depends on the amount of synaptic connection
(Figure 5). It is conceivable that neurons have found a possibility
to exploit this quantification property. A possible prediction
of the model is that working memory could also show
period time, where the histogram of durations show multiple
peaks, a phenomena that would be interesting to demonstrate
experimentally. The peak oscillation phenomena described here
is a generic effect of stochastic dynamical systems where
recurrent set (focus point here) are located close enough to the
boundary.
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A B

C

E

D

FIGURE 8 | Two electrophysiological recordings (top) and their

annotation after processing (bottom). (A) An entire 32 s recording

from a L2 cortical neuron of the auditory cortex . (B) A 30 s sample of a

recording from a L4 cortical neuron (barrel cortex). Histogram of Up

states duration obtained from intracellular in vivo recordings from neurons

in auditory (C) (with error R2 = 0.73 Gaussian and R2 = 0.89 for the

model fUp) and barrel cortex (D) (with error R2 = 0.85 Gaussian and

R2 = 0.90 for the model fUp). We fitted each distribution with a Gaussian

curve (green) and the function fUp (t) = Ae−λ0t + Be−λ1t cos(ωt+ φ) (red),

predicted by our model. The parameters of the fit are summarized in

Table 2. The fit reveals the peak oscillations predicted by the depression

mean-field model. (E) Imaginary part or period of the peaks as a function

of the connectivity J (τ = 0.02). We obtained the connectivity J = 18.2

and 37.8.

TABLE 2 | Fitting parameters.

Recordings A B λ0 λ1 ω φ

(Frequency) (Phase)

Barrel cortex 54.4438 13.100 1.92 1.99 31.41 −3

Auditory cortex 10 1.48 1.87 21.22 23.9135 −4.3

Another aspect of the present work is the possibility to
extract the mean network connectivity from the distribution
of peaks, located in the Up state time series histogram. This

TABLE 3 | Gaussian fits.

Recordings A B C

Barrel cortex 14.96 0.4703 0.3448

Auditory cortex 6.582 0.8091 0.2978

analysis is a direct consequence of the model, from which we
show the distance between two consecutive peaks depends on
network connectivity (mean number of synapses per neurons).
In future work, more general models, including inhibition,
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intrinsic electrical properties of neurons, should be used to
recover more information about the network connectivity from
the distribution of times of the mean neuronal membrane voltage
or in general from the distribution of firing rates, which could be
applied to neuronal network of various sizes.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2015.00096
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