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This paper investigates how utilizing diversity priors can discover early visual features

that resemble their biological counterparts. The study is mainly motivated by the sparsity

and selectivity of activations of visual neurons in area V1. Most previous work on

computational modeling emphasizes selectivity or sparsity independently. However, we

argue that selectivity and sparsity are just two epiphenomena of the diversity of receptive

fields, which has been rarely exploited in learning. In this paper, to verify our hypothesis,

restricted Boltzmann machines (RBMs) are employed to learn early visual features

by modeling the statistics of natural images. Considering RBMs as neural networks,

the receptive fields of neurons are formed by the inter-weights between hidden and

visible nodes. Due to the conditional independence in RBMs, there is no mechanism

to coordinate the activations of individual neurons or the whole population. A diversity

prior is introduced in this paper for training RBMs. We find that the diversity prior indeed

can assure simultaneously sparsity and selectivity of neuron activations. The learned

receptive fields yield a high degree of biological similarity in comparison to physiological

data. Also, corresponding visual features display a good generative capability in image

reconstruction.

Keywords: restricted Boltzmann machine, diversity prior, V1 simple cell, inhibition, Markov networks

1. Introduction

Much has been advanced in the knowledge of the brain in the last century since the foundation
of modern neuroanatomy by Ramón y Cajal (Ramón y Cajal, 1888, 1904; Jones, 2007). The
work of HUBEL and WIESEL (1959) was the first breakthrough in the understanding of simple
cells in area V1 of the visual cortex. V1 simple cells perform an early stage processing of the
visual input from the retina and the lateral geniculate nucleus (LGN). One important property
of V1 simple cells is that their receptive fields are selective in terms of location, orientation, and
frequency, which can be modeled by Gabor filters. Another characteristic on V1 simple cells is that
their activation pattern—when analyzed as a population—is sparse (Field, 1994). Selectivity (also
referred to as “lifetime sparseness” by Willmore and Tolhurst, 2001) is related to a neuron having
a response only to a small number of different (although similar) stimuli and providing a much
lower response to other (usually very different) stimuli. Sparsity (or “population sparseness” by
Willmore and Tolhurst, 2001) is a term expressing that the fraction of neurons from a population
that is activated by a certain stimulus should be relatively small. Selectivity and sparsity would
be due to a redundancy-reduction mechanism, where the visual cortex has evolved to encode
visual information as efficiently as possible (Barlow, 1989). This sparse coding would then enhance
coding efficiency, and when tested, leads in fact to Gabor-like representations (Olshausen and Field,
1996). Although sparse coding has been very successful at generating receptive fields similar to
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those of simple cells, sparsity does not necessarily imply
selectivity (Willmore and Tolhurst, 2001). In addition to
this, recent multi-unit neurophysiological recordings found
that just maximizing sparsity does not correlate with visual
experience, suggesting that coding efficiency is also due to lateral,
recurrent and feedback connections for the purpose of resolving
ambiguities (Berkes et al., 2009). In order to show the (lack
of) relationship between sparsity and selectivity, we illustrate
these concepts in Figure 1A. Each row (red) in this figure
represents how one neuron selectively responds to different
visual stimuli while each column (blue) describes how many
neurons are activated by one stimulus. Although selectivity and
sparsity can be related at their average values, they are not
necessarily correlated: Selective neurons do not ensure sparse
neuron coding (Figure 1C); similarly, sparsely activated neurons
are not necessarily narrowly selective (Figure 1D).

Another hypothesis on how to achieve coding efficiency
is dependence minimization, which can be achieved applying
independent component analysis (ICA) (Hyvärinen and Oja,
2000). ICA is a dimensionality reduction methodology widely
used in signal processing for decomposing a compound
signal into their components (or so-called bases) that are as
independent as possible. In ICA, independence maximization

A B

C D

FIGURE 1 | Understanding sparsity and selectivity. White circles

indicate activations while gray circles denote inactivations. (A) Explaining

the concepts of sparsity and selectivity; (B) An example of good sparsity

and good selectivity; (C) An example of good selectivity but bad sparsity;

(D) An example of good sparsity but bad selectivity. See text for further

description.

is achieved by pursuing extrema of the kurtosis (a measure
of function “peakedness”) of each components’ distribution.
Applying ICA on natural images has also produced receptive
fields like those of V1 simple cells (Bell and Sejnowski, 1997;
van Hateren and van der Schaaf, 1998). Be either ICA or sparse
coding, in the end, they are two successful learning strategies that
can learn primary visual cortex-like receptive fields (Olshausen
and Field, 1996; van Hateren and van der Schaaf, 1998).
Another successful learning strategy at emulating the hierarchical
architecture of the brain is deep learning (Bengio, 2009; LeCun
et al., 2015), which is usually constructed with a stack of
restricted Boltzmann machines (RBMs). RBMs have recently
attracted increasing attention due to its successes in learning
representations (Hinton, 2002; Hinton and Salakhutdinov, 2006).
In RBMs, there is no connection among hidden units (Figure 2),
which makes inference and learning of RBMs quite easy and
fast. That means that given some visible data, all hidden units
are conditionally independent from each other (see Section
2.2). Even so, RBMs provide a nonlinear coding of natural
images, which goes beyond sparse coding or ICA. However,
the capability of RBMs is still limited when learning receptive
fields similar to those of V1 simple cells. When RBMs are
trained on natural images, many learned features can be rather
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FIGURE 2 | A graphical model of a restricted Boltzmann machine

(RBM). Gray circles represent observed variables while empty circles are

hidden variables.

distributed, unlocalized and repeated, which is far from the
(selective and sparse) nature of the learning task. Prior work
has exploited different strategies to adapt RBMs toward learning
selective or sparsely-activated neurons (Lee et al., 2007; Goh
et al., 2010; Luo et al., 2011) on visual inputs. Meanwhile, most
of those works focus on either one property, thus not ensuring
sparsity and selectivity simultaneously in the resulting emulated
neurons, which as mentioned before may be suboptimal for
coding efficiency.

Empirically, neither sparse coding nor ICA can yield both,
good selectivity and sparsity simultaneously (Willmore and
Tolhurst, 2001). In this paper, we propose a novel hypothesis
to interpret the selectivity and sparsity of neuron activations
through the diversity of neurons’ receptive fields. Based on the
analysis exposed above, we can see that the effect of sparsity is
to better differentiate neurons, while the goal of selectivity is
to avoid “over-tolerant” neurons, thus both aimed at reducing
ambiguities. We propose that, in order to reach bot—high
degrees of neural population sparsity and individual neuronal
selectivity—we need one condition: diverse receptive fields. To
the best of our knowledge, the diversity of receptive fields
(features) has rarely been exploited to guide learning, even
though it has been achieved unintentionally in several existing
models. By contrast to conventional models, we use diversity as a
starting point instead of as a result. An earlier pioneering work
focusing on the importance of diversity in neural coding was
presented by Padmanabhan and Urban (2010).

We argue that selectivity and sparsity of neurons’ activations
can be seen as two epiphenomena of the diversity of receptive
fields. To verify this hypothesis, we impose a diversity prior
on the inter-weights within the RBMs when learning simple
neurons’ receptive fields from natural images. This prior will
introduce a bias over the inter-weights toward higher degrees
of sum similarity minimization. The prior indirectly coordinates
neurons’ activations by diversifying the inter-weights within the
RBMs, which would mimic the effect of inhibition. It is worth
noting that the prior is only employed in the learning phase,
yet its implicit effect on coordinating neurons’ activations will
remain after learning. In this sense, the diversity prior is in line
with the influence of inhibitory interneurons (King et al., 2013)
(see Section 2.3 for more details). It should be finally noted that
we do not consider an RBM (even if trained with diversity priors)
as a full biologically-plausible model of V1 simple cells, since
we are not considering many other aspects and properties of
simple cells, e.g., contrast normalization, contrast adaption, etc.

The purpose of our study is to verify and advocate for using
diversity as a new principle in order to guide the learning of more
similar primary visual cortex cell receptive fields.

2. Materials and Methods

In this section, we describe our basic experimental setup,
which includes the construction of visual stimulus data, the
restricted Boltzmann machine (RBM), and the proposed prior
for training. For the RBM, a brief introduction of the model and
its probabilistic properties is provided in Section 2.2. Readers are
referred to Hinton (2002) for a more detailed and deeper study.

2.1. Images
The benchmark database from Olshausen and Field (1996)1

was used in this paper. This database consists of 10 natural
images, which were preprocessed with a pseudo-whitening filter,
which flattens the spectrum of natural images by rescaling
Fourier coefficients. This step is commonly applied (Olshausen
and Field, 1996; Willmore and Tolhurst, 2001), and to some
extent is similar to retinal processing. Alternatively, a similar
preprocessing function is the log transform, which is more often
used in ICA (van Hateren and van der Schaaf, 1998). Then,
100,000 small patches (size 14× 14) were extracted from random
positions of the 10 whitened images. Furthermore, a sigmoid
function was applied to the pixel intensities to fit their values into
the range [0, 1]. In addition, the patches with variances smaller
than 0.1 were filtered out in order to accelerate training.

2.2. Restricted Boltzmann Machines
The restricted Boltzmannmachine (RBM) is a two-layer, bipartite
Markov network, which is a “restricted version” of the Boltzmann
machine with only inter-connections between a hidden layer
and a visible layer. RBMs have been recently rather popular
in constructing deep neural networks (DNNs) (Hinton and
Salakhutdinov, 2006). A graphical model of an RBM is presented
in Figure 2. Input data is binary and Nv dimensional; they are
fed into Nv units in the visible layer v. The Nh units in the
hidden layer h are stochastic binary variables, i.e., v ∈ {0, 1}Nv ,
h ∈ {0, 1}Nh . The joint probability of {v, h} is:

p(v, h) =
1

Z
exp(−E(v, h)) E(v, h) = −v⊤Wh− h⊤b− v⊤c

(1)
where W ∈ R

Nv×Nh is the matrix of symmetric weights, b ∈

R
Nh×1 and c ∈ R

Nv×1 are biases for hidden units and visible
units, respectively. Z =

∑

v,h exp(−E(v, h)) is the partition
function for normalization. In our experiment, to fit the size of
small image patches, Nv is equivalent to 196, and Nh is 200, i.e.,
200 hidden units. Because of the restricted connections in RBMs,
hidden units hj are conditionally independent of each other given
the visible data v,

p(h|v) =
∏

j

p(hj|v) p(hj = 1|v) = S(v⊤W·j + bj) (2)

1Available on http://redwood.berkeley.edu/bruno/sparsenet/.
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and similarly, visible units vi are conditionally independent of
each other given h.

p(v|h) =
∏

i

p(vi|h) p(vi = 1|h) = S(Wi·h+ ci) (3)

where Wi· and W·j denote the ith row and jth column of
matrix W, bj and ci are the jth and ith entry of vector b and

c, respectively. S(·) is the logistic function S(x) = 1
1+exp(−x)

.

Given training data D = {v(l)}L
l=1

, an RBM can be learned by
maximizing the average log-likelihood of D:

W∗ = argmax
W

L(D) = argmax
W

1

L

L
∑

l=1

(

log
∑

h

p(v(l), h)

)

(4)

Since the log-likelihood is concave with respect toW, b, c (Koller
and Friedman, 2009, Chapter 20), based on Equation (1), gradient
ascent can be applied on Equation (4) by computing the gradient
of L(D) with respect toW, b, c as:

∇WL(D) =
1

L

L
∑

l=1

[

Ev(l)∈D,h∼p(h|v(l))(v
(l)h⊤)− Ev,h∼p(v,h)(vh

⊤)
]

(5)

∇bL(D) =
1

L

L
∑

l=1

[

Eh∼p(h|v(l))(h)− Eh∼p(v,h)(h)
]

(6)

∇cL(⌋) =
1

L

L
∑

l=1

[

Ev(l)∈D(v(l))− Ev∼p(v,h)(v)
]

(7)

where Ep(·) denotes the expected values with respect to p.
Obviously, the first terms in Equations (5–7) are easy to compute
with v(l) from D and h inferred using Equation (2). However,
the sampling v, h ∼ p(v, h) in the second term of Equation
(5) makes learning practically infeasible because it requires a
large number of Markov chain Monte Carlo (MCMC) iterations
to reach equilibrium. Fortunately, we can compute an efficient
approximation to the exact gradient: contrastive divergence
(CD), which works well in practice (Hinton and Salakhutdinov,
2006). By using CDk, only a small number of k steps are run
in block Gibbs sampling (usually k = 1), and Equation (5) can
finally be approximated as

∇WL̂(D) =
1

L

L
∑

l=1

[

v(l)p(h(l)+|v(l))⊤ − p(v(l)−|h(l)+)

p(h(l)−|v(l)−)⊤
]

(8)

∇bL̂(D) =
1

L

L
∑

l=1

[

p(h(l)+|v(l))− p(h(l)−|v(l)−)
]

(9)

∇cL̂(D) =
1

L

L
∑

l=1

[

v(l) − p(v(l)−|h(l)+)
]

(10)

where h(l)+ denotes the inferred hidden vector from the lth
observed data point v(l) (using Equation 2), and v(l)−, h(l)− are

vectors after one-step block Gibbs sampling (using Equations 2,
3 and again Equation 2).

2.3. Imposing a Diversity Prior
In RBMs, columns of W are basis images, with which v can be
reconstructed from h. To some extent, they can also represent
neurons’ receptive fields. To this end, a natural choice of biasing
parameters is to diversify the columns ofW as much as possible.
The way in which we approach diversification is minimizing
square cosine similarities among columns ofW:

argmin
W

Nh∑

j=1

Nh∑

k 6=j

∥
∥
∥
∥
∥

W⊤
·,jW·,k

||W·,j||||W·,k||

∥
∥
∥
∥
∥

2

(11)

Note that the denominator in Equation (11) is necessary, because
eliminating it will generate many “dead” neurons. This repulsive
design among W·,j was also employed in the local competition
algorithm (LCA) (Rozell et al., 2008). Zylberberg et al. (2011)
also found that inhibition between two neurons are proportional
to the similarity (measured by the vector dot product) between
their receptive fields. Here, in order to gain a more clear
understanding on how the diversity prior can replicate the effect
of neural inhibition, an illustrating example is presented in
Figure 3. In particular, for computing the gradient with respect
to W, Equation (8) needs to infer the activations of the hidden
units. The prior, which can bias the columns of W toward a
more diverse population will indirectly coordinate the activations
by suppressing the emergence of similar receptive fields, and
therefore leads to a similar effect neural inhibition has during
learning. Also, the effect from the prior will remain after learning
with the learned diverseW. An extreme case is that the activation
probabilities of neurons are exclusive to each other. Sparsity and
selectivity are expected to be enhanced simultaneously by using
this diversity-induced bias (Equation 11) (Figure 1B). We can
define the prior probability distribution over parameters p(W) as

p(W) ∝ exp



−λ ·

Nh∑

j=1

Nh∑

k 6=j

∥
∥
∥
∥
∥

W⊤
·,jW·,k

||W·,j||||W·,k||

∥
∥
∥
∥
∥

2


 . (12)

Then, the parameters can be estimated via maximum a posteriori
(MAP):

W∗ = argmax
W

p(W|D) = argmax
W

p(W)

L
∏

l=1

∑

h

p(v(l), h|W)

(13)
In our previous work (Xiong et al., 2014), we used absolute
cosine similarities, of which the derivative cannot be analytically
computed and therefore we had to resort to MCMC-based
simulated annealing to conduct MAP. However, here by using
the square cosine similarity, Equation (13) can be converted to a
constrained concave optimization:

W∗ = argmax
W

L(D)− λ

Nh∑

j=1

Nh∑

k 6=j

(W⊤
·,jW·,k)

2

s.t. ∀j ∈ [1,Nh], ||W·,j|| = 1

(14)
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FIGURE 3 | Left, Middle: An illustrating example shows how the diversity

prior would mimic the effect of inhibition among neurons’ activations

during learning. Empty circles denote activated neurons while gray circles

are inactivated ones. Right: although the diversity prior is only employed

in the learning phase, its implicit effect on coordinating neurons’

activations will remain after learning. Intuitively, it can be considered as if

there would exist virtual inhibitory interneurons which are induced by the

diversity prior.

In this paper, since the above optimization problem is concave
with respect to W, we employed gradient ascent to solve it (see
the Appendix for details), and derived an iterative update ofW as

Wt+1
·,j = Wt

·,j + ∇WL̂(D)− 2λ





Nh∑

k 6=j

(W·,k ⊗W·,k)

+ C
||W·,j|| − 1

||W·,j||
INv

)

W·,j (15)

where ⊗ denotes the outer product between vectors, and INv is
a Nv × Nv identity matrix. In Equation (15) we can see that the
iterative update ofW is composed of two parts, where the first is
the gradient of the log-likelihood while the second is the gradient
of the log prior.

3. Results

In this section the learned receptive fields are shown, with which
we measure the selectivity and sparsity of neurons’ activations.
We also compare the learned receptive fields with physiological
data. Finally, we test the learned receptive fields in an image
reconstruction experiment. The training dataset, the code of
learning RBM, the learned diverse RBM and other materials used
in our experiments are available at: https://iis.uibk.ac.at/public/
xiong/resources.html#Diverse_RBM. Following Hinton (2002),
we conducted training on mini-batches at one epoch. In all 400
epochs were run and it takes around 18 h with our Matlab code
on an Intel core i7 laptop.

3.1. Basis Images
In Figure 4, a subset of basis images (i.e., columns of W) of
RBMs trained with the diversity prior are shown. They look quite
similar to the receptive fields of simple cells in macaque monkey
V1 (Zylberberg et al., 2011, Figure 3). Rigorously speaking,
basis images cannot be directly considered as receptive fields
since they are internal connections or representations instead of
response characteristics. The receptive fields of ICA are usually
estimated as the inverse of the weight matrix (van Hateren and
van der Schaaf, 1998), while in sparse coding reverse correlation
is used for receptive fields (Olshausen and Field, 1996). Here, we
employed a reverse correlation method similar to Hosoya (2012)
who also developed a probabilistic model. For each hidden unit,
its receptive field is estimated as

RF =

S
∑

s=1

p(hj = 1|vs)vs, (16)

where p(hj = 1|vs) is computed as in Equation (2), while {vs}
S
s=1

is a set of visual stimuli which are randomly selected in the
training database. This is a little different from the procedure
by Hosoya (2012), since they generate synthetic vs from a
Gaussian distribution. Meanwhile, we arrived at a finding similar
to Hosoya (2012). By linearly fitting the RF of each unit to its
corresponding basis images, we found that our basis images are
almost identical to their corresponding receptive fields.

3.2. Selectivity and Sparsity
There exist several ways to measure selectivity and sparsity, out
of which kurtosis and Treves-Rolls sparseness are popularly used
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FIGURE 4 | Basis images (columns of W) learned in our model. They can

be also considered as receptive fields since we found that they are almost

identical.

(Willmore and Tolhurst, 2001). Willmore and Tolhurst (2001)
empirically proved that there exists a high correlation between
these two measures. In other words, there would be no difference
in using these two measures to quantify neurons’ activations.
Here, we use Treves-Rolls sparseness.

For a neuron, its selectivity is computed across all L input
visual stimuli:

selectivity = 1−
(
∑L

l=1 rl/L)
2

(
∑L

l=1 r
2
l
/L)

(17)

where rl is the activation probability of the neuron given the lth
stimulus, computed as in Equation (2).

The sparsity of population activations by one stimulus is
computed across all Nh neurons:

sparsity = 1−
(
∑Nh

j=1 rj/Nh)
2

(
∑Nh

j=1 r
2
j /Nh)

(18)

where rj denotes the activation probability of the jth neuron
by the stimulus. We computed the mean selectivity of all 200
neurons and the mean sparsity on all training small patches. The
results are plotted in Figure 5. Two relevant models (selective
RBM and sparse RBM, see Section 4.1) were tested as well for
comparison. It can be seen that using the diversity prior in
learning can result in comparable selectivity and sparsity as using
selectivity prior or sparse prior. Meanwhile, the diversity prior
should be preferred since it generates a much smaller number
of “dead” neurons (see Section 4.1). In our experiment, λ =

FIGURE 5 | Mean sparsity and mean selectivity of neurons’ activations

in diverse RBM, sparse RBM and selective RBM, respectively.

FIGURE 6 | Selectivies and sparsities when using different λ-values in

the diverse RBM.

10−3 was used to obtain the above result. To check how λ value
affects sparsity and selectivity, in Figure 6 a plot with several λ

is presented. When λ is small, e.g., 0, 10−5, 10−4, the effect of
the diversity prior is weak or totally removed and both selectivity
and sparsity decrease (Figure 6). The receptive fields of a diverse
RBM trained with λ = 10−5 are shown in Figure 7A. If we
use a big value of λ, e.g., 10−2, 10−1, 1, the iterative update
of W Equation (15) is greatly dominated by the prior part,
and therefore the fitness to the training data D deteriorates.
It can be seen that selectivity and sparsity also decrease
(even to a larger degree) using relatively large λs (Figure 6).
The receptive fields learned with λ = 1 are displayed in
Figure 7B.

3.3. Comparison with Biological Data
To better compare our receptive fields against physiological
results (Ringach, 2002), we first fitted our receptive fields to
Gabor filters:
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FIGURE 7 | The receptive fields learned using (A) λ = 10−5, (B) λ = 1.

G(x, y; x0, y0,A, σx, σy, θ, f , φ) = A cos(2π fx′ + φ)

exp

(

− x′2

2σ 2
x
−

y′2

2σ 2
y

)

x′ = (x− x0) cos θ + (y− y0) sin θ

y′ = −(x− x0) sin θ + (y− y0) cos θ
(19)

x

FIGURE 8 | After fitting receptive fields with Gabor filters, we pooled

their shape profiles (nx,ny ), for comparison to physiological data of

macaque monkeys (Ringach, 2002).

whose parameters are the center position (x0, y0), amplitude A,
size (σx, σy), orientation θ , spatial frequency f and phase φ.
The fitting is done via the Nelder-Mead Simplex method, and
therefore is not very reliable. Similar to Hosoya (2012) and
Zylberberg andDeWeese (2013), we conducted quality control by
filtering out some receptive fields which were poorly fitted. First,
we compared our receptive fields with those of macaque monkey
V1 cells2 (Ringach, 2002) in units of the sinusoidal wavelength:
(nx, ny) = (σxf , σyf ). In Figure 8, we pooled (nx, ny) of our
receptive fields as well as the data from Zylberberg and DeWeese
(2013). We found that they don’t deviate very much although
they slightly differ from each other. We also checked the statistics
of aspect ratios within receptive fields:

ny
nx
. In Figure 9 two

histograms are displayed, which are global distributions of aspect
ratios from our receptive fields and from the macaque monkey
V1 cells, respectively. We can see that they are also quite close.

3.4. Image Reconstruction
Reconstruction using RBMs is quite straightforward. First, small,
non-overlapping patches (size 14 × 14) were extracted from
a preprocessed image. For each small patch v, the activation
probability of each neuron p(hj|v) can be computed as in
Equation (2). Then, instead of using binary states of hj, p(hj|v)
is used for recovering v by using Equation (3). It is worth noting
that although RBMs are probabilistic models, we use the value
of p(vi|h) to recover the intensity of each pixel and thus the
reconstruction is deterministic.

Out of the 10 images in the original database, 8 were used
for training and the remaining 2 were used for testing the image
reconstruction. The two test images were whitened and sigmoid-
mapped using the same preprocessing procedure as the training
images. They are shown in the left panel of Figure 10. In the right

2Data are available at: http://www.ringachlab.net/lab/Data.html.
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FIGURE 9 | A comparison of the histograms of aspect ratios (nx/ny )

within macaque monkey V1 neurons and the learned diverse RBM

neurons.

panel of Figure 10 the reconstructions of the two test images are
presented. It can be seen that the reconstructions look very good
in qualitative terms.

4. Discussion

4.1. Sparsity and Selectivity Prior on RBM
There are previous studies that learn simple cell receptive fields
through the use of RBMs, either enforcing sparsity or selectivity.
One recent example of the former is the sparse group restricted
Boltzmannmachine (SGRBM) (Luo et al., 2011), an RBM trained
with the CD algorithm plus an l1/l2 norm regularization on the
activations of the neuron population. At each iteration, given a
visual stimulus, and after computing the activation probabilities
of the whole neuron set, SGRBM attempts to minimize the
l1/l2 norm of the set of activation probabilities. Although l1/l2
norm regularization can ensure sparsity, it can also lead to many
“dead” (never responding) and “potential over-tolerant” (always
responding) neurons (see Figure 1D). In the case of the latter, a
study that enforces selectivity is the one from Lee et al. (2007)
which uses a selectivity-induced regularization that suppresses
the average activation probability of each neuron to all training
stimuli.

One limitation of this strategy, as argued by Goh et al.
(2010), is that decreasing average activation probabilities cannot
guarantee selectivity. Instead, it will result in many similar
neurons with uniformly low activation probabilities to all types of
visual stimuli, which are prone to be “dead” as well. Following this
line of thought and in order to prove the validity of our diverse
RBM, two additional RBMs were trained using the CD algorithm
with sparse regularization (sparse RBM) (Luo et al., 2011) and
the CD algorithm with selectivity regularization (selective RBM)
(Lee et al., 2007). For both of them, 200 hidden neurons were
learned and their receptive fields are presented in Figure 11. We
can see that the neurons’ receptive fields learned in sparse RBM
and selective RBM look similar to those of our RBM trained with

FIGURE 10 | Reconstruction using receptive fields of the learned

diverse RBM. The left panel of (A,B) shows two test images after

preprocessing, while the right panel of (A,B) shows two corresponding

reconstructions.

a diversity prior. However, both sparse CD and selective CD led to
many useless, “dead” neurons. We estimated the rough number
of “dead” neurons by counting the number of neurons whose
maximal activation probabilities to all training stimuli is smaller
than 0.1, and the results are shown in Figure 12. Furthermore,
we also computed the mean selectivity and the mean sparsity
of neurons in sparse RBM and selective RBM in the same way
as we did for the diverse RBM; their results are also shown in
Figure 5.

4.2. The Equivalent to a Diversity Prior in
Biological Systems
Knowing about how neuron receptive field properties arise is of
great importance in visual neuroscience in order to hypothesize
the circuits and connections that give rise to those properties.
On one hand, one of the characteristics of simple cells in
V1 is selectivity to oriented stimuli. These can be obtained
through placing some constraint in learning from natural images.
An example is the influential work by Olshausen and Field
(1996). A set of coefficients is then formed such that they
have a cost associated to them depending on how the activity
is distributed. The aim is to increase sparsity, meaning lower
cost. This approach leads to V1-like simple-cell receptive fields
through the learning of a set of weights that correspond to
the connections of the input layer with simple neurons in
area V1.

On the other hand, inhibition seems to play a central role
in the shaping of simple-cell receptive fields. We can consider
three types of inhibitory inputs: feedforward, lateral and feedback
(also known as recurrent). Feedforward inhibition is regarded
as the main source of orientation selectivity in simple cells
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FIGURE 11 | The receptive fields learned in the learned (A) sparse

RBM, (B) selective RBM.

by some researchers (Heggelund, 1981; Celebrini et al., 1993;
Ferster and Miller, 2000) and has been modeled by others,
e.g., (Azzopardi et al., 2014). The classical role of feedback
connections was the enhancement of receptive-field responses
to top-down modulations (Ito and Gilbert, 1999; Treue, 2003),
which have been successfully modeled for attention (Rodriguez-
Sanchez et al., 2007) and contour integration (Neumann and

FIGURE 12 | Number of dead neurons in the learned diverse RBM,

sparse RBM and selective RBM, respectively.

Sepp, 1999; Tschechne and Neumann, 2014). But other studies
are in support of feedback connections as the source of simple-
cell selectivity through recurrent connections, most recently from
Angelucci and Bressloff (2006). The appearance of orientation
selectivity this way has also been proposed in models of recurrent
inhibition, e.g., (Sabatini, 1996; Carandini and Ringach, 1997).
Finally, even though there is an alive discussion regarding
if orientation selection is achieved through feedforward or
recurrent connections, it is interesting to note that none of
them rule out that lateral inhibition can at least be partially
blamed for this selectivity, e.g., (Celebrini et al., 1993; Angelucci
and Bressloff, 2006). Lateral connections have in fact being
made explicit into recent sparse coding models (Garrigues and
Olshausen, 2008; King et al., 2013).

The common ground of all the aforementioned works is that
inhibition is fundamental to the selectivity properties of simple
cells, irrespective of where that inhibition comes from. Inhibition
is also linked to the appearance of sparse sensory coding (Vinje
and Gallant, 2000; Haider et al., 2010). We can conclude then,
that inhibition would generate RF diversity, since as we have
shown in this work (Figure 1), imposing diversity generates both
selective and sparse neural populations. By explicitly favoring
diversity in our model, we would be mimicking the effect that
inhibition should have on feature learning in a biological system.

5. Conclusion

We test a recent new concept, that of diversity (Padmanabhan
and Urban, 2010; O’Donnell and Nolan, 2011), by applying
diversification on the columns of W when using a RBM to
learn receptive fields. This diversification has the implication
of providing a set of neurons that is at the same time sparse
and selective, which, as mentioned in the introduction, is
not always the case for sparse models. Imposing diversity is
thus a more general condition to achieve both, sparsity and
selectivity.
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Appendix

A1. MAP optimization with the Sum Similarity
Minimization Prior
The optimization problem (Equation 14) can be rewritten as

max
W

L(D)− λ





Nh∑

j=1

Nh∑

k 6=j

(W⊤
·,jW·,k)

2 + C

Nh∑

j=1

(||W·,j|| − 1)2





︸ ︷︷ ︸

O

,

(A1)
where C is an extra parameter that is set relatively large
to guarantee the satisfaction of the constraints in Equation
(14). In our experiment, C is equivalent to 104. In this
way, the constrained optimization problem is converted to an
unconstrained one. It was already shown that the gradient ascent
can used to maximize L(D). It is easy to see that O is also convex
with respect toW; therefore, the same gradient ascent can be also

applied on −λO. The gradient of O with respect to W can be
computed as

∂O

∂W·,j
= 2

Nh∑

k 6=j

(W⊤
·,jW·,k)W·,k + 2C(||W·,j|| − 1)

W·,j

||W·,j||
(A2)

= 2

Nh∑

k 6=j

(W·,k ⊗W·,k)W·,j + 2C(||W·,j|| − 1)
W·,j

||W·,j||

(A3)

= 2





Nh∑

k 6=j

(W·,k ⊗W·,k)+ C
||W·,j|| − 1

||W·,j||
INv



W·,j,

(A4)

where ⊗ denotes the outer product between vectors and INv is a

Nv × Nv identity matrix.
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