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The mutual information between stimulus and spike-train response is commonly used to

monitor neural coding efficiency, but neuronal computation broadly conceived requires

more refined and targeted information measures of input-output joint processes. A

first step toward that larger goal is to develop information measures for individual

output processes, including information generation (entropy rate), stored information

(statistical complexity), predictable information (excess entropy), and active information

accumulation (bound information rate). We calculate these for spike trains generated by

a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for

alternating renewal processes. We show that their time-resolution dependence reveals

coarse-grained structural properties of interspike interval statistics; e.g., τ -entropy rates

that diverge less quickly than the firing rate indicated by interspike interval correlations.

We also find evidence that the excess entropy and regularized statistical complexity

of different types of integrate-and-fire neurons are universal in the continuous-time

limit in the sense that they do not depend on mechanism details. This suggests a

surprising simplicity in the spike trains generated by these model neurons. Interestingly,

neurons with gamma-distributed ISIs and neurons whose spike trains are alternating

renewal processes do not fall into the same universality class. These results lead to two

conclusions. First, the dependence of information measures on time resolution reveals

mechanistic details about spike train generation. Second, information measures can be

used as model selection tools for analyzing spike train processes.

Keywords: statistical complexity, excess entropy, entropy rate, renewal process, alternating renewal process,

integrate and fire neuron, leaky integrate and fire neuron, quadratic integrate and fire neuron

PACS numbers: 05.45.Tp 02.50.Ey 87.10.Vg 87.19.ll 87.19.lo 87.19.ls

1. Introduction

Despite a half century of concerted effort (Mackay and McCulloch, 1952), neuroscientists continue
to debate the relevant timescales of neuronal communication as well as the basic coding schemes at
work in the cortex, even in early sensory processing regions of the brain thought to be dominated
by feedforward pathways (Softky and Koch, 1993; Bell et al., 1995; Shadlen and Newsome, 1995;
Stevens and Zador, 1998; Destexhe et al., 2003; DeWeese and Zador, 2006; Jacobs et al., 2009;
Koepsell et al., 2010; London et al., 2010). For example, the apparent variability of neural responses
to repeated presentations of sensory stimuli has led many to conclude that the brain must average
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across tens or hundreds of milliseconds or across large
populations of neurons to extract a meaningful signal (Shadlen
and Newsome, 1998). Whereas, reports of reliable responses
suggest shorter relevant timescales and more nuanced coding
schemes (Berry et al., 1997; Reinagel and Reid, 2000; DeWeese
et al., 2003). In fact, there is evidence for different characteristic
timescales for neural coding in different primary sensory regions
of the cortex (Yang and Zador, 2012). In addition to questions
about the relevant timescales of neural communication, there
has been an ongoing debate regarding the magnitude and
importance of correlations among the spiking responses of neural
populations (Meister et al., 1995; Nirenberg et al., 2001; Averbeck
et al., 2006; Schneidman et al., 2003, 2006).

Most studies of neural coding focus on the relationship
between a sensory stimulus and the neural response. Others
consider the relationship between the neural response and
the animal’s behavioral response (Britten et al., 1996), the
relationship between pairs or groups of neurons at different
stages of processing (Linsker, 1989; Dan et al., 1996), or the
variability of neural responses themselves without regard to other
variables (Schneidman et al., 2006). Complementing the latter
studies, we are interested in quantifying the randomness and
predictability of neural responses without reference to stimulus.
We consider the variability of a given neuron’s activity at one time
and how this is related to the same neuron’s activity at other times
in the future and the past.

Along these lines, information theory (Shannon, 1948; Cover
and Thomas, 2006) provides an insightful and rich toolset
for interpreting neural data and for formulating theories of
communication and computation in the nervous system (Rieke
et al., 1999). In particular, Shannon’s mutual information has
developed into a powerful probe that quantifies the amount
of information about a sensory stimulus encoded by neural
activity (Mackay and McCulloch, 1952; Barlow, 1961; Stein,
1967; Laughlin, 1981; Sakitt and Barlow, 1982; Srinivasan et al.,
1982; Linsker, 1989; Bialek et al., 1991; Theunissen and Miller,
1991; Atick, 1992; Rieke et al., 1999). Similarly, the Shannon
entropy has been used to quantify the variability of the resulting
spike-train response. In contrast to these standard stimulus-
and response-averaged quantities, a host of other information-
theoretic measures have been applied in neuroscience, such as
the Fisher information (Cover and Thomas, 2006) and various
measures of the information gained per observation (DeWeese
and Meister, 1999; Butts and Goldman, 2006).

We take an approach that complements more familiar
informational analyses. First, we consider “output-only”
processes, since their analysis is a theoretical prerequisite to
understanding information in the stimulus-response paradigm.
Second, we analyze rates of informational divergence, not only
nondivergent components. Indeed, we show that divergences,
rather than being a kind of mathematical failure, are important
and revealing features of information processing in spike trains.

We are particularly interested in the information content of
neural spiking on fine timescales. How is information encoded
in spike timing and, more specifically, in interspike intervals?
In this regime, the critical questions turn on determining the
kind of information encoded and the required “accuracy” of

individual spike timing to support it. At present, unfortunately,
characterizing communication at submillisecond time scales and
below remains computationally and theoretically challenging.

Practically, a spike train is converted into a binary sequence
for analysis by choosing a time bin size and counting the number
of spikes in successive time bins. Notwithstanding Strong et al.
(1998) and Nemenman et al. (2008), there are few studies of how
estimates of communication properties change as a function of
time bin size, though there are examples of both short (Panzeri
et al., 1999) and long (DeWeese, 1996; Strong et al., 1998) time
expansions. Said most plainly, it is difficult to directly calculate
the most basic quantities—e.g., communication rates between
stimulus and spike-train response—in the submillisecond
regime, despite progress on undersampling (Treves and Panzeri,
1995; Nemenman et al., 2004; Archer et al., 2012). Beyond the
practical, the challenges are also conceptual. For example, given
that a stochastic process’ entropy rate diverges in a process-
characteristic fashion for small time discretizations (Gaspard
and Wang, 1993), measures of communication efficacy require
careful interpretation in this limit.

Compounding the need for better theoretical tools,
measurement techniques will soon amass enough data to
allow serious study of neuronal communication at fine time
resolutions and across large populations (Alivisatos et al., 2012).
In this happy circumstance, we will need guideposts for how
information measures of neuronal communication vary with
time resolution so that we can properly interpret the empirical
findings and refine the design of nanoscale probes.

Many single-neuron models generate neural spike trains that
are renewal processes (Gerstner and Kistler, 2002). Starting from
this observation, we use recent results (Marzen and Crutchfield,
2015) to determine how information measures scale in the small
time-resolution limit. This is exactly the regime where numerical
methods are most likely to fail due to undersampling and,
thus, where analytic formulae are most useful. We also extend
the previous analyses to structurally more complex, alternating
renewal processes and analyze the time-resolution scaling of their
information measures. This yields important clues as to which
scaling results apply more generally. We then show that, across
several standard neuronal models, the information measures are
universal in the sense that their scaling does not depend on the
details of spike-generation mechanisms.

Several information measures we consider are already
common fixtures in theoretical neuroscience, such as Shannon’s
source entropy rate (Strong et al., 1998; Nemenman et al.,
2008). Others have appeared at least once, such as the finite-
time excess entropy (or predictable information) (Bialek et al.,
2001; Crutchfield and Feldman, 2003) and statistical complexity
(Haslinger et al., 2010). And others have not yet been applied,
such as the bound information (Abdallah and Plumbley, 2009,
2012; James et al., 2011, 2014).

The development proceeds as follows. Section 2 reviews
notation and definitions. To investigate the dependence of causal
informationmeasures on time resolution, Section 3 studies a class
of renewal processes motivated by their wide use in describing
neuronal behavior. Section 4 then explores the time-resolution
scaling of information measures of alternating renewal processes,
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identifying those scalings likely to hold generally. Section 5
evaluates continuous-time limits of these information measures
for common single-neuron models. This reveals a new kind
of universality in which the information measures’ scaling is
independent of detailed spiking mechanisms. Taken altogether,
the analyses provide intuition and motivation for several of the
rarely-used, but key informational quantities. For example, the
informational signatures of integrate-and-fire model neurons
differ from both simpler, gamma-distributed processes and
more complex, compound renewal processes. Finally, Section 6
summarizes the results, giving a view to future directions and
mathematical and empirical challenges.

2. Background

We can only briefly review the relevant physics of information.
Much of the phrasing is taken directly from background
presented in Marzen and Crutchfield (2014, 2015).

Let us first recall the causal state definitions (Shalizi and
Crutchfield, 2001) and information measures of discrete-time,
discrete-state processes introduced in Crutchfield et al. (2009),
James et al. (2011). The main object of study is a process
P : the list of all of a system’s behaviors or realizations
{. . . x−2, x−1, x0, x1, . . .} and their probabilities, specified by
the joint distribution Pr(. . .X−2,X−1,X0,X1, . . .). We denote a
contiguous chain of random variables as X0:L = X0X1 · · ·XL−1.
We assume the process is ergodic and stationary—Pr(X0:L) =
Pr(Xt:L+t) for all t ∈ Z—and the measurement symbols range
over a finite alphabet: x ∈ A. In this setting, the present X0 is
the random variable measured at t = 0, the past is the chain
X:0 = . . .X−2X−1 leading up the present, and the future is the
chain following the present X1: = X1X2 · · · (We suppress the
infinite index in these).

As the Introduction noted, many information-theoretic
studies of neural spike trains concern input-output information
measures that characterize stimulus-response properties; e.g., the
mutual information between stimulus and resulting spike train.
In the absence of stimulus or even with a non-trivial stimulus, we
can still study neural activity from an information-theoretic point
of view using “output-only” information measures that quantify
intrinsic properties of neural activity alone:

• How random is it? The entropy rate hµ = H[X0|X:0], which is
the entropy in the present observation conditioned on all past
observations (Cover and Thomas, 2006).

• What must be remembered about the past to optimally predict
the future? The causal states S

+, which are groupings of
pasts that lead to the same probability distribution over
future trajectories (Crutchfield and Young, 1989; Shalizi and
Crutchfield, 2001).

• How much memory is required to store the causal states? The
statistical complexity Cµ = H[S+], or the entropy of the causal
states (Crutchfield and Young, 1989).

• How much of the future is predictable from the past?
The excess entropy E = I[X:0;X0:], which is the mutual
information between the past and the future (Crutchfield and
Feldman, 2003).

• How much of the generated information (hµ) is relevant
to predicting the future? The bound information bµ =
I[X0;X1:|X:0], which is the mutual information between
the present and future observations conditioned on all past
observations (Abdallah and Plumbley, 2009; James et al.,
2011).

• How much of the generated information is useless—neither
affects future behavior nor contains information about the
past? The ephemeral information rµ = H[X0|X:0,X1:], which
is the entropy in the present observation conditioned on all
past and future observations (Verdú and Weissman, 2006;
James et al., 2011).

The information diagram of Figure 1 illustrates the relationship
between hµ, rµ, bµ, and E. When we change the time
discretization 1t, our interpretation and definitions change
somewhat, as we describe in Section 3.

Shannon’s various information quantities—entropy,
conditional entropy, mutual information, and the like—when
applied to time series are functions of the joint distributions
Pr(X0:L). Importantly, for a given set of random variables they
define an algebra of atoms out of which information measures
are composed (Yeung, 2008). James et al. (2011) used this to
show that the past and future partition the single-measurement
entropy H(X0) into the measure-theoretic atoms of Figure 1.
These include those—rµ and bµ—already mentioned and the
enigmatic information:

qµ = I[X0;X:0;X1:] ,

which is the co-information between past, present, and future.
One can also consider the amount of predictable information not
captured by the present:

σµ = I[X:0;X1:|X0].

FIGURE 1 | Information diagram illustrating the anatomy of the

information H[X0] in a process’ single observation X0 in the context of

its past X
:0 and its future X1:. Although the past entropy H[X

:0] and the

future entropy H[X1:] typically are infinite, space precludes depicting them as

such. They do scale in a controlled way, however: H[X−ℓ:0] ∝ hµℓ and

H[X1:ℓ] ∝ hµℓ. The two atoms labeled bµ are the same, since we consider

only stationary processes. (After James et al., 2011, with permission.)
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which is the elusive information (Ara et al., 2015). It measures the
amount of past-future correlation not contained in the present. It
is nonzero if the process has “hidden states” and is therefore quite
sensitive to how the state space is “observed” or coarse-grained.

The total information in the future predictable from the past
(or vice versa)—the excess entropy—decomposes into particular
atoms:

E = bµ + σµ + qµ .

The process’s Shannon entropy rate hµ is also a sum of atoms:

hµ = rµ + bµ .

This tells us that a portion of the information (hµ) a process
spontaneously generates is thrown away (rµ) and a portion is
actively stored (bµ). Putting these observations together gives the
information anatomy of a single measurement X0:

H[X0] = qµ + 2bµ + rµ . (1)

Although these measures were originally defined for stationary
processes, they easily carry over to a nonstationary process of
finite Markov order.

Calculating these information measures in closed-form given
a model requires finding the ǫ-machine, which is constructed
from causal states. Forward-time causal states S

+ are minimal
sufficient statistics for predicting a process’s future (Crutchfield
and Young, 1989; Shalizi and Crutchfield, 2001). This follows
from their definition—a causal state σ+ ∈ S

+ is a sets of pasts
grouped by the equivalence relation∼+:

x:0 ∼+x′:0
⇔ Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0) . (2)

So, S
+ is a set of classes—a coarse-graining of the uncountably

infinite set of all pasts. At time t, we have the random variable
S
+
t that takes values σ+ ∈ S

+ and describes the causal-state
process . . . ,S+

−1,S
+
0 ,S+

1 , . . .. S+
t is a partition of pasts X:t that,

according to the indexing convention, does not include the
present observation Xt . In addition to the set of pasts leading
to it, a causal state σ+

t has an associated future morph—the
conditional measure Pr(Xt:|σ+

t ) of futures that can be generated
from it. Moreover, each state σ+

t inherits a probability π(σ+
t )

from the process’s measure over pasts Pr(X:t). The forward-
time statistical complexity is then the Shannon entropy of the
state distribution π(σ+

t ) (Crutchfield and Young, 1989): C+
µ =

H[S+
0 ]. A generative model is constructed out of the causal states

by endowing the causal-state process with transitions:

T
(x)
σσ ′ = Pr(S+

t+1 = σ ′,Xt = x|S+
t = σ ) ,

that give the probability of generating the next symbol x and
ending in the next state σ ′, if starting in state σ (Residing in a
state and generating a symbol do not occur simultaneously. Since
symbols are generated during transitions there is, in effect, a half
time-step difference in the indexes of the random variables Xt

and S
+
t . We suppress notating this.) To summarize, a process’s

forward-time ǫ-machine is the tuple {A, S
+, {T(x)

: x ∈ A}}.
For a discrete-time, discrete-alphabet process, the ǫ-machine

is its minimal unifilar hidden Markov model (HMM)
(Crutchfield and Young, 1989; Shalizi and Crutchfield, 2001)
(For general background on HMMs see Paz, 1971; Rabiner and
Juang, 1986; Rabiner, 1989). Note that the causal state set can be
finite, countable, or uncountable; the latter two cases can occur
even for processes generated by finite-state HMMs. Minimality
can be defined by either the smallest number of states or the
smallest entropy H[S+

0 ] over states (Shalizi and Crutchfield,

2001). Unifilarity is a constraint on the transition matrices T(x)

such that the next state σ ′ is determined by knowing the current
state σ and the next symbol x. That is, if the transition exists, then
Pr(S+

t+1|Xt = x,S+
t = σ ) has support on a single causal state.

3. Infinitesimal Time Resolution

One often treats a continuous-time renewal process, such as a
spike train from a noisy integrate-and-fire neuron, in a discrete-
time setting (Rieke et al., 1999). With results of Marzen and
Crutchfield (2015) in hand, we can investigate how artificial
time binning affects estimates of a model neuron’s spike train’s
randomness, predictability, and information storage in the limit
of infinitesimal time resolution. This is exactly the limit in which
analytic formulae for informationmeasures aremost useful, since
increasing the time resolution artificially increases the apparent
range of temporal correlations as shown in Figure 3.

Time-binned neural spike trains of noisy integrate-and-fire
neurons have been studied for quite some time (Mackay and
McCulloch, 1952) and, despite that history, this is still an active
endeavor (Rieke et al., 1999; Cessac and Cofre, 2013). Our
emphasis and approach differ, though. We do not estimate
statistics or reconstruct models from simulated spike train
data using nonparametric inference algorithms—e.g., as done
in Haslinger et al. (2010). Rather, we ask how ǫ-machines
extracted from a spike train process and information measures
calculated from them vary as a function of time coarse-graining.
Our analytic approach highlights an important lesson about
such studies in general: A process’ ǫ-machine and information
anatomy are sensitive to time resolution. A secondary and
compensating lesson is that the manner in which the ǫ-machine
and information anatomy scale with time resolution conveys
much about the process’ structure.

Suppose we are given a neural spike train with interspike
intervals independently drawn from the same interspike interval
(ISI) distribution φ(t) with mean ISI 1/µ. To convert the
continuous-time point process into a sequence of binary spike-
quiescence symbols, we track the number of spikes emitted
in successive time bins of size 1t. Our goal, however, is to
understand how the choice of 1t affects reported estimates for
Cµ, hµ, E, bµ, and σµ. The way in which each of these vary
with 1t reveals information about the intrinsic time scales on
which a process behaves; cf., the descriptions of entropy rates
in Costa et al. (2002, 2005) and Gaspard and Wang (1993). We
concern ourselves with the infinitesimal 1t limit, even though
the behavior of these information atoms is potentially most
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interesting when 1t is on the order of the process’ intrinsic time
scales.

In the infinitesimal time-resolution limit, when 1t is smaller
than any intrinsic timescale, the neural spike train is a renewal
process with interevent count distribution:

F(n) ≈ φ(n1t) 1t (3)

and survival function:

w(n) ≈
∫ ∞

n1t
φ(t)dt . (4)

The interevent distribution F(n) is the probability distribution
that the silence separating successive events (bins with spikes) is
n counts long. While the survival function w(n) is the probability
that the silence separating successive events is at least n counts
long. The ǫ-machine transition probabilities therefore change
with 1t. The mean interevent count 〈T〉 + 1 is not the mean
interspike interval 1/µ since one must convert between counts
and spikes1:

〈T〉 + 1 =
1

µ1t
. (5)

In this limit, the ǫ-machines of spike-train renewal processes can
take one of the topologies described in Marzen and Crutchfield
(2015).

Here, we focus only on two of these ǫ-machine topologies.
The first topology corresponds to that of an eventually Poisson
process, in which the ISI distribution takes the form φ(t) =
φ(T)e−λ(t−T) for some finite T and λ > 0. A Poisson neuron
with firing rate λ and refractory period of time T, for instance,
eventually (t > T) generates a Poisson process. Hence, we refer
to them as eventually Poisson processes; see Figure 2B. A Poisson
process is a special type of eventually Poisson process with
T = 0; see Figure 2A. However, the generic renewal process has
ǫ-machine topology shown in Figure 2C. Technically, only non-
eventually-1 Poisson processes have this ǫ-machine topology,
but for our purposes, this is the ǫ-machine topology for any
renewal process not generated by a Poisson neuron; see Marzen
and Crutchfield (2015).

At present, inference algorithms can only infer finite
ǫ-machines. So, such algorithms applied to renewal processes
will yield an eventually Poisson topology. (Compare Figure 2C

to the inferred approximate ǫ-machine of an integrate-and-fire
neuron in Figure 2 in Haslinger et al., 2010.) The generic renewal
process has an infinite ǫ-machine, though, for which the inferred
ǫ-machines are only approximations.

We calculated E andCµ using the expressions given inMarzen
andCrutchfield (2015). Substituting in Equations (3), (4), and (5),
we find that the excess entropy E tends to:

1As the subscript context makes clear, the mean count µ is not related to that µ in

Cµ and related quantities. In the latter it refers to the measure µ(s) over bi-infinite

sequences s generated by a process.

A B C

FIGURE 2 | ǫ-Machines of processes generated by Poisson neurons

and by integrate-and-fire neurons (left to right): (A) The ǫ-machine for a

Poisson process. (B) The ǫ-machine for an eventually Poisson process; i.e., a

Poisson neuron with a refractory period of length ñ1t. (C) The ǫ-machine for a

generic renewal process—the not eventually 1-Poisson process of Marzen

and Crutchfield (2015); i.e., the process generated by noise-driven

integrate-and-fire neurons. Edge labels p|x denote emitting symbol x (“1” is

“spike”) with probability p. (Reprinted with permission from Marzen and

Crutchfield, 2015.)

lim
1t→0

E(1t) =
∫ ∞

0
µtφ(t) log2

(

µφ(t)
)

dt

− 2

∫ ∞

0
µ8(t) log2

(

µ8(t)
)

dt , (6)

where 8(t) =
∫∞
t φ(t′)dt′ is the probability that an ISI

is longer than t. It is easy to see that E(1t) limits to a
positive and (usually) finite value as the time resolution vanishes,
with some exceptions described below. Similarly, using the
expression in Marzen and Crutchfield (2015)’s Appendix II, one
can show that the finite-time excess entropy2 E(T) takes the
form:

lim
1t→0

E(T) =
(

∫ T

0
µ8(t)dt

)

log2
1

µ

− 2

∫ T

0
µ8(t) log2 8(t)dt

− µ

∫ ∞

T
8(t)dt log2

(

µ

∫ ∞

T
8(t)dt

)

2In the theoretical neuroscience literature, E(T) is sometime called the predictive

information Ipred(T) and is a useful indicator of process complexity when E

diverges (Bialek et al., 2001).
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+
∫ T

0
µtF(t) log2 F(t)dt

+ T

∫ ∞

T
µF(t) log2 F(t)dt . (7)

As T → ∞, E(T) → E. Note that these formulae apply only
when mean firing rate µ is nonzero.

Even if E limits to a finite value, the statistical complexity
typically diverges due to its dependence on time discretization
1t. Suppose that we observe an eventually Poisson process, such
that φ(t) = φ(T)e−λ(t−T) for t > T. Then, from formulae
in Marzen and Crutchfield (2015), statistical complexity in the
infinitesimal time-resolution limit becomes:

Cµ(1t) ∼
(

µ

∫ T

0
8(t)dt

)

log2
1

1t

−
∫ T

0

(

µ8(t)
)

log2
(

µ8(t)
)

dt (8)

−
(

µ

∫ ∞

T
8(t)dt

)

log2

(

µ

∫ ∞

T
8(t)dt

)

,

ignoring terms of O(1t) or higher. The first term diverges, and
its rate of divergence is the probability of observing a time since
last spike less than T. This measures the spike train’s deviation
from being 1-Poisson and so reveals the effective dimension of
the underlying causal state space. Cµ’s remaining nondivergent
component is equally interesting. In fact, it is the differential
entropy of the time since last spike distribution.

An immediate consequence of the analysis is that this generic
infinitesimal renewal process is highly cryptic (Crutchfield et al.,
2009). It hides an arbitrarily large amount of its internal state
information: Cµ diverges as 1t → 0 but E (usually) asymptotes
to a finite value. We have very structured processes that
have disproportionately little in the future to predict. Periodic
processes constitute an important exception to this general rule of
thumb for continuous-time processes. A neuron that fires every
T seconds without jitter has E = Cµ, and both E and Cµ diverge
logarithmically with 1/1t.

It is straightforward to show that any information measure
contained within the present—H[X0], hµ, bµ, rµ, and qµ (recall
Figure 1)—all vanish as 1t tends to 0. Therefore, lim1t→0 σµ =
lim1t→0 E and the entropy rate becomes:

hµ ∼ −µ

(

log2(1t)+
∫ ∞

0
φ(t) log2 φ(t)dt

)

1t . (9)

With 1t → 0, hµ nominally tends to 0: As we shorten the
observation time scale, spike events become increasingly rare.
There are at least two known ways to address hµ apparently not
being very revealing when so defined. On the one hand, rather
than focusing on the uncertainty per symbol, as hµ does, we opt
to look at the uncertainty per unit time: hµ/1t. This is the so-
called 1t-entropy rate (Gaspard and Wang, 1993) and it diverges
as −µ log1t. Such divergences are to be expected: The large
literature on dimension theory characterizes a continuous set’s
randomness by its divergence scaling rates (Farmer et al., 1983;

Mayer-Kress, 1986). Here, we are characterizing sets of similar
cardinality—infinite sequences. On the other hand, paralleling
sequence block-entropy definition of entropy rate (hµ =ℓ→∞
H[X0:ℓ]/ℓ) (Crutchfield and Feldman, 2003), continuous-time
entropy rates are often approached within a continuous-time
framework using:

hµ = lim
T→∞

H(T)/T ,

where H(T) is path entropy, the continuous-time analog of
the block entropy H(ℓ) (Girardin, 2005). In these analyses, any
log1t terms are regularized away using Shannon’s differential
entropy (Cover and Thomas, 2006), leaving the nondivergent
component −µ

∫∞
0 φ(t) logφ(t)dt. Using the 1t-entropy rate

but keeping both the divergent and nondivergent components,
as in Equations (8) and (9), is an approach that respects both
viewpoints and gives a detailed picture of time-resolution scaling.

A major challenge in analyzing spike trains concerns locating
the timescales on which information relevant to the stimulus is
carried. Or, more precisely, we are often interested in estimating
what percentage of the raw entropy of a neural spike train is used
to communicate information about a stimulus; cf. the framing
in Strong et al. (1998). For such analyses, the entropy rate is
often taken to be H(1t,T)/T, where T is the total path time
and H(1t,T) is the entropy of neural spike trains over time
T resolved at time bin size 1t. In terms of previously derived
quantities and paralleling the well known block-entropy linear
asymptote H(ℓ) = E + hµℓ (Crutchfield and Feldman, 2003),
this is:

H(1t,T)

T
=

hµ(1t)

1t
+

E(T,1t)

T
.

From the scaling analyses above, the extensive component of
H(1t,T)/T diverges logarithmically in the small 1t limit due
to the logarithmic divergence (Equation 9) in hµ(1t)/1t. If we
are interested in accurately estimating the entropy rate, then the
above is one finite-time T estimate of it. However, there are other
estimators, including:

H(1t,T)−H(1t,T − 1t)

1t
≈

hµ(1t)

1t
+

∂E(T,1t)

∂T
.

This estimator converges more quickly to the true entropy rate
hµ(1t)/1t than does H(1t,T)/T.

No such log1t divergences occur with bµ. Straightforward
calculation, not shown here, reveals that:

lim
1t→0

bµ

1t
= −µ

(∫ ∞

0
φ(t)

∫ ∞

0
φ(t′) log2 φ(t + t′)dt′dt

+
1

log 2
−
∫ ∞

0
φ(t) log2 φ(t)dt

)

. (10)

Since lim1t→0 bµ(1t)/1t < ∞ and lim1t→0 hµ(1t)/1t
diverges, the ephemeral information rate rµ(1t)/1t also diverges
as 1t → 0. The bulk of the information generated by such
renewal processes is dissipated and, having no impact on future
behavior, is not useful for prediction.
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Were we allowed to observe relatively microscopic membrane
voltage fluctuations rather than being restricted to the relatively
macroscopic spike sequence, the 1t-scaling analysis would be
entirely different. Following Marzen and Crutchfield (2014) or
natural extensions thereof, the statistical complexity diverges
as − log ǫ, where ǫ is the resolution level for the membrane
voltage, the excess entropy diverges as log 1/1t, the time-
normalized entropy rate diverges as log

√
2πeD1t/1t, and the

time-normalized bound information diverges as 1/21t. In other
words, observing membrane voltage rather than spikes makes the
process far more predictable. The relatively more macroscopic
modeling at the level of spikes throws away much detail of the
underlying biochemical dynamics.

To illustrate the previous points, we turn to numerics and a
particular neural model. Consider an (unleaky) integrate-and-
fire neuron driven by white noise whose membrane voltage (after
suitable change of parameters) evolves according to:

dV

dt
= b+

√
Dη(t) , (11)

where η(t) is white noise such that 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 =
δ(t − t′). When V = 1, the neuron spikes and the voltage is
reset to V = 0; it stays at V = 0 for a time τ , which enforces
a hard refractory period. Since the membrane voltage resets to
a predetermined value, the interspike intervals produced by this
model are independently drawn from the same interspike interval
distribution:

φ(t) =
{

0 t < τ
√

λ
2π(t−τ )3

e−λ(µ(t−τ )−1)2/2(t−τ ) t ≥ τ
. (12)

Here, 1/µ = 1/b is the mean interspike interval and λ = 1/D is
a shape parameter that controls ISI variance. This neural model
is not as realistic as that of a linear leaky integrate-and-fire neural
model (Gerstner and Kistler, 2002), but is complex enough to
illustrate the points made earlier about the scaling of information
measures and time resolution.

For illustration purposes, we assume that the time-binned
neural spike train is well approximated by a renewal process,
even when1t is as large as one millisecond. This assumption will
generally not hold, as past interevent counts could provide more
detailed historical information that more precisely places the
last spike within its time bin. Even so, the reported information
measure estimates are still useful. The estimated hµ is an upper
bound on the true entropy rate; the reported E is a lower bound
on the true excess entropy using the Data Processing Inequality
(Cover and Thomas, 2006); and the reported Cµ will usually be a
lower bound on the true process’ statistical complexity.

Employing the renewal process assumption, numerical
analysis corroborates the infinitesimal analysis above. Figure 3
plots F(n)—the proxy for the full, continuous-time, ISI
distribution—for a given set of neuronal parameter values as a
function of time resolution. Figure 4 then shows that hµ and Cµ

exhibit logarithmic scaling at millisecond time discretizations,
but that E does not converge to its continuous-time value until
we reach time discretizations on the order of hundreds of

FIGURE 3 | An unleaky integrate-and-fire neuron driven by white noise

has varying interevent count distributions F(n) that depend on time bin

size 1t. Based on the ISI distribution φ(t) given in Equation (12) with τ = 2 ms,

1/µ = 1 ms, and λ = 1 ms. Data points represent exact values of F (n)

calculated for integer values of N. Dashed lines are interpolations based on

straight line segments connecting nearest neighbor points.

microseconds. Even when 1t = 100 µs, bµ(1t)/1t still has not
converged to its continuous-time values.

The statistical complexity Cµ increases without bound, as
1t → 0; see the top left panel of Figure 4. As suggested in
the infinitesimal renewal analysis, hµ vanishes, whereas hµ/1t
diverges at a rate of µ log2 1/1t, as shown in the top right plots
of Figure 4. As anticipated, E tends to a finite, ISI distribution-
dependent value when 1t tends to 0, as shown in the bottom left
panel in Figure 4. Finally, the lower right panel plots bµ(1t)/1t.

One conclusion from this simple numerical analysis
is that one should consider going to submillisecond time
resolutions to obtain accurate estimates of lim1t→0 E(1t) and
lim1t→0 bµ(1t)/1t, even though the calculated informational
values are a few bits or even less than one bit per second in
magnitude.

4. Alternating Renewal Processes

The form of the 1t-scalings discussed in Section 3 occur much
more generally than indicated there. Often, our aim is to calculate
the nondivergent component of these information measures as
1t → 0, but the rates of these scalings are process-dependent.
Therefore, these divergences can be viewed as a feature rather
than a bug; they contain additional information about the
process’ structure (Gaspard and Wang, 1993).

To illustrate this point, we now investigate 1t-scalings for
information measures of alternating renewal processes (ARPs),
which are structurally more complex than the standard renewal
processes considered above. For instance, these calculations
suggest that rates of divergence of the τ -entropy rate smaller than
the firing rate, such as those seen in Nemenman et al. (2008),
are indicative of strong ISI correlations. Calculational details are
sequestered in Appendix A.

In an ARP, an ISI is drawn from one distribution φ(1)(t), then
another distribution φ(2)(t), then the first φ(1)(t) again, and so
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FIGURE 4 | How spike-train information measures (or rates)

depend on time discretization 1t for an unleaky integrate-and-fire

neuron driven by white noise. Top left: Statistical complexity Cµ as

a function of both the ISI distribution shape parameters and the time

bin size 1t. The horizontal axis is 1t in milliseconds on a log-scale and

the vertical axis is Cµ in bits on a linear scale for three different ISI

distributions following Equation (12) with τ = 2 ms. Top right: Entropy

rate hµ also as a function of both shape parameters and 1t. Axes

labeled as in the previous panel and the same three ISI distributions are

used. Bottom left: Excess entropy E as a function of both the shape

parameters and 1t. For the blue line lim1t→0 E(1t) = 0.75 bits; purple

line, lim1t→0 E(1t) = 0.86 bits; and yellow line, lim1t→0 E(1t) = 0.41

bits. All computed from Equation (6). Bottom right: Bound information

rate bµ (1t)/1t parameterized as in the previous panels. For the blue

line lim1t→0 bµ (1t)/1t = 0.73 bits per second; purple line,

lim1t→0 bµ (1t)/1t = 1.04 bits per second; and yellow line,

lim1t→0 bµ (1t)/1t = 0.30 bits per second. All computed from

Equation (10).

on. We refer to the new piece of additional information—the ISI
distribution currently being drawn from—as themodality. Under
weak technical conditions, the causal states are the modality and
time since last spike. The corresponding, generic ǫ-machine is
shown in Figure 5. We define the modality-dependent survival
functions as 8i(t) =

∫∞
t φ(i)(t′)dt′, the modality-dependent

mean firing rates as:

µ(i) = 1
/

∫ ∞

0
φ(i)(t)dt , (13)

the modality-dependent differential entropy rates:

h(i)µ = −µ(i)

∫ ∞

0
φ(i) log2 φ(i)(t)dt ,

the modality-dependent continuous-time statistical complexity:

C(i)
µ = −

∫ ∞

0
µ(i)8(i)(t) log2

(

µ(i)8(i)(t)
)

dt ,

and the modality-dependent excess entropy:

E(i) =
∫ ∞

0
µ(i)tφ(i)(t) log2

(

µ(i)φ(i)(t)
)

dt

− 2

∫ ∞

0
µ(i)8(i)(t) log2

(

µ(i)8(i)(t)
)

dt . (14)

It is straightforward to show, as done in Appendix A, that the
time-normalized entropy rate still scales with log2 1/1t:

hµ(1t)

1t
∼ 1

2µ log2

(

1

1t

)

+
µ(2)h

(1)
µ + µ(1)h

(2)
µ

µ(1) + µ(2)
, (15)

where µ = 2 µ(1)µ(2)

µ(1)+µ(2) . As expected, the statistical complexity still

diverges:

Cµ(1t) ∼ 2 log2

(

1

1t

)

+
µ(2)C

(1)
µ + µ(1)C

(2)
µ

µ(1) + µ(2)

+ Hb

(

µ1

µ1 + µ2

)

, (16)
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FIGURE 5 | ǫ-Machine for an alternating renewal process in which neither interevent count distribution is 1-Poisson and they are not equal almost

everywhere. State label nm denotes n counts since the last event and present modality m.

where Hb(p) = −p log2 p − (1 − p) log2(1 − p) is the entropy in
bits of a Bernoulli random variable with bias p. Finally, the excess
entropy still limits to a positive constant:

lim
1t→0

E(1t) = Hb

(

µ1

µ1 + µ2

)

+
µ(2)E(1) + µ(1)E(2)

µ(1) + µ(2)
. (17)

The additional terms Hb(·) come from the information stored in
the time course of modalities.

As a point of comparison, we ask what these information
measures would be for the original (noncomposite) renewal
process with the same ISI distribution as the ARP. As described in
Appendix B, the former entropy rate is always less than the true
hµ; its statistical complexity is always less than the trueCµ; and its
excess entropy is always smaller than the true E. In particular, the
ARP’s hµ divergence rate is always less than or equal to the mean
firing rate µ. Interestingly, this coincides with what was found
empirically in the time series of a single neuron; see Figure 5C in
Nemenman et al. (2008).

The ARPs here are a first example of how one can calculate
informationmeasures of the much broader andmore structurally
complex class of processes generated by unifilar hidden semi-
Markov models, a subclass of hidden semi-Markov models
(Tokdar et al., 2010).

5. Information Universality

Another aim of ours is to interpret the information measures.
In particular, we wished to relate infinitesimal time-resolution
excess entropies, statistical complexities, entropy rates, and
bound information rates to more familiar characterizations of
neural spike trains—firing ratesµ and ISI coefficient of variations
CV . To address this, we now analyze a suite of familiar single-
neuron models. We introduce the models first, describe the
parameters behind our numerical estimates, and then compare
the information measures.

Many single-neuron models, when driven by temporally
uncorrelated and stationary input, produce neural spike trains
that are renewal processes. We just analyzed one model class,
the noisy integrate-and-fire (NIF) neurons in Section 3, focusing

on time-resolution dependence. Other common neural models
include the linear leaky integrate-and-fire (LIF) neuron, whose
dimensionless membrane voltage, after a suitable change of
parameters, fluctuates as:

dV

dt
= b− V + aη(t) , (18)

and when V = 1, a spike is emitted and V is instantaneously
reset to 0. We computed ISI survival functions from empirical
histograms of 105 ISIs; we varied b ∈ [1.5, 5.75] in steps of 0.25
and a ∈ [0.1, 3.0] in steps of 0.1 to a = 1.0 and in steps of 0.25
thereafter.

The quadratic integrate-and-fire (QIF) neuron has membrane
voltage fluctuations that, after a suitable change of variables, are
described by:

dV

dt
= b+ V2 + aη(t) , (19)

and when V = 100, a spike is emitted and V is instantaneously
reset to −100. We computed ISI survival functions from
empirical histograms of trajectories with 105 ISIs; we varied b ∈
[0.25, 4.75] in steps of 0.25 and a ∈ [0.25, 2.75] in steps of 0.25.
The QIF neuron has a very different dynamical behavior from the
LIF neuron, exhibiting a Hopf bifurcation at b = 0. Simulation
details are given in Appendix B.

Finally, ISI distributions are often fit to gamma distributions,
and so we also calculated the informationmeasures of spike trains
with gamma-distributed ISIs (GISI).

Each neural model—NIF, LIF, QIF, and GISI—has its own set
of parameters that governs its ISI distribution shape. Taken at
face value, this would make it difficult to compare information
measures across models. Fortunately, for each of these neural
models, the firing rate µ and coefficient of variation CV uniquely
determine the underlying model parameters (Vilela and Lindner,
2009). As Appendix B shows, the quantities lim1t→0 E(1t),
lim1t→0 Cµ + log2(µ1t), lim1t→0 hµ(1t)/µ1t + log2(µ1t),
and lim1t→0 bµ(1t)/µ1t depend only on the ISI coefficient of
variation CV and not the mean firing rate µ.
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We estimated information measures from the simulated spike
train data using plug-in estimators based on the formulae in
Section 3. Enough data was generated that even naive plug-in
estimators were adequate except for estimating bµ when CV was
larger than 1. See Appendix B for estimation details. That said,
binned estimators are likely inferior to binless entropy estimators
(Victor, 2002), and naive estimators tend to have large biases.
This will be an interesting direction for future research, since a
detailed analysis goes beyond the present scope.

Figure 6 compares the statistical complexity, excess entropy,
entropy rate, and bound information rate for all four neuron
types as a function of their CV . Surprisingly, the NIF, LIF, and
QIF neuron’s information measures have essentially identical
dependence on CV . That is, the differences in mechanism do not
strongly affect these informational properties of the spike trains
they generate. Naturally, this leads one to ask if the informational
indifference to mechanism generalizes to other spike train model
classes and stimulus-response settings.

Figure 6’s top left panel shows that the continuous-time
statistical complexity grows monotonically with increasing CV .
In particular, the statistical complexity increases logarithmically

with ISI mean and approximately linearly with the ISI coefficient
of variation CV . That is, the number of bits that must be stored
to predict these processes increases in response to additional
process stochasticity and longer temporal correlations. In fact,
it is straightforward to show that the statistical complexity is
minimized and excess entropy maximized at fixed µ when the
neural spike train is periodic. This is unsurprising since, in the
space of processes, periodic processes are least cryptic (Cµ − E =
0) and so knowledge of oscillation phase is enough to completely
predict the future. (See Appendix B.)

The bottom left panel in Figure 6 shows that increasing CV

tends to decrease the excess entropy E—the number of bits that
one can predict about the future. E diverges for small CV , dips
at the CV where the ISI distribution is closest to exponential,
and limits to a small number of bits at large CV . At small CV ,
the neural spike train is close to noise-free periodic behavior.
When analyzed at small but nonzero 1t, E encounters an
“ultraviolet divergence” (Tchernookov and Nemenman, 2013).
Thus, E diverges as CV → 0, and a simple argument in
Appendix B suggests that the rate of divergence is log2(1/CV ).
At an intermediate CV ∼ 1, the ISI distribution is as close as

FIGURE 6 | Information universality across distinct neuron

dynamics. We find that several information measures depend only on

the ISI coefficient of variation CV and not the ISI mean firing rate µ for

the following neural spike train models: (i) neurons with Gamma

distributed ISIs (GISI, blue), (ii) noisy integrate-and-fire neurons governed

by Equation (11) (NIF, green), (iii) noisy linear leaky integrate-and-fire

neurons governed by Equation (18) (LIF, dotted red), and (iv) noisy

quadratic integrate-and-fire neurons governed by Equation (19) (QIF,

dotted blue). Top left: lim1t→0 Cµ (1t)+ log2 (µ1t). Top right:

lim1t→0 hµ (1t)/µ1t+ log2 (µ1t). Bottom left: lim1t→0 E(1t). Bottom

right: lim1t→0 bµ (1t)/µ1t). In the latter, ISI distributions with smaller

CV were excluded due to the difficulty of accurately estimating
∫∞
0

∫∞
0 φ(t)φ(t′) log2 φ(t+ t′ )dtdt′ from simulated spike trains. See text for

discussion.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 August 2015 | Volume 9 | Article 105

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marzen et al. Information measures for spiking neurons

possible to that of a memoryless Poisson process and so E is
close to vanishing. At larger CV , the neural spike train is noise-
driven. Surprisingly, completely noise-driven processes still have
a fraction of a bit of predictability: knowing the time since last
spike allows for some power in predicting the time to next spike.

The top right panel shows that an appropriately rescaled
differential entropy rate varies differently for neural spike trains
from noisy integrate-and-fire neurons and neural spike trains
with gamma-distributed ISIs. As expected, the entropy rate is
maximized at CV near 1, consistent with the Poisson process
being the maximum entropy distribution for fixed mean ISI.
Gamma-distributed ISIs are far less random than ISIs from noisy
integrate-and-fire neurons, holding µ and CV constant.

Finally, the continuous-time bound information (bµ) rate
varies in a similar way to E with CV . (Note that since the
plotted quantity is lim1t→0 bµ(1t)/µ1t, one could interpret the
normalization by 1/µ as a statement about how the mean firing
rate µ sets the natural timescale.) At low CV , the bµ rate diverges
as 1/C2

V , as described in Appendix B. Interestingly, this limit is
singular, similar to the results in Marzen and Crutchfield (2014):
at CV = 0, the spike train is noise-free periodic and so the bµ

rate is 0. For CV ≈ 1, it dips for the same reason that E decreases.
For larger CV , bµ’s behavior depends rather strongly on the
ISI distribution shape. The longer-ranged gamma-distribution
results in ever-increasing bµ rate for larger CV , while the bµ rate
of neural spike trains produced by NIF neurons tends to a small
positive constant at large CV . The variation of bµ deviates from
that of E qualitatively at larger CV in that the GISI spike trains
yield smaller total predictability E than that of NIF neurons, but
arbitrarily higher predictability rate.

These calculations suggest a new kind of universality for
neuronal information measures within a particular generative
model class. All of these distinct integrate-and-fire neuron
models generate ISI distributions from different families, yet
their informational properties exhibit the same dependencies on
1t, µ, and CV in the limit of small 1t. Neural spike trains
with gamma-distributed ISIs did not show similar informational
properties. And, we would not expect neural spike trains that
are alternating renewal processes to show similar informational
properties either. (See Section 4.) These coarse information
quantities might therefore be effective model selection tools for
real neural spike train data, though more groundwork must be
explored to ascertain their utility.

6. Conclusions

We explored the scaling properties of a variety of information-
theoretic quantities associated with two classes of spiking neural
models: renewal processes and alternating renewal processes.
We found that information generation (entropy rate) and stored
information (statistical complexity) both diverge logarithmically
with decreasing time resolution for both types of spiking models,
whereas the predictable information (excess entropy) and active
information accumulation (bound information rate) limit to
a constant. Our results suggest that the excess entropy and
regularized statistical complexity of different types of integrate-
and-fire neurons are universal in the sense that they do not

depend on mechanism details, indicating a surprising simplicity
in complex neural spike trains. Our findings highlight the
importance of analyzing the scaling behavior of information
quantities, rather than assessing these only at a fixed temporal
resolution.

By restricting ourselves to relatively simple spiking models
we have been able to establish several key properties of their
behavior. There are, of course, other important spiking models
that cannot be expressed as renewal processes or alternating
renewal processes, but we are encouraged by the robust scaling
behavior of the entropy rate, statistical complexity, excess
entropy, and bound information rate over the range of models
we considered.

There was a certain emphasis here on the entropy rate and
hidden Markov models of neural spike trains, both familiar tools
in computational neuroscience. On this score, our contributions
are straightforward. We determined how the entropy rate varies
with the time discretization and identified the possibly infinite-
state, unifilar HMMs required for optimal prediction of spike-
train renewal processes. Entropy rate diverges logarithmically
for stochastic processes (Gaspard and Wang, 1993), and this
has been observed empirically for neural spike trains for time
discretizations in the submillisecond regime (Nemenman et al.,
2008). We argued that the hµ divergence rate is an important
characteristic. For renewal processes, it is the mean firing rate;
for alternating renewal processes, the “reducedmass” of themean
firing rates. Our analysis of the latter, more structured processes
showed that a divergence rate less than the mean firing rate—
also seen experimentally (Nemenman et al., 2008)—indicates
that there are strong correlations between ISIs. Generally, the
nondivergent component of the time discretization-normalized
entropy rate is the differential entropy rate; e.g., as given in
Stevens and Zador (1996).

Empirically studying information measures as a function of
time resolution can lead to a refined understanding of the time
scales over which neuronal communication occurs. Regardless
of the information measure chosen, the results and analysis here
suggest that much can be learned by studying scaling behavior
rather than focusing only on neural information as a single
quantity estimated at a fixed temporal resolution. While we
focused on the regime in which the time discretization was
smaller than any intrinsic timescale of the process, future and
more revealing analyses would study scaling behavior at even
smaller time resolutions to directly determine intrinsic time
scales (Crutchfield, 1994).

Going beyond information generation (entropy rate), we
analyzed information measures—namely, statistical complexity
and excess entropy—that have only recently been used
to understand neural coding and communication. Their
introduction is motivated by the hypothesis that neurons benefit
from learning to predict their inputs (Palmer et al., 2013), which
can consist of the neural spike trains of upstream neurons.
The statistical complexity is the minimal amount of historical
information required for exact prediction. To our knowledge,
the statistical complexity has appeared only once previously
in computational neuroscience (Haslinger et al., 2010). The
excess entropy, a closely related companion, is the maximum
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amount of information that can be predicted about the future.
When it diverges, then its divergence rate is quite revealing of
the underlying process (Crutchfield, 1994; Bialek et al., 2001),
but none of the model neural spike trains studied here had
divergent excess entropy. Finally, the bound information rate
has yet to be deployed in the context of neural coding, though
related quantities have drawn attention elsewhere, such as in
nonlinear dynamics (James et al., 2014), music (Abdallah and
Plumbley, 2009), spin systems (Abdallah and Plumbley, 2012),
and information-based reinforcement learning (Martius et al.,
2013). Though its potential uses have yet to be exploited,
it is an interesting quantity in that it captures the rate at
which spontaneously generated information is actively stored by
neurons. That is, it quantifies how neurons harness randomness.

Our contributions to this endeavor are more substantial
than the preceding points. We provided exact formulae for the
above quantities for renewal processes and alternating renewal
processes. The new expressions can be developed further as
lower bounds and empirical estimators for a process’ statistical
complexity, excess entropy, and bound information rate. This
parallels how the renewal-process entropy-rate formula is a
surprisingly accurate entropy-rate estimator (Gao et al., 2008).
By deriving explicit expressions, we were able to analyze
time-resolution scaling, showing that the statistical complexity
diverges logarithmically for all but Poisson processes. So,
just like the entropy rate, any calculations of the statistical
complexity—e.g., as in Haslinger et al. (2010)—should be
accompanied by the time discretization dependence. Notably, the
excess entropy and the bound information rate have no such
divergences.

To appreciate more directly what neural information
processing behavior these information measures capture in the
continuous-time limit, we studied them as functions of the ISI
coefficient of variation. With an appropriate renormalization,
simulations revealed surprising simplicity: a universal
dependence on the coefficient of variation across several

familiar neural models. The simplicity is worth investigating
further since the dynamics and biophysical mechanisms implicit
in the alternative noisy integrate-and-fire neural models are quite
different. If other generative models of neural spike trains also
show similar information universality, then these information
measures might prove useful as model selection tools.

Finally, we close with a discussion of a practical issue
related to the scaling analyses—one that is especially important
given the increasingly sophisticated neuronal measurement
technologies coming online at a rapid pace (Alivisatos et al.,
2012). How small should 1t be to obtain correct estimates of
neuronal communication? First, as we emphasized, there is no
single “correct” estimate for an information quantity, rather its
resolution scaling is key. Second, results presented here and in
a previous study by others (Nemenman et al., 2008) suggest
that extracting information scaling rates and nondivergent
components can require submillisecond time resolution. Third,
and to highlight, the regime of infinitesimal time resolution is
exactly the limit in which computational efforts without analytic
foundation will fail or, at a minimum, be rather inefficient. As
such, we hope that the results andmethods developed here will be

useful to these future endeavors and guide how new technologies
facilitate scaling analysis.
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Appendix A

Alternating Renewal Process Information
Measures
A discrete-time alternating renewal process draws counts from
F1(n), then F2(n), then F1(n), and so on. We now show that the
modality and counts since last event are causal states when F1 6=
F2 almost everywhere and when neither F1 nor F2 is eventually
1-Poisson. We present only a proof sketch.

Two pasts x:0 and x′:0 belong to the same causal state when
Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0). We can describe the
future uniquely by a sequence of interevent countsNi, i ≥ 1, and
the counts till next eventN ′

0. Likewise, we could describe the past
as a sequence of interevent countsNi, i < 0, and the counts since
last eventN0 −N ′

0. LetMi be the modality at time step i. So, for
instance,M0 is the present modality.

First, we claim that one can infer the present modality from a
semi-infinite past almost surely. The probability that the present
modality is 1 having observed the last 2M events is:

Pr(M0 = 1|N−2M:−1 = n−2M:−1)

=
2M
∏

i=−1,odd

F2(ni)F1(ni−1) .

Similarly, the probability that the present modality is 2 having
observed the last 2M events is:

Pr(M0 = 2|N−2M:−1 = n−2M:−1)

=
2M
∏

i=−1,odd

F1(ni)F2(ni−1) .

We are better served by thinking about the normalized difference
of the corresponding log likelihoods:

Q: =
1

2M
log

P(M0 = 1|N−2M:−1 = n−2M:−1)

P(M0 = 2|N−2M:−1 = n−2M:−1)
.

Some manipulation leads to:

Q =
1

2

( 1

M

2M
∑

i=−1,odd

log
F2(ni)

F1(ni)
+

1

M

2M
∑

i=−1,even

log
F1(ni)

F2(ni)

)

,

and, almost surely in the limit ofM → ∞:

1

M

2M
∑

i=−1,odd

log
F1(ni)

F2(ni)
→
{

D[F2||F1] M0 = 1

−D[F1||F2] M0 = 2
, (A1)

where D[P||Q] is the information gain between P and Q (Cover
and Thomas, 2006). And, we also have:

1

M

2M
∑

i=−1,even

log
F2(ni)

F1(ni)
→
{

−D[F1||F2] M0 = 1

D[F2||F1] M0 = 2
.

This implies that:

lim
M→∞

Q =
D[F2||F1]− D[F1||F2]

2

{

1 M0 = 1

−1 M0 = 2
.

We only fail to identify the present modality almost surely
from the semi-infinite past if limM→∞ Q = 0. Otherwise, the
unnormalized difference of the log likelihoods:

log
Pr(M0 = 1|N:−1 = n:−1)

Pr(M0 = 2|N:−1 = n:−1)

tends to ±∞, implying that one of the two probabilities has
vanished. From the expression, limM→∞ Q = 0 only happens
when D[F2||F1] = D[F1||F2]. However, equality requires that
F1(n) = F2(n) almost everywhere.

Given the present modality, we also need to know the counts
since the last event in order to predict the future as well as
possible. The proof of this is very similar to those given inMarzen
and Crutchfield (2015). The conditional probability distribution
of future given past is:

Pr(X0:|X:0 = x:0) = Pr(N1:|N0,X:0 = x:0) Pr(N0|X:0 = x:0) .

Since the present modality is identifiable from the past x:0, and
since interevent counts are independent given modality:

Pr(N1:|N0,X:0 = x:0) = Pr(N1:|M0 = m0(n:−1)) .

So, it is necessary to know the modality in order to predict the
future as well as possible. By virtue of how the alternating renewal
process is generated, the second term is:

Pr(N0|X:0 = x:0) = Pr(N0|N ′
0 = n′0,M0 = m0(n:−1)) .

A very similar term was analyzed in Marzen and Crutchfield
(2015), and that analysis revealed that it was necessary to store
the counts since last spike when neither F1 nor F2 is eventually
1-Poisson.

Identifying causal states S+ as the present modality M0 and
the counts since last event N ′

0 immediately allows us to calculate
the statistical complexity and entropy rate. The entropy rate can
be calculated via:

hµ = H[X0|M0,N
′
0]

= π(M0 = 1)H[X0|M0 = 1,N ′
0]

+ π(M0 = 2)H[X0|M0 = 2,N ′
0] .

The statistical complexity is:

Cµ = H[S+]

= H[M0,N
′
0]

= H[M0]+ π(M0 = 1)H[N ′
0|M0 = 1]

+ π(M0 = 2)H[N ′
0|M0 = 2] . (A2)
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Finally, it is straightforward to show that the modality M1

at time step 1 and the counts to next event are the reverse-time
causal states under the same conditions on F1 and F2. Therefore:

E = I[S+;S−]

= I[M0,N
′
0;M1,N0 −N

′
0]

= I[M0;M1,N0 −N
′
0]

+ I[N ′
0;M1,N0 −N

′
0|M0] .

One can continue in this way to find formulae for other
information measures of a discrete-time alternating renewal
process.

These formulae can be rewritten terms of the modality-
dependent information measures of Equations (13) and (14) if
we recognize two things. First, the probability of a particular
modality is proportional to the average amount of time spent in
that modality. Second, for reasons similar to those outlined in
Marzen and Crutchfield (2015), the probability of counts since
last event given a particular present modality i is proportional
to wi(n). Hence, in the infinitesimal time discretization limit, the
probability of modality 1 is:

π(M0 = 1) =
µ(1)

µ(1) + µ(2)

and similarly for modality 2. Then, the entropy rate out of
modality i is:

H[X1|M0 = i,N ′
0] ∼ 1t

(

µ(i) log2
1

1t
+ h(i)µ (1t)

)

,

and the modality-dependent statistical complexity diverges as:

H[N ′
0|M0 = i] ∼ log2 1/1t + Cµ(1t) .

Finally, in continuous-time M0 and M1 limit to the same
random variable, such that:

lim
1t→0

E(1t) = H[M0]+ lim
1t→0

I[N ′
0;N0 −N

′
0|M0] .

Note that E(i) = lim1t→0 I[N
′
0;N0 −N ′

0|M0 = i].
Bringing these results together, we substitute the above

components into Equation (A2)’s expression for Cµ and, after
details not shown here, find the expression quoted in the main
text as Equation (16). Similarly, for hµ and E, yielding the the
formulae presented in the main text in Equations (15) and (17),
respectively.

As a last task, as our hypothetical null model, we wish to find
the information measures for the corresponding renewal process
approximation. The ISI distribution of the alternating renewal
process is:

φ(t) =
µ(2)φ(1)(t)+ µ(1)φ(2)(t)

µ(1) + µ(2)
(A3)

and its survival function is:

8(t) =
µ(2)8(1)(t)+ µ(1)8(2)(t)

µ(1) + µ(2)
. (A4)

Hence, its mean firing rate is:

µ =
1

1/µ(1) + 1/µ(2)
. (A5)

From Section 3, the entropy rate of the corresponding renewal
process is:

hrenµ (1t)

1t
∼ µ log2

1

1t
+ µH[φ(t)] ;

compare Equation (15). And, the statistical complexity of the
corresponding renewal process is:

Cren
µ (1t) ∼ log2

1

1t
+H[µ8(t)] .

The rate of divergence of Cren
µ (1t) is half the rate of divergence of

the trueCµ(1t), as given in Equation (16). Trivial manipulations,

starting from 0 ≤
(

1
µ(1) − 1

µ(2)

)2
, imply that the rate of entropy-

rate divergence is always less than or equal to the mean firing
rate for an alternating renewal process. Jensen’s inequality implies
that each of the nondivergent components of these information
measures for the renewal process is less than or equal to that of
the alternating renewal process. The Data Processing Inequality
(Cover and Thomas, 2006) also implies that the excess entropy
calculated by assuming a renewal process is a lower bound on the
true process’ excess entropy.

Appendix B

Simplicity in Complex Neurons
Recall that our white noise-driven linear leaky integrate-and-fire
(LIF) neuron has governing equation:

V̇ = b− V + aη(t) , (A6)

and, when V = 1, a spike is emitted and V is instantaneously
reset to 0. We computed ISI survival functions from empirical
histograms of 105 ISIs. These ISIs were obtained by simulating
Equation (A6) in Python/NumPy using an Euler integrator with
time discretization of 1/1000 of log b/(b− 1), which is the ISI in
the noiseless limit.

The white noise-driven quadratic integrate-and-fire (QIF)
neuron has governing equation:

V̇ = b+ V2 + aη(t) , (A7)

and, when V = 100, a spike is emitted and V is instantaneously
reset to −100. We computed ISI survival functions also from
empirical histograms of trajectories with 105 ISIs. These ISIs were
obtained by simulating Equation (A7) in Python/NumPy using
an Euler stochastic integrator with time discretization of 1/1000
of
√

π/b, which is the ISI in the noiseless limit when threshold
and reset voltages are+∞ and−∞, respectively.

Figure 6 shows estimates of the following continuous-time
information measures from this simulated data as they vary with
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mean firing rate µ and ISI coefficient of variation CV . This
required us to estimate µ, CV , and:

CCT
µ : = lim

1t→0
(Cµ(1t)+ log2 1t),

ECT : = lim
1t→0

E(1t) ,

hCTµ : = lim
1t→0

(

hµ(1t)

1t
+ µ log2 1t

)

, and

bCTµ : = lim
1t→0

bµ(1t)

1t
,

where the superscript CT is a reminder that these are
appropriately regularized information measures in the
continuous-time limit.

We estimated µ and CV using the sample mean and sample
coefficient of variation with sufficient samples so that error
bars (based on studying errors as a function of data size) were
negligible. The information measures required new estimators,
however. From the formulae in Section 3, we see that:

CCT
µ = log2

1

µ
− µ

∫ ∞

0
8(t) log2 8(t)dt , (A8)

ECT =
∫ ∞

0
µtφ(t) log2(µφ(t))dt

− 2

∫ ∞

0
µ8(t) log2 8(t)dt , (A9)

hCTµ = −µ

∫ ∞

0
φ(t) log2 φ(t) , and (A10)

bCTµ = −µ

(

∫ ∞

0
φ(t)

∫ ∞

0
φ(t′) log2 φ(t + t′)dt′dt

+
1

log 2
−
∫ ∞

0
φ(t) log2 φ(t)dt

)

. (A11)

It is well known that the sample mean is a consistent estimator
of the true mean, that the empirical cumulative density function
is a consistent estimator of the true cumulative density function
almost everywhere, and thus that the empirical ISI distribution
is a consistent estimator of the true cumulative density function
almost everywhere. In estimating the empirical cumulative
density function, we introduced a cubic spline interpolator.
This is still a consistent estimator as long as 8(t) is three-
times differentiable, which is the case for ISI distributions from
integrate-and-fire neurons.We then have estimators ofCCT

µ , ECT ,

hCTµ , and bCTµ that are based on consistent estimators of µ, 8(t),
and φ(t) and that are likewise consistent.

We now discuss the finding evident in Figure 6, that the
quantities lim1t→0 E(1t) and lim1t→0 Cµ + log2(µ1t) depend
only on the ISI coefficient of variation CV and not the mean firing
rate µ. Presented in a different way, this is not so surprising.
First, we use Marzen and Crutchfield (2015)’s expression for Cµ

to rewrite:

Q1 = lim
1t→0

(

Cµ(1t)+ log2(µ1t)
)

= −µ

∫ ∞

0
8(t) log2 8(t)dt

and Equation (6) to rewrite:

Q2 = lim
1t→0

E(1t)

= 2Q1 +
∫ ∞

0
µtφ(t) log2(µφ(t))dt .

So, we only need to show that −µ
∫∞
0 8(t) log2 8(t)dt

and
∫∞
0 µtφ(t) log2(µφ(t))dt are independent of µ for two-

parameter families of ISI distributions.
Consider a change of variables from t to t′ = µt; then:

Q1 = −
∫ ∞

0
8
(

t′/µ
)

log2
(

8
(

t′/µ
) )

dt′ (A12)

and

Q2 = 2Q1 +
∫ ∞

0
t′φ

(

t′/µ
)

log2
(

φ
(

t′/µ
) )

dt′ . (A13)

For all of the ISI distributions considered here, φ

(

t′
µ

)

is still

part of the same two-parameter family as φ(t), except that
its mean firing rate is 1 rather than µ. Its CV is unchanged.
Hence, Q1 and Q2 are the same for a renewal process with
mean firing rate 1 and µ, as long as the CV is held constant.
It follows that lim1t→0 E(1t) and lim1t→0 Cµ + log2(µ1t) are
independent of µ and only depend on CV for the two-parameter
families of ISI distributions considered in Section 5. Similar
arguments apply to understanding the universal CV -dependence
of lim1t→0 bµ(1t)/µ1t and lim1t→0 hµ(1t)/µ1t+ log2(µ1t).

In Figure 6, we also see that E seems to diverge as CV →
0. Consider the following plausibility argument that suggests it
diverges as log2 1/CV as CV → 0. These two-parameter ISI
distributions with finite mean firing rate µ and small CV ≪ 1
can be approximated as Gaussians with mean 1/µ and standard
deviation CV/µ. Recall from Equation (6) that we have:

E = −2

∫ ∞

0
µ8(t) log2(µ8(t))dt

+
∫ ∞

0
µtφ(t) log2(µφ(t))dt

= − log2 µ − 2µ

∫ ∞

0
8(t) log2 8(t)dt

+ µ

∫ ∞

0
tφ(t) log2 φ(t)dt .

Note that as CV → 0:

8(t) →











1 t < 1
µ

1
2 t = 1

µ

0 t > 1
µ

(A14)

and so:

lim
CV→0

∫ ∞

0
8(t) log2 8(t)dt = 0 .
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We assumed that for small CV , we can approximate:

φ(t) ≈
1

√

2πC2
V/µ2

exp

(

−
(µt − 1)2

2C2
V

)

,

which then implies that:

µ

∫ ∞

0
tφ(t) log2 φ(t)dt ≈ log2

µ
√
2π

CV
−

1

2
. (A15)

So, for any ISI distribution tightly distributed about its mean ISI,
we expect:

E ≈ log2
1

CV
,

so that E diverges in this way. A similar asymptotic analysis also
shows that as CV → 0,

lim
1t→0

bµ(1t)

1t
≈

1

log 2
(

1

2C2
V

−
1

2
) , (A16)

thereby explaining the divergence of lim1t→0 bµ(1t)/1t evident
in Figure 6.

Finally, a straightforward argument shows that Cµ is
minimized at fixed µ when the neural spike train is periodic.
We can rewrite Cµ in the infinitesimal time resolution
limit as:

Cµ(1t) ∼ log2

(

1

µ1t

)

+ µ

∫ ∞

0
8(t) log2

1

8(t)
dt .

Note that 0 ≤ 8(t) ≤ 1, and so
∫∞
0 8(t) log2

1
8(t)

dt ≥
0. We set it equal to zero by using the step function given
in Equation (A14), which corresponds to a noiseless periodic
process. So, the lower bound on Cµ(1t) is log2 1/µ1t, and this
bound is achieved by a periodic process.
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