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To navigate complex acoustic environments, listeners adapt neural processes to focus

on behaviorally relevant sounds in the acoustic foreground while minimizing the impact

of distractors in the background, an ability referred to as top-down selective attention.

Particularly striking examples of attention-driven plasticity have been reported in primary

auditory cortex via dynamic reshaping of spectro-temporal receptive fields (STRFs).

By enhancing the neural response to features of the foreground while suppressing

those to the background, STRFs can act as adaptive contrast matched filters that

directly contribute to an improved cognitive segregation between behaviorally relevant

and irrelevant sounds. In this study, we propose a novel discriminative framework for

modeling attention-driven plasticity of STRFs in primary auditory cortex. The model

describes a general strategy for cortical plasticity via an optimization that maximizes

discriminability between the foreground and distractors while maintaining a degree of

stability in the cortical representation. The first instantiation of the model describes a

form of feature-based attention and yields STRF adaptation patterns consistent with a

contrast matched filter previously reported in neurophysiological studies. An extension of

the model captures a form of object-based attention, where top-down signals act on an

abstracted representation of the sensory input characterized in the modulation domain.

The object-based model makes explicit predictions in line with limited neurophysiological

data currently available but can be readily evaluated experimentally. Finally, we draw

parallels between themodel and anatomical circuits reported to be engaged during active

attention. The proposed model strongly suggests an interpretation of attention-driven

plasticity as a discriminative adaptation operating at the level of sensory cortex, in line

with similar strategies previously described across different sensory modalities.

Keywords: auditory attention, feature-based attention, object-based attention, spectro-temporal receptive fields,

plasticity, computational model

1. Introduction

Plasticity is a ubiquitous property of sensory cortex whereby neural tuning characteristics can be
dynamically shaped based on expectations, environmental context, and behavioral demands. Rapid
plasticity has been documented across many sensory modalities including vision (Gilbert and Li,
2012), somatosensation (Feldman and Brecht, 2005), olfaction (Mandairon and Linster, 2009), and
audition (Schreiner and Polley, 2014). A particularly important driver of neural plasticity is top-
down attention, which acts to adapt cognitive resources to selectively focus on behaviorally relevant
sensory input. Such a mechanism helps sensory systems dynamically parse the flood of incoming
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stimuli as environmental context and behavioral demands change
over time. For example, attention helps guide the visual search for
a friend in a crowd, or it can help a listener follow a specific voice
in a cocktail party.

Broadly speaking, attention is a multifaceted and distributed
process. Its effects are manifested neurophysiologically at various
levels in the cortical hierarchy (Motter, 1993; Fritz et al., 2003;
David et al., 2008; Ahveninen et al., 2011; Atiani et al., 2014),
cognitively at many levels of abstraction of the raw sensory
input (Treisman, 1996; Shinn-Cunningham, 2008), and are
dependent on factors such as stimulus statistics (Shuai and
Elhilali, 2014), task difficulty (Atiani et al., 2009), and the
physical constraints of the underlying neural circuitry (Miller
and Buschman, 2013). Nevertheless, a common computational
goal can be identified from studies of top-down attention
across sensory modalities: that neural tuning characteristics
adapt to improve discrimination and separation between the
representation of the foreground (i.e., the attended stimuli) and
that of the background (i.e., task-irrelevant distractors).

Studies of attention-driven plasticity have a rich history
in the visual domain (Itti and Koch, 2001; Itti et al., 2005;
Carrasco, 2011). Neurophysiological studies have described
a number of neural parameters that are modulated by
attention to facilitate foreground/background separation,
including response gain (Treue and Trujillo, 1999), feature
tuning bandwidth (Spitzer et al., 1988), preferred spatial
location (Womelsdorf et al., 2006), and contrast response
functions (Martínez-Trujillo and Treue, 2002). Furthermore,
these observations can be explained by a plethora of
computational models (Frintrop et al., 2010; Borji and Itti,
2013). Early connectionist models describe how attention acts to
adapt synaptic weights in a distributed neural network to attend
to, and emphasize the representation of, desired spatial locations
or features (Olshausen et al., 1993; Tsotsos et al., 1995). More
recent efforts have proposed frameworks that unify a variety
of attention-driven effects observed in neurophysiological
studies, quantifying how attention acts to bias the gains and/or
feature tuning functions of neurons to emphasize target-specific
features while suppressing the responses to task-irrelevant
features (Navalpakkam and Itti, 2007; Reynolds and Heeger,
2009; Borji and Itti, 2014). Overall, these models have been
important for establishing a theoretical foundation on which
to base questions of the optimal computational strategies for,
and the neural substrates of, top-down attention, as well as the
meaning, interpretation, and scope of top-down signals (Baluch
and Itti, 2011).

In the auditory system, recent neurophysiological studies have
begun to shed light on the nature of the computational principles
underlying attention-driven plasticity (Fritz et al., 2007a,b; Bajo
and King, 2010). Along the central auditory pathway, top-
down attentional mechanisms have been shown to dynamically
reshape neural tuning characteristics in order to maximize
performance of behavioral tasks. These task-driven changes have
been summarized by the contrast filtering hypothesis, which states
that attention acts to enhance representation of attended sounds
in the acoustic foreground relative to those in the acoustic
background (Fritz et al., 2007c). Particularly striking examples

of contrast filtering effects have been observed in primary
auditory cortex (A1) via measurements of spectro-temporal
receptive fields (STRFs), a kernel often used to summarize
the linear processing characteristics of a neuron (Aertsen and
Johannesma, 1981; Depireux et al., 2001; Klein et al., 2006). It
has been shown that STRFs adapt to directly enhance individual
acoustic features of the foreground while suppressing those
of the background, and, importantly, that the direction of
plasticity reflects the structure of the task and behavioral meaning
assigned to foreground and background stimuli (Fritz et al., 2003,
2005c, 2007c; David et al., 2012; Yin et al., 2014). Moreover,
despite being subject to dramatic changes in their shape, STRFs
exhibit remarkable stability in their tuning characteristics by
resisting change over time and/or returning to their nominal
shapes post behavior (Elhilali et al., 2007). Furthermore, contrast
filtering effects have been observed beyond A1 in secondary
auditory belt areas up through executive control areas in
prefrontal cortex (Fritz et al., 2010; Atiani et al., 2014). Thus, the
computational principles underlying task-driven plasticity can be
understood through the lens of a contrast filter that allows the
auditory system to dynamically reallocate neural resources in a
discriminative fashion to improve performance in specific tasks
whilemaintaining a notion of representational stability over time.

Recent computational modeling efforts have predicted
plasticity patterns that are broadly consistent with the contrast
filtering hypothesis in A1 (Mesgarani et al., 2010; David et al.,
2012). Broadly speaking, these studies propose discriminative
cost functions that maximize a notion of distance between neural
responses to foreground and background stimuli to determine
optimal receptive field parameters subject to biologically
plausible constraints. Importantly, these models predict localized
differential plasticity effects that reflect the acoustic features
of task-relevant stimuli. They are primarily driven by the
physical characteristics of the sensory input and represent—
by design—models of feature-based attention. Although quite
informative about computational strategies underlying A1
adaptation patterns, these approaches are limited in two
important ways. First, they do not capture the influence of
task structure on the direction of plasticity effects. In particular,
recent data from mammalian primary auditory cortex suggest
that during a tone vs. noise discrimination task, aversive tasks
(where the target tone is associated with negative reward)
tended to enhance representation of the tone whereas appetitive
tasks (where the target target is associated with a positive
reward) tended to suppress representation of the tone (David
et al., 2012). Because the models define quadratic cost functions
whose optima will not change if the roles of foreground and
background are reversed, they are therefore agnostic to task
structure, and there is no way to guarantee that plasticity
predicted by the models will change direction if the behavioral
meanings assigned to foreground and background stimuli are
exchanged. Second, because the computational models adapt
receptive field parameters based directly on the raw spectro-
temporal stimulus—and hence the raw features that characterize
the acoustic classes—they lack a mechanism to adapt based on
abstractions of the stimulus (e.g., spectro-temporal modulation
profile, phase profile, etc.), which one would expect from an
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object-based model of attention that defines the target class
along certain characteristics but unconstrains others to allow for
variability within the target class.

Inspired by neurophysiological results and previous modeling
efforts, this report presents a computational model of attention-
driven plasticity of primary auditory STRFs. The model makes
explicit two important aspects of top-down attention. The first
is that attention defines the acoustic foreground and background
by assigning task-relevant categorical labels to observed neural
ensemble responses. The second is that attention acts to vary the
shapes of STRFs to facilitate improved discrimination between
the foreground and background. By designing and optimizing
a suitable objective function, we demonstrate that the model
predicts STRF changes that are consistent with the contrast
filtering hypothesis, in line with those previously observed
in physiological studies, and reflect a form of feature-based
attention that enhances and suppresses task-salient acoustic cues.
Moreover, the form of the model guarantees that the direction
of plasticity is consistent with the behavioral meaning of the
foreground and background. Next, we explore a generalized form
of the discriminative framework that adapts receptive fields based
on complex spectro-temporal modulation cues observed in the
stimulus, as quantified in the Fourier domain. In this case, the
extended model reflects a form of object-based attention, where
top-down signals can act on an abstracted representation of the
raw acoustic cues. We make predictions for behavioral tasks for
which STRF plasticity data is limited or unavailable but could be
readily evaluated in neurophysiological studies. Finally, we draw
parallels between our model and anatomical circuits thought to
be engaged during active attention, and we speculate on the
computational goals of these subcircuits.

2. Results

2.1. Physiological STRF Ensemble
For this study, we consider ensembles of STRFs obtained from
recordings of awake, non-behaving ferret primary auditory
cortex; some examples from this ensemble are shown in
Figure 1. The STRFs reflect sensitivity to a variety of spectro-
temporal events that characterize natural sounds, including
localized energy in time-frequency, as well as purely spectral,
purely temporal, and joint spectro-temporal modulations. For
the experiments described below, we consider ten ensembles
of K = 100 STRFs randomly sampled (with replacement)
from a collection of 810 STRFs; more details about ensemble
construction are provided in the Section 4.

2.2. Overview of the Discriminative Framework
An overview of the discriminative framework considered
in this study is shown in Figure 2. Broadly speaking, the
proposed framework quantifies the physiologically implied
balance between discrimination and stability via an objective
function of the form

J(w,HA) = Discriminability (w,HA,At,C)

+ Stability (H0,HA, λ) (1)

FIGURE 1 | Examples of physiological STRFs obtained from

mammalian primary auditory cortex. The STRFs reflect sensitivity to a

variety of spectro-temporal events in natural sounds, including localized

time-frequency energy, spectral and temporal modulations, and more complex

joint spectro-temporal modulations. The white ellipses denote isoline contours

(at the 20% level) of a localized spectro-temporal mask, defined as a Gaussian

envelope fit to each filter (see the main text and the Section 4).

where w is a vector of parameters for a discriminative model,H0

and HA are the sets of initial and adapted STRFs, respectively,
At is a time-varying attentional signal that assigns behaviorally
meaningful categorial labels to observed neural responses, and
(C, λ) are hyperparameters that control the impact of each term
on the overall objective function. In keeping with nomenclature
commonly used in auditory physiological studies, we interchange
use of foreground with target stimuli, as well as interchange use
of background with reference stimuli. Thus, the overall goal here
is to determine settings of w and HA that optimize the proposed
cost function.

We consider two instantiations of the proposed framework.
The Feature-Based Model operates directly in the time-frequency
domain and operates linearly without constraints on the STRFs.
We provide relevant theoretical results and validate the model
on behavioral tasks for which physiological results are available,
demonstrating that the resulting STRF adaptation patterns
directly reflect task-relevant acoustic features. Next, we generalize
the framework by considering an Object-Based Model that
operates on the spectro-temporal modulation profiles of the
STRFs with specific constraints on the magnitude and phase of
the STRFs. By acting on an abstracted representation of the raw
acoustics, this model therefore reflects a form of object-based
attention. Again, we present theoretical results for this model.
Predictions for behavioral tasks that could be readily evaluated
in neurophysiological studies are also provided.

2.3. Feature-based Model: Theoretical Results
In the time-frequency domain, we model neural firing rate as

rk(t) =
∑

f

(mk(t, f ) · h
A
k (t, f )) ∗t s(t, f ) (2)
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FIGURE 2 | Proposed discriminative framework for attention-driven

plasticity. Examples of foreground and background stimuli are passed

through a model of the auditory periphery, and the resulting auditory

spectrogram is analyzed by a bank of STRFs derived from recordings from

ferret primary auditory cortex. Top-down attention acts to assign a

behaviorally meaningful categorical label to observed population responses,

which are subsequently discriminated using logistic regression. Feedback

from the discriminative model, in the form of the regressor prediction error,

iteratively adapts the shapes of the STRFs to improve prediction of

foreground vs. background sounds.

where hA
k
(t, f ) ∈ R

F×T denotes an STRF we seek to
adapt, ∗t denotes convolution in time, mk(t, f ) ∈ [0, 1]
is a Gaussian-shaped spectro-temporal mask, and s(t, f )
is the stimulus spectrogram. The mask models spectro-
temporal constraints related to synaptic input and temporal
integration that are typically observed in auditory cortical
neurons. Later, we will observe that it guarantees that
induced STRF adaptations are also spectro-temporally
local. The mask is automatically determined by performing
a least-squares fit of a Gaussian envelope to a rectified
STRF (see Section 4), and ellipses illustrating the
coverage of the masks are shown in Figure 1. Finally, let
rt = [1, r1(t), r2(t), · · · , rK(t)] ∈ R

K+1 denote an augmented
ensemble response.

We model the influence of the top-down attentional
signal At as the assignment of a behaviorally relevant
categorical label yt ∈ {+1,−1} to an observed ensemble
response rt , where yt = +1 is associated with a target
class of stimuli and yt = −1 is associated with a
reference class. To improve discrimination between target and
reference stimuli, we assume that attention acts to vary the
shapes of the STRFs in order to maximize the conditional
likelihood of the labels. A simple model to quantify this
notion is logistic regression, where we model the conditional
likelihood as

p(Yt = yt|rt,w): = σ (ytw
Trt) (3)

where σ (α) = 1/(1 + exp(−α))−1 is the logistic function and
w = [w0, w1, · · · ,wK] ∈ R

K+1 is a vector of regression
coefficients (Bishop, 2006).

To induce task-driven changes in the STRFs, we define the
following objective function:

J(w,HA): =
1

2
||w||22 − C ·

〈
log σ

(
ytw

Trt

)〉
t︸ ︷︷ ︸

Discriminability

+
λ

2

∑

k

||h0k(t, f )− hAk (t, f )||
2
F

︸ ︷︷ ︸
Stability

(4)

The discriminability terms correspond to the average conditional
log-likelihood of the attentional labels with l2 regularization
to prevent the regression coefficients from growing too large
and overfitting available training stimuli. The stability term
corresponds to an l2 regularizer on the adapted STRF coefficients
that controls “how far” the adapted STRFs can vary from
their original versions. This reflects the idea that STRFs resist
change and seek to return to their nominal shape upon
task completion (Elhilali et al., 2007). Finally, the balance
between discriminability vs. stability is controlled by choice of
hyperparameters (C, λ).

Optimizing J(w,HA) is a non-convex problem when trying
to jointly solve for w and HA, and so there exist many local
optima. One strategy for finding these optima is by use of
block coordinate descent, where we alternate between two
minimization problems:

argmin
w

J(w,HA) subject to wk ≥ 0, k = 1, 2, · · · ,K (P1)

argmin
HA

J(w,HA) (P2)

We will show below that non-negativity constraints on the
regression coefficients are necessary for encoding task valence
during adaptation.

Because J(w,HA) is a sum of convex functions, and the
constraints on (P1) are convex, each subproblem is therefore
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convex with a unique minimum. Furthermore, since each update
to w andHA does not increase the value of J(w,HA), alternating
updates to w andHA guarantee convergence to a local minimum
of the overall objective function (Bertsekas, 1999; Boyd and
Vandenberghe, 2004). Intuition for this result can be gained by
examining the sequence

J(w(0),H
(0)
A ) ≥ J(w(1),H

(0)
A ) ≥ J(w(1),H

(1)
A ) ≥ · · ·

≥ J(w(j+1),H
(j)
A ) ≥ J(w(j+1),H

(j+1)
A ) ≥ · · ·

The solutions to both (P1) and (P2) are found numerically
by searching for stationary points of the respective objective
functions (see Section 4), i.e., when ∇wJ(w,HA) = 0 and
∇hA

k
(t, f )J(w,HA) = 0. For the regression coefficients, upon

convergence of (P1), and assuming the minimum lies within the
feasible set formed by the constraints on the wk, the regression
coefficient vector can be written as

w = C
〈
yt · [1− σ (ytw

Trt)] · rt

〉
t

(5)

We interpret the term [1−σ (ytw
Trt)] as a “prediction error” and

consequently hard-to-predict responses have more influence on
choice of the optimal regression coefficients. Moreover, because
the wk for k > 0 are constrained to be nonnegative, those
coefficients can be thought of as a population gain vector that
applies more weight to task-relevant vs. task-irrelevant neurons.

Next, upon convergence of (P2), the adapted STRFs are
found as

hAk (t, f ) = h0k(t, f )+
C

λ
· wk ·mk(t, f )

〈
yt′ · [1− σ (yt′w

Trt′ )]

·s(t′ − t, f )
〉
t′
(6)

Equation (6) contains the main theoretical result of the Feature-
Based Model and shows how STRF plasticity predicted by the
proposed framework is consistent with the contrast filtering
hypothesis. First, attention-induced STRF plasticity directly
reflects the spectro-temporal structure and features of the (time-
reversed) target and reference stimuli, as given in the averaging
term. The impact of the stimulus on adaptation at each time
is proportional to the difficulty of predicting its corresponding
label. Second, because we have constrained the regression
coefficients wk for k > 0 to be non-negative, the behavioral
meaning of the labels is preserved so that acoustic features of the
target (yt = +1) are guaranteed to be enhanced whereas those of
the reference (yt = −1) are suppressed. Third, STRF plasticity
is guaranteed to be local as a consequence of multiplying the
sum with the Gaussian-shaped spectro-temporal mask mk(t, f ).
Finally, the first term encourages stability in the STRFs by
resisting change from their original shapes, the magnitude of the
effect being controlled by C and λ.

2.4. Feature-based Model: Validation
We validate the model by simulating task-driven plasticity on
a number of spectral behavioral tasks that have been explored
in studies of auditory cortex. We first consider a tone detection

task, where an animal is trained to detect an isolated tone in the
context of a broadband noise reference (Fritz et al., 2003). This
noise reference is referred to as a temporally orthogonal ripple
combination (TORC), and is typically used in neurophysiological
recordings to estimate a neuron’s STRF. The second is a chord
detection task, where an animal is trained to detect a multi-tone
complex in the context of a broadband noise reference (Fritz
et al., 2007c). Finally, we consider a tone discrimination task,
where an animal is trained to detect a target tone in the context
of a specified reference tone (Fritz et al., 2005c). The details of the
stimuli used for each task are provided in Table 1 and the details
of stimulus construction are provided in the Section 4.

To visualize the effects of attention on the shapes of
the receptive fields, we consider the difference between the
Euclidean-normalized active and passive STRFs (1STRF);
examples of the induced adaptation patterns for the spectral
tasks are shown in Figure 3. For tone detection, Figures 3A,B
illustrate that target tones (red arrows) induce local, excitatory
changes in the STRFs at the target frequencies. This is apparent
from the active STRFs (middle subpanels) as well as from the
difference STRF (right subpanels). The difference STRF also
reveals that the effect of the noise reference is to introduce a
small degree of suppression within the mask and surrounding
the tone. Similar effects are observed for the chord detection
in Figures 3C,D: target tones induce local, excitatory changes,
with suppression around and in between the target tones. Finally,
shown in Figures 3E,F are example adaptation patterns for the
tone discrimination task. We observe that target tones induce
excitatory changes whereas reference tones (blue arrows) induce
inhibitory changes in the active STRFs.

We quantify population effects using approaches described in
previous physiological studies (see e.g., Fritz et al., 2003), and the
results are summarized in Figure 4. First, to visualize population
effects across a number of targets (references), we compute
1STRF aligned at the target (reference) frequencies, and average
across all ensembles and target (reference) tones. Next, in order to
quantify the size of the attentional effect, we compute the relative
change of STRF gain, at the location of maximum difference in
the target (reference) channel, between the passive and active
settings; we refer to this as1A and subscript accordingly for each
task.

For tone detection, Figure 4A shows that across all targets and
ensembles, active attention simulated by the model induces local,
excitatory changes in the STRFs at the target tone, with inhibitory
changes spectrally adjacent to the target. Figure 4B shows that
the distribution of1ATGT is overwhelmingly excitatory (mean=

+50.87 ± 6.7% s.e.m.) with a heavy tail to the right. For each
ensemble and across all targets, excitatory changes are significant

TABLE 1 | Details of the tasks considered for the feature-based model.

Task Target Reference

Tone detection 0.25, 0.5, 1, 2, 3.25 kHz TORCs

Chord detection 0.25/0.5/0.75, 0.5/0.75/2, 0.5/1/2, TORCs

1/2/1.5, 1.75/2/3.25 kHz

Tone discrimination 0.25, 0.25, 0.5, 0.5, 1 kHz 0.5, 1, 1, 2, 2 kHz
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A B

C D

E F

FIGURE 3 | Validation of the Feature-Based Model on a variety of

behavioral tasks. Each panel shows an STRF in the passive and active

behavioral state, and the difference STRF illustrates the effects of the model

on STRF shape. (A,B) Tone detection: Target tones (red arrows) elicit

increased excitation at the target frequency. The difference pattern also

reveals a small degree of inhibition at non-target frequencies within the mask.

(C,D) Chord detection: Target tones elicit increased excitation at each of the

frequencies in the target complex, with regions of suppression between and

outside the targets. (E,F) Tone discrimination: Target tones elicit increased

excitation whereas reference tones (blue arrows) are suppressed. White lines:

isoline contours of the spectro-temporal mask at the 20% level. STRFs are

interpolated for display. Examples shown for λ = 10−4.5,C = 10−3.

(p ≪ 0.001, t-test and Wilcoxon signed-rank test). Importantly,
similar observations have been made in ferret recordings by Fritz
et al. (2003).

For chord detection, the target stimuli comprise three tones,
some of which may be near or far to a given neuron’s best
frequency (BF). Based on the Gaussian shape of the maskmk(t, f )
for a given filter, we expect that tones near BF would induce
stronger plasticity effects compared to those far from BF. We
verify this by computing the average 1STRF aligned to target
tones nearest to and furthest from BF, and these results are shown
in Figure 4C. As shown, tones near BF induce stronger local
excitatory changes compared to tones far from BF. As suggested
previously in Figure 3, the suppressed sidebands surrounding
the target tones show that the active STRFs were suppressed in
between each of the target tones. The inhibitory effect is also

relatively stronger for tones near BF compared to those far from
BF. Importantly, this analysis has parallels with that of Fritz et al.
(2007c), and we again find a general correspondence with those
previously reported results. Finally, in Figure 4D, we consider the
distribution of1ATGT for near vs. far targets across all ensembles.
These distributions show that changes at the target tones are
overwhelmingly excitatory (mean +48.4 ± 9.8% vs. +35.1 ±

7.4%, near vs. far, s.e.m.) with heavy tails to the right, and are
stronger for targets near BF vs. those far from BF. For each
ensemble and across all targets, excitatory changes are significant
(p < 0.03, t-test and Wilcoxon signed-rank test).

Next, for tone discrimination, we considered 1STRF aligned
to both the reference and target tones; these results are shown
in Figure 4E averaged across all ensembles and target/reference
combinations. As shown, the model induces local, inhibitory
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A

C D

E F

B

FIGURE 4 | Population analysis of the Feature-Based Model. Tone

detection: the average 1STRF in (A), computed by aligning all difference

STRFs at the target frequency, shows that target tones elicit increased

excitation, whereas the broadband noise reference induces suppression in

areas spectrally adjacent to the target. (B) Shows that relative gain changes

at the target due to attention are overwhelmingly excitatory. Chord detection:

(C) shows the average 1STRF aligned to targets nearest (left) and farthest

(right) from a neuron’s BF. Targets close to BF induce much larger excitatory

changes than those farthest away, and this pattern is also observed in

1ATGT in (D). Suppressive effects are similar to those observed in single

tone detection tasks. Tone discrimination: (E) shows the average 1STRF

aligned at the reference and target tones in an aversive task setup. STRF

changes are suppressive at the reference and excitatory at the target, which

is also observed in patterns of 1A (F, left). However, when the behavioral

meaning of the target and reference is reversed, as in an appetitive task,

STRF plasticity patterns are similarly reversed (F, right). Average 1STRF

patterns are interpolated for display. Dashed vertical lines denote population

means. Results shown for λ = 10−4.5,C = 10−3.

changes at the reference compared to local, excitatory changes
at the target. Importantly, these differential plasticity effects
are consistent with observations by Fritz et al. from a ferret
study (Fritz et al., 2005c). On the left side of Figure 4F, we show
the distribution of 1A at the target and reference tones. As
predicted by the model, attention induces excitatory changes at
the target (red, mean = +66.0 ± 12.4% s.e.m.) while changes
at the reference are inhibitory (blue, mean = −71.4 ± 5.0%
s.e.m.). For each ensemble and across all tasks, excitatory and
inhibitory changes are significant (p≪0.001, t-test andWilcoxon
signed-rank test).

Finally, we verify that non-negativity constraints imposed
on the regression coefficients allow the model to capture the

behavioral meaning associated with the target and reference
stimuli. As demonstrated by David et al. (2012) in a ferret study,
differences in animal training for aversive tasks (target associated
with negative reward) vs. appetitive tasks (target associated with
positive reward) yield excitatory and inhibitory patterns at the
target and reference tones that are flipped versions of each other.
In our framework, this is achieved by simply flipping the sign of
the labels associated with the target and reference stimuli. The
recomputed 1A distributions after flipping labels are shown on
the right side of Figure 4F. As shown, the distributions of 1A for
the appetitive task are flipped versions of the aversive task (target
mean = −59.1 ± 8.5%, reference mean = +70.5 ± 7.9%,
s.e.m.). For each ensemble and across all tasks, excitatory and
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inhibitory changes are significant (p≪0.001, t-test andWilcoxon
signed-rank test). These results confirm that the model does
indeed capture aspects of task structure.

2.5. Object-Based Model: Theoretical Results
The Feature-Based Model, while sufficient to account for
adaptation patterns in purely spectral tasks, is restricted to
act at the level of the raw spectro-temporal features that
characterize the task-related stimuli (see Equation 6). However,
accumulating evidence suggests that top-down attention can
instead modulate neural representations at the level of auditory
objects (Alain and Arnott, 2000; Griffiths and Warren, 2004;
Krumbholz et al., 2007; Shinn-Cunningham, 2008; Bizley and
Cohen, 2013). Broadly speaking, object-based attention refers to
the selective allocation of cognitive resources to an abstracted
representation of a stimulus. For our purposes, we interpret this
as attention directed toward collections of features that may be
used to distinguish broad stimulus classes from one another (e.g.,
speech vs. non-speech sounds). One way to abstract acoustic
information in a spectrogram is to consider its representation
in the Fourier domain, where the strength of observed spectro-
temporal modulations (i.e., the Fourier magnitude profile) could
be considered separately from the relative activation of the
modulations to one another (i.e., the Fourier phase profile).
Thus, attention directed toward a collection of spectro-temporal
dynamics, rather than the relative timings of the observed
acoustics, represents an instantiation of object-driven attention.
For example, in complex acoustic scenes, a listener may wish to
attend to conspecific vocalizations in noisy natural environments,
retuning cognitive resources to enhance responses to time-
varying harmonicity cues (which are often characteristic of
animal communication sounds) while suppressing those to the
din of spectro-temporally broad background interference.

Furthermore, there is neurophysiological evidence suggesting
that receptive field plasticity that reflects differences in stimulus
modulation profiles contributes to improved performance of
behavioral tasks. For example, Beitel et al. (2003) showed that the
temporal modulation profiles of A1 neurons in monkeys trained
to discriminate temporally modulated tone sequences adapted
to enhance responses of faster target modulations (associated
with a negative reward) while suppressing responses to slower
referencemodulations. In a visual study, David et al. (2008) found
that the modulation profiles of spatio-temporal receptive fields in
higher visual cortex adapted to match those of a target stimulus
in both discrimination and search tasks. Finally, Yin et al.
(2014) recently demonstrated that the joint spectro-temporal
modulation profiles of STRFs in ferret A1 adapted to reflect the
difference in modulation characteristics of upward vs. downward
moving tone pips. Motivated by these examples, we sought to
extend the proposed framework to circumstances where task-
relevant stimuli could be discriminated based on differences in
their spectro-temporal dynamics, and we directly modified STRF
shapes in the Fourier domain accordingly.

We begin by first modifying the firing rate model as

rk(t, f ;m) = hAk (t, f ) ∗ tf sm(t, f ) (7)

with correspondingmodulation domain representation

|Rk(ω,�;m)| = |HA
k (ω,�)| · |Sm(ω,�)| (8)

where ∗tf denotes convolution in time and frequency, and

Rk(ω,�;m), HA
k
(ω,�), and Sm(ω,�) are the 2D Discrete

Fourier Transforms of firing rate, STRF, and the m’th stimulus
token, respectively. In the modulation domain, ω characterizes
modulations along the temporal axis (rate, in Hz) whereas
� characterizes modulations along the spectral axis (scale, in
cycles/octave). For technical reasons (see Supplementary Text 1),
in this instantiation of the model we forego use of the mask, but
we address its absence later in the Section 3.

The development of the Object-Based Model
development mirrors that of the Feature-Based
Model. First, we form a firing rate vector as Rm =[
1,

∑
ω� |R1(ω,�)|, · · · ,

∑
ω� |RK(ω,�)|

]
∈ R

K+1. Next, we
again use logistic regression and Euclidean norm to quantify the
balance between discriminability and stability, and define the
objective function

J(w, ĤA) :

1

2
||w||22 − C ·

〈
log σ

(
ymw

TRm

)〉
m︸ ︷︷ ︸

Discriminability

+
λ

2

∑

k

||1k||
2
F

︸ ︷︷ ︸
Stability

(9)
wherew is defined as before, ĤA: = {|HA

k
(ω,�)|}K

k=1
, and1k : =

|H0
k
(ω,�)| − |HA

k
(ω,�)|.

To optimize Equation (9), we again used block-coordinate
descent, alternating between solving two convex subproblems:

argmin
w

J(w, ĤA) subject to wk ≥ 0, k = 1, 2, · · · ,K (P3)

argmin
ĤA

J(w, ĤA) subject to |HA
k (ω,�)| ≥ 0, ∀ k, ω,� (P4)

The constraints on (P4) are required since modulation profiles
|HA

k
(ω,�)| are necessarily nonnegative.
Optimizing (P3) yields regression coefficients similar to

those in Equation (5). Next, upon convergence of (P4), and
assuming the minimum lies within the feasible set formed by the
constraints on |HA

k
(ω,�)|, the adapted STRFmodulation profiles

can be written as

|HA
k (ω,�)| = |H0

k (ω,�)| +
C

λ
· wk ·

〈
ym[1− σ (ymw

TRm)]

·|Sm(ω,�)|
〉
m
(10)

Equation (10) contains the main theoretical result of the Object-
Based Model, which is again consistent with the contrast filtering
hypothesis and similar in spirit to the Feature-Based Model.
First, attention-induced STRF plasticity directly reflects the
spectro-temporal modulation profiles of the target and reference
stimuli, as given in the averaging term. The impact of each
stimulus sample on adaptation is proportional to the difficulty
of predicting its corresponding label. Again, because we have
constrained the regression coefficients wk to be non-negative, the
behavioral meaning of the labels is preserved so that acoustic
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features of the target are enhanced whereas acoustic features
of the reference are suppressed. The first term acts to resist
changes from the initial STRF modulation profile, the magnitude
of the effect being controlled by C and λ. Finally, we note that
to visualize the adapted STRFs in time-frequency, we use the
original, unmodified phase of the passive STRF.

2.6. Object-based Model: Predictions
To evaluate the predictions of the Object-Based Model, we
consider two behavioral tasks that can be readily explored in
animal studies. The first is spectro-temporal modulation noise
discrimination. Classes of natural stimuli often overlap in terms
of their spectral and temporal modulation content but are
distinguished by the additional presence or absence of energy at
certain rates and scales, e.g., speech vs. speech+noise, conspecific

vocalizations in noisy natural environments, etc. In this spirit, we
synthesize complex spectro-temporal noise stimuli that share a
broad range of modulations but are distinguished by additional
energy at downward vs. upward rates and scales. The stimuli
are generated by specifying the energy distribution of the target
and reference modulation profiles, coupling them with random
phase, and performing an inverse 2D Fourier transform to
obtain the stimulus spectrograms. An example of this process
is shown in Figures 5A,B for what we term a Broadband Down
(BB Down) target and Broadband Up (BB up) reference. The
ellipses in Figure 5A represent Gaussians in the modulation
domain, and the dashed lines indicate the set of modulations
that are shared between the target and the reference. Here the
target is characterized by the addition of a range downward
modulations centered at (+16 Hz, 0.25 cyc/oct) whereas the

A

B

C

D E

FIGURE 5 | Stimulus design for testing the Object-Based Model.

Spectro-temporal modulation noise stimuli: As illustrated in (A), noise

stimulus profiles are designed to overlap in the modulation domain over a

broad range (dashed ellipses), and each class is distinguished by added

energy centered at a prescribed rate and scale (solid ellipses). The

modulation profiles are coupled with random phase, and an inverse 2D

Discrete Fourier Transform is performed to synthesize the stimuli in

time-frequency (B). In this example, a target stimuli characterized by broad,

downward drifting modulations is contrasted with a reference of broad,

upward drifting modulations. Click train stimuli: Simple broadband click trains

are synthesized directly in time-frequency (C), and necessarily only have

energy in the spectro-temporal modulation domain at 0 c/o (D). For analysis

purposes, we consider changes in the STRF temporal modulation profiles

only at this scale (E).
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reference is a flipped version of the target, containing added
upward modulations. After coupling with random phase and
performing an IDFT, we obtain the spectrograms shown in
Figure 5B. For this work we consider four discrimination tasks,
the details of which are provided in the Section 4 and summarized
in Table 2.

The second task we consider is click rate discrimination, where
the goal is to discriminate a fast from a slow click train. To the
best of our knowledge, there have been no studies that report
population STRF plasticity patterns for this task (though see
the examples presented in Fritz et al., 2005c). We synthesize
idealized click trains directly in the time-frequency domain,
and an example is shown in Figure 5C with its corresponding
spectro-temporal modulation profile shown in Figure 5D. By
construction, the broadband clicks contain energy only at
0 cyc/oct, i.e., purely temporal modulations. Consequently,
adaptation of the modulation profiles will only occur at this
scale (Figure 5D, circled), so we restrict our population analysis
accordingly. Figure 5E shows the temporal modulation profile
of an example stimulus, with a peak at 18 Hz and associated
harmonics. For this work, we consider three click discrimination
tasks, and the specific details of the stimuli are provided in the
Section 4 and summarized in Table 2.

For spectro-temporal modulation noise discrimination, we
find model-induced adaptation patterns for individual neurons
that are consistent with the contrast filtering hypothesis. Shown
in Figures 6A,B are two examples of the model effects when
engaged in twomodulation noise discrimination tasks. As before,
the top rows of each panel show the passive, active, and
normalized difference STRF. Here, however, the bottom rows
show the passive, active, and difference modulation transfer
functions (1MTF) over a broad range of rates and scales. In
both examples, the model predicts STRF plasticity that reorients
and sharpens tuning for target modulations (downward for
Figure 6A, upward for Figure 6B). This effect is also clear from
the difference MTFs, which show explicit enhancement of target
and suppression of reference modulations.

We also find that population patterns of plasticity are broadly
consistent with the contrast filtering hypothesis. We summarized
these population patterns in themodulation domain by averaging
1MTF across all neurons; these results are shown in Figure 6C.
For each task, we find that on average target modulations are
enhanced whereas reference modulations are suppressed. We

also consider model effects on the directional preference of the
STRFs, as quantified by a directionality index (DIR, see Section
4). In general, positive DIR indicates a preference for downward
modulations whereas negative DIR indicates a preference for
upward moving modulations. The effect of the model between
the passive and active settings can be measured by computing
the change in directionality, defined as 1DIR: = DIRA − DIRP
(where the subscripts denote active and passive, respectively).
Thus, positive values of 1DIR indicate a shift toward a
preference for downward modulations, whereas negative values
of 1DIR indicate a shift toward a preference for upward moving
modulations. Figure 6D shows the distributions of 1DIR for
each tasks. As shown, upward moving targets induce a significant
directional preference for upward modulations, and similarly so
for downward moving targets (p < 0.01, Wilcoxon signed-rank
test).

For click rate discrimination, we find that the Object-Based
Model induces plasticity patterns in individual neurons that are
consistent with the contrast filtering hypothesis, with effects that
are evident in both the original time-frequency space as well
as in the temporal modulation profiles. As expected, we find
that modulations at the target click rate are enhanced, whereas
modulations at the reference click rate are suppressed. Shown in
Figures 7A,B are two examples of the simulated plasticity effects
for this task. The top row of each panel shows the passive, active,
and normalized difference STRF (1STRF) whereas the bottom
row shows the passive, active and difference modulation transfer
functions (1MTF) at 0 cyc/oct. For both examples, it is clear
in the time-frequency domain that the model induces purely
temporal adaptation, as evidenced by the vertical bars in 1STRF.
These changes had an apparent effect on the temporal bandwidth
of the main excitatory subfield of the active STRFs, in some cases
inducing a narrowing and in others a broadening of the subfields
(Figures 7A,B, respectively). Furthermore, in the modulation
domain, it is clear from the difference MTFs that energy at the
target rate is enhanced whereas energy at the reference click rate
is suppressed.

We again find that population patterns of plasticity are
broadly consistent with the contrast filtering hypothesis, with
adapted neurons exhibiting increased (decreased) sensitivity to
the target (reference) click rates. To summarize these population
patterns in the modulation domain, for each task we first
averaged 1MTF across all neurons and for clarity fold the

TABLE 2 | Details of the tasks considered for the Object-Based Models.

Task Target Reference

Spectro-temporal

modulation

noise discrimination

Narrowband Up (NB up) (−10 Hz, 1 cyc/oct) (+10 Hz, 1 cyc/oct)

Narrowband Down (NB down) (+10 Hz, 1 cyc/oct) (−10 Hz, 1 cyc/oct)

Broadband Up (BB up) (−16 Hz, 0.25 cyc/oct) (+16 Hz, 0.25 cyc/oct)

Broadband Down (BB down) (+16 Hz, 0.25 cyc/oct) (−16 Hz, 0.25 cyc/oct)

Click rate discrimination 18 Hz 5 Hz

24 Hz 7 Hz

32 Hz 9 Hz
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A

C D

B

FIGURE 6 | Object-Based Model predictions for spectro-temporal

modulation noise discrimination. In (A,B), the top row shows the

passive, active, and difference STRF, whereas the bottom row shows the

passive, active, and difference MTF (note: 1MTF is not the modulation

profile of 1STRF ). The active STRFs are characterized by downward or

upward changes in orientation depending on the target stimulus class

(A,B, respectively). Furthermore, the difference MTF illustrates that target

modulations are enhanced whereas reference modulations are attenuated.

(C) Shows that across all tasks and populations, target modulations are

enhanced and reference modulations are suppressed. Finally, (D) shows

that changes in directional preference of the active STRFs, as quantified

by 1DIR, reflect a significantly increased sensitivity to the target class

(* : p < 0.01), Wilcoxon signed-rank test. Results shown for

λ = 10−4,C = 0.5.

modulation profile about 0 Hz rate; these results are shown
in Figure 7C. As shown, for each task 1MTF is positive at
the target click rate (and its harmonics) and negative at the
reference click rate. Changes at the target and reference click
rates are significant for each task (p ≈ 0, Wilcoxon signed
rank test). In Figure 7D we also show the distribution of
changes in the temporal bandwidth of the main excitatory
subfields (1BWT , see Section 4). Here, negative values indicate
temporal narrowing whereas positive values indicating temporal
broadening. Temporal bandwidth in the active STRFs tends to
be slightly, but significantly, narrowed (mean 1BWT = −0.53
ms, p < 0.01, t-test). However, the distribution shows that while
the changes are generally are quite subtle, a large number of
neurons (40.4% across all tasks and ensembles) have an absolute
change greater than 1 ms. Interestingly, the model predicts that

excitatory subfields will both contract and expand as needed to
enhance sensitivity to target click modulations, as indicated by
both negative and positive values of 1BWT . Similar behaviors
have been observed in neurophysiological studies yet to be
published (Fritz et al., 2005b), though an exact quantification
of this effect in experimental findings is not yet readily
available.

3. Discussion

In this study, we proposed and explored a discriminative
framework for modeling task-driven plasticity in auditory
cortical receptive fields. The framework predicts STRF adaptation
patterns that are consistent with the contrast filtering hypothesis:
that neural tuning characteristics at the level of primary auditory
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A

C

B

D

FIGURE 7 | Object-Based Model predictions for click rate

discrimination. In (A,B), the top row shows the passive, active, and

difference STRF, whereas the bottom row shows the passive, active, and

difference MTF (note: 1MTF is not the temporal modulation profile of

1STRF ). The active STRFs are characterized by the addition of broadband

temporal ripples that have the effect of slightly narrowing or broadening the

main excitatory subfields of the STRFs (A,B, respectively). The difference

MTFs at 0 c/o show enhancement and suppression of the target and

reference click rates, respectively. (C) shows the average 1MTF at 0 c/o,

folded at 0 Hz for clarity, for each of the click rate discrimination tasks,

showing significant enhancement and suppression at the target and

reference click rates, respectively (*p ≈ 0, Wilcoxon signed-rank test). (D)

shows the distribution of changes in temporal bandwidth for STRF main

excitatory subfields across all tasks and ensembles. Temporal bandwidth,

while on average slightly decreased [mean 1BWT = −0.53 ms, dashed

vertical line; (* : p < 0.01), t-test], can be both increased and decreased by

adaptation of the temporal modulation profile. Results shown for

λ = 10−4,C = 0.5.

cortex adapt to enhance acoustic features of the foreground while
actively suppressing those of the background. An important
contribution of this framework is a set of predictions for temporal
and spectro-temporal tasks for which experimental data is not
readily available or confirmed. Furthermore, as we explore below,
the model has a modular structure that has a number of parallels
with neural circuits speculated to be engaged during attentional
tasks.

We proposed two instantiations of the framework: a Feature-
Based Model that acts directly based on raw acoustic features
in the time-frequency domain; and an Object-Based Model that
acts in a stimulus phase-invariant fashion on an abstracted
representation of the stimuli in the spectro-temporal modulation
domain. We showed, via simulations of a number of spectral
behavioral tasks, that the Feature-Based Model induced localized
STRF adaptation that enhanced representation for the target
tone while inducing mild sideband suppression (for tone/chord
detection tasks) or narrowband suppression at the reference

tone (for tone discrimination tasks). Importantly, these results
are consistent with plasticity patterns previously reported in
neurophysiological studies (Fritz et al., 2003, 2005c, 2007c). We
also showed, via the tone discrimination tasks, that switching
the behavioral meaning associated with target and reference
stimuli (i.e., by switching the model labels) induces opposite
plasticity patterns. This is akin to modifying animal training
protocol from an aversive to appetitive task structure where
similar flipped adaptation patterns have been observed in ferret
A1 neurons (David et al., 2012). This suggests that the model
captures aspects of task structure, which has yet to be explicitly
accounted for by previous computational models (Mesgarani
et al., 2010; David et al., 2012).

Next, we explored predictions of the Object-Based Model
on tasks that could be readily evaluated in neurophysiological
studies. We first considered the task of spectro-temporal
modulation noise discrimination. This was intended to model
naturalistic scenarios where a listener seeks to direct attention
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among acoustic classes of similar timbres, i.e., those that share
a broad range of spectro-temporal modulations but differ
based on the presence or absence of energy at a smaller set
of rates and scales. For these stimuli, the model predicted
enhancement at the subset of modulations that defined the
target class, whereas we observed suppression at the subset of
modulations that defined the reference class. The overall effects
in time-frequency were an effective reorientation and sharpening
of the STRFs to the target modulations, and we quantified
these changes using a directionality measure that characterized
a neuron’s preference for downward vs. upward drifting
modulations.

Finally, we considered the task of click rate discrimination for
which, to the best of our knowledge, population patterns of STRF
plasticity have yet to be reported (save for examples reported by
Fritz et al., 2005a). The model predicted that for purely temporal
tasks, the temporal modulation profile of the active STRFs is
enhanced at the target click rate and suppressed at the reference
click rate. This had the effect of introducing broadband, temporal
ripples in time-frequency, as evidenced by the difference STRFs
in Figures 7A,B. While it has previously been observed in other
animal models and temporal tasks that the temporal dynamics
of cortical neurons can shift to become more responsive (i.e.,
reduced temporal bandwidth or latency) (Kilgard andMerzenich,
1998; Kilgard et al., 2001; Fritz et al., 2005a), the Object-Based
Model predicts that the main excitatory subfields of neurons can
become either temporally narrower or broader so long as the
overall temporal modulation profile is suitably adapted at the
target and reference click rates.

It is also worth noting that our model predictions, especially
for the temporal tasks, are consistent with observations from
studies beyond the ferret animal models focused on in this work.
In particular, the results of Bietel et al. and Bao et al. both
highlight that task performance can influence temporal firing
patterns in amanner that reflects the temporal statistics of a target
stimulus associated with a positive reward (Beitel et al., 2003; Bao
et al., 2004).

3.1. An Integrated Framework for Modeling
Attention-driven Plasticity
Optimization within the proposed framework is by necessity
constrained and iterative, due the need to alternate between
solving two convex subproblems to determine optimal regression
coefficients and STRF parameters. However, this approach
may reflect an analogous iterative adaptation strategy among
neural circuits in the cortical hierarchy thought to be involved
in task-driven auditory attention. In particular, it has been
suggested that attention involves an iterative circuit among basal
forebrain, prefrontal cortex (PFC), and sensory cortex that, from
a computational perspective, has a number of parallels with our
proposed framework (Fritz et al., 2005a; Rasmusson et al., 2007;
Shamma et al., 2010).

A simplified schematic of this process is shown in Figure 8

and the basic process is as follows. Input acoustic stimuli are
processed by a bank of cortical receptive fields, which project
to, and receive projections from, executive control networks in
PFC. Importantly, projections to PFC are gated according to
behavioral and task salience, i.e., only task-relevant signals are
passed along and processed (Fritz et al., 2010). Decoded signals
in PFC in turn cause motor responses which prompt the listener
to act (e.g., cease licking water in response to a target tone),
and consequently induce plasticity to improve performance of
the task. These feedback circuits likely involve nucleus basalis
(NB) and the ventral tegmental area (VTA), basal forebrain areas
which have been implicated in cortical plasticity (Bao et al., 2001;
Kilgard et al., 2001).

As annotated in the figure, we propose that the framework
described in this study has useful parallels with the circuits
enclosed within the dashed boxes and that, in general,
the alternating optimization procedure reflects a biologically
plausible strategy for fine-tuning sensory input based on
task-performance. In particular, we argue that during active
attention, the computational goal of top-down executive control
circuits, like those in PFC, is to assign behaviorally meaningful
categorial labels to observed ensemble responses in primary

A

C

B

FIGURE 8 | Simplified schematic of anatomical circuits thought to be involved in attention-driven auditory cortical plasticity (adapted from Shamma

et al., 2010). Refer to text for details.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2015 | Volume 9 | Article 106

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Carlin and Elhilali Modeling plasticity in receptive fields

auditory cortex (box A). Subsequent classification decisions
in turn induce appropriate motor responses to perform the
task at hand. Furthermore, as seen in Equations (6) and (10),
the magnitude of plasticity effects in the model is directly
proportional to the magnitude of regressor prediction errors
(box B). This has parallels with behavioral results in ferret
studies, where the magnitude of STRF plasticity effects is directly
correlated with an animal’s ability to successfully perform a
task (Fritz et al., 2003; Atiani et al., 2009). Finally, the extent to
which acoustic features of the foreground and background are
enhanced and suppressed, respectively, is governed by the STRF
parameter update equations (box C). This may have parallels
with neurotransmitters from NB and/or VTA and how they
shape STRF sensitivity to specific target frequencies or spectro-
temporal modulations.

As we have explored in this study, STRFs have been
instrumental in understanding changes in the processing of
neurons when a listener is engaged in an auditory attentional
task. In particular, the observed receptive field plasticity patterns
have shed light on which acoustic features are enhanced or
suppressed as a function of task. Inference about corresponding
biological changes at the synaptic level is limited, however, since
STRFs are functional linear models of auditory signal processing
whose parameters do not map directly to those of detailed
synaptic models. Nevertheless, to better understand how these
functional changes relate to spiking patterns in a biological
neural network, it is common to consider STRFs as part of a
cascade of linear, nonlinear, and feedback processes, referred to
broadly as a generalized linear model (GLM) (Paninski, 2004;
Truccolo et al., 2005; Calabrese et al., 2011). While GLMs do not
map directly to detailed neurophysiological models, they involve
components that better capture the nuances of biological spiking
neurons including feature detection via a linear receptive field,
nonlinear relationships between stimulus and firing rate, spike
generation via Poisson point processes, and post-spike refractory
or burstiness periods (see e.g., Brette and Gerstner, 2005; Ostojic
and Brunel, 2011). It is our belief that the discriminative model of
attention proposed in this paper can be incorporated with such
GLMs as a way to better understand the impact of attention on
biological spiking neural networks.

3.2. Relationship Between the Feature- and
Object-based Models
Except for use of a spectro-temporal mask and same choice
of neural firing rate model (i.e., 1D vs. 2D convolution), the
receptive field adaptation mechanisms predicted by the Feature-
and Object-Based Models are at their core comparable. This is
clear by directly comparing the STRF update equations given in
Equations (6) and (10), where the primary difference between
the two is the use of stimulus phase during adaptation. More
generally, to distinguish object- from feature-based attention, we
considered separately the spectro-temporal magnitude and phase
profiles of the observed acoustics. This allowed us to quantify
the notion that object-based attention requires that cognitive
resources be directed toward an abstracted representation of task-
relevant sound classes, represented here by the collection of
modulations that comprise the acoustic foreground. However,

object-based attention is certainly not restricted to act merely
on the Fourier domain representation of sound, since attention
can act at even higher levels of abstraction, for example, by being
directed to an individual melody in an orchestra, the prosodics of
a target speaker at a cocktail party, or a bird watcher listening for a
specific species call in nature. Furthermore, while we have drawn
a clear distinction between the notions of feature- and object-
based attention, the existence of such a clear difference between
the two is still the subject of debate (see e.g., Krumbholz et al.,
2007 and Shinn-Cunningham, 2008). Nevertheless, the proposed
framework provides ameans to evaluate both hypotheses as more
physiological and behavioral results become available.

For the Object-Based Model, the choice of 2D convolution
for modeling neural firing rate was motivated by prior work
that suggests that such a representation is sufficient to capture
a variety of aspects of sound perception such as speech
intelligibility and timbre representation (Elhilali et al., 2003; Chi
et al., 2005; Patil et al., 2012). Of course, it may be possible to
adapt the STRF modulation profiles using a 1D firing rate model.
However, we feel that our 2D formulation is simpler, intuitive,
and, more importantly, reflects the fundamental mechanism
implied by neurophysiological studies, namely, that STRFs
reorient themselves to act similar to a contrast matched filter in
the Fourier domain for complex spectro-temporal tasks (David
et al., 2008; Yin et al., 2014).

Under what circumstances does a listener employ the Feature-
and Object-based models? We hypothesize that this decision
depends on task, and that the final choice is made empirically
based on the behavioral outcomes of either strategy. Again, the
key distinction between the two models is the use of stimulus
phase in the STRF update Equations (6) and (10). So for tasks
where exploiting differences in phase is important, like tone
discrimination (spectral phase) or speech recognition (temporal
phase), the Feature-Based Model will be employed. Conversely,
for tasks where the task-relevant classes are distinguished largely
based on differences in spectro-temporal modulation profiles, as
with conspecific vocalizations vs. ambient environmental noise,
the Object-Based Model will be employed. Of course, it is also
possible that the predictions of both models, coupled with other
sources of contextual information, are combined to make an
overall decision. Future work should explore how exactly to
combine the models, as well as how to quantify and incorporate
context into the current framework.

3.3. Related Work
Our framework was conceived in the spirit of the approaches
of Mesgarani et al. (2010) and David et al. (2012), where
they proposed discriminative cost functions that quantified the
computational goal of task-related plasticity in the auditory
system. However, as discussed earlier, these models lacked two
important components: (1) a guarantee that optimal solutions
capture task-valence (i.e., when the behavioral meaning of target
and reference are flipped, the direction of plasticity is also flipped)
and (2) the ability to adapt STRFs based on an abstracted
representation of the stimulus. Our framework directly addresses
these issues, predicting a qualitative correspondence with existing
physiological data, and addressing stimulus phase-invariant
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adaptation of STRFs via their modulation profiles—which,
interestingly, has also been observed in visual cortical area
V4 (David et al., 2008).

More generally, however, a strong connection exists between
our framework and general strategies for top-down attention and
plasticity in the visual system. In particular, a recently proposed
model by Borji and Itti (2014) describes an optimal attention
framework that accounts for a variety of attention-driven
plasticity effects in visual cortex for discrimination and search
tasks, and yields predictions that qualitatively explain a broad
range of attentional mechanisms that depend on task type and
difficulty. Their framework is based on deriving a set of filter gain
and tuning parameters that optimize a task-dependent objective
function (e.g., discrimination or visual search) and prescribing
an appropriate optimization procedure. The Borji and Itti vision
model shares a lot of parallels with the proposed scheme that was
mainly inspired by task-driven effects observed in mammalian
A1 and tailored to the particularities of the auditory system.
In particular, the Object-Based model paid special attention
to the notion of spectro-temporal modulations and how they
might be considered separately from their relative activation in
an observed spectrogram. Such a distinction is unique to the
auditory system, where the constituent parts of an auditory object
are not necessarily well understood and still subject to debate
(Griffiths and Warren, 2004; Krumbholz et al., 2007; Shinn-
Cunningham, 2008; Bizley and Cohen, 2013). Nevertheless, the
strong concordance between the two frameworks on the basis of
a discriminative cost function for task-driven plasticity suggests
that such a principle applies broadly across different sensory
modalities.

3.4. Other Model Considerations
For bothmodels presented here, we selected the hyperparameters
(C, λ) based on what we felt yielded a reasonable correspondence
with published or expected physiological results. However, just
as average plasticity patterns observed in animal studies vary
based on factors like motivation, level of alertness, and satiation,
the plasticity patterns predicted by the model vary with choice
of (C, λ) (see Supplementary Figure 1). The specific values
of these coefficients are not critical (since they depend on
factors like the amount of stimulus used and normalization
applied to the STRFs and stimuli), but their importance from
a modeling perspective is that they provide a mechanism for
trading off between the neurophysiologically implied coding
heuristics of discriminability and stability. Specific values of
these parameters could be determined using cross-validation on
available behavioral results and measured passive/active STRFs,
but this is beyond the scope of this study.

We have interpreted the notion of a contrast filter as
referring to adaptation of primary cortical receptive fields
that selectively enhance and suppress acoustic features of the
foreground and background, respectively (Fritz et al., 2007c,
2013). This is captured in our model by the addition of
nonnegativity constraints on the regressor coefficients. In the
development of the Object-Based Model, we noted that the
spectro-temporal mask—which guaranteed local plasticity in the
Feature-Based Model—was omitted for technical reasons (see

Supplementary Text 1). In short, including a mask in the firing
rate model introduces a sign ambiguity in the gradient w.r.t.
the modulation profiles and as a result, even with nonnegativity
constraints on the regressor, we are no longer guaranteed that
target modulations will be enhanced and reference modulations
suppressed. Thus, plasticity predicted by this version of themodel
is not strictly consistent with our interpretation of the contrast
filtering hypothesis. However, data from Atiani et al. (2014)
suggest that while on average target (reference) responses are
enhanced (suppressed), there are many instances at synapses
from A1 through prefrontal areas where opposite patterns
are observed (i.e., target responses suppressed and vice versa
for reference responses). This may reflect similarly reversed
underlying receptive field plasticity patterns. Thus, just because
the model enforces constraints that guarantee strict consistency
with the contrast filtering hypothesis, versions of this model
without such constraints will still yield interpretable results, with
a modular model structure that can be mapped to circuits likely
involved in attention as described earlier in the Section 3.

3.5. Applications and Model Extensions
The tuning properties of the STRFs considered in this study
were varied to improve discrimination between two acoustic
classes subject to biologically plausible constraints. Because
these changes enhanced representation of target sounds while
actively suppressing the response to reference sounds, this makes
the framework attractive for application to automated sound
processing systems that handle noisy or highly confusable signals.
We feel that the framework presented in this study, and its
parallels with anatomical circuits likely involved in attention-
driven plasticity, provides a biologically sound justification for
using discriminativemodels to induce adaptation as part of front-
end feature extraction strategies. For example, possible signal
processing applications include adaptive front ends for enhanced
detection of speech in noisy environments, suppression of
anomalous non-target sounds, and reducing confusion between
pairs of phonetic classes for automatic speech recognition.

The framework can be extended in a number of ways. First,
instead of varying the shapes of the raw STRFs (i.e., each time-
frequency or modulation profile bin), it may be advantageous
to adapt parametric representations of STRF processing based
on Gabor filters (see e.g., Ezzat et al., 2007; Bellur and Elhilali,
2015). Since the optimization considered in this study takes
place over tens of thousands of parameters, adapting a simpler
representation that contains far fewer parameters will enable the
framework to scale to large data sets and more complex tasks.

Second, because auditory scene analysis generally involves
complex sounds mixtures involving many sound classes, it is
also of interest to consider plasticity of STRF ensembles for
discrimination problems beyond two categories. The linear
discriminative model considered here was attractive largely
because of its interpretable results, but extensions to multiple
classes can be achieved using multi-class logistic regression
or nonlinear multi-layered perceptrons. However, it remains
to be seen whether induced plasticity in these settings
would be consistent with the contrast filtering hypothesis
and to what extent model predictions would correspond to
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neurophysiological results, which are unavailable to the best of
our knowledge.

Third, a further avenue of exploration would be to consider
ways to incorporate knowledge of unlabeled stimuli as part of
the STRF plasticity process. Intuitively, unlabeled samples that
are acoustically similar to available labeled examples are likely
to be from the same class and thus may be used as a proxy
for labeled data. General approaches from the field of semi-
supervised learning quantify this notion and can likely be adapted
in the context of our model. Importantly, these methods make
important assumptions about the relationship between known
labeled examples and new, unlabeled observations. For example,
it is common to assume that observed stimuli exist in a low-
dimensional subspace such that one can exploit local geometry
to cluster similar observations (e.g., Belkin and Niyogi, 2004),
or that one should maximize uncertainty about the unlabeled
stimuli in concert with a suitable prior when updating model
parameters (Grandvalet and Bengio, 2004; Erkan and Altun,
2010).

Lastly, it is also likely that the discriminability heuristic
considered here is only part of the overall strategy by the
auditory system to yield noise-robust representations of sound.
Representation within primary auditory areas (and beyond) seem
to be inherently noise robust, so it is of interest to explore
the impact of introducing a robustness term into the objective
function (Mesgarani and Chang, 2012; Mesgarani et al., 2014).

4. Methods

4.1. Stimuli and Auditory Periphery Analysis
Stimuli used in the Feature-Based Model included single tones,
multi-tone complexes, and spectro-temporally rich broadband
noises referred to as a temporally orthogonal ripple combinations
(TORCs); these noise stimuli are commonly used to drive
neurons in mammalian primary auditory cortex to derive
STRFs (Klein et al., 2006). We used a computational model
of mammalian auditory periphery to obtain time-frequency
representations for the tone and TORC stimuli referred to as
auditory spectrograms (Chi et al., 2005). This model accounts
for a number of stages of peripheral processing from the cochlea
through auditory midbrain. First, an input signal is processed
by a bank of 128 gammatone-like filters uniformly spaced along
the logarithmic tonotopic axis, starting at 90 Hz, and spread
over 5.3 octaves. Next, a first-order difference along frequency is
followed by half-wave rectification in order to sharpen auditory
responses. Finally, the responses are smoothed in time using
an exponentially decaying filter with a 10 ms time constant
to model short-term integration and the loss of phase locking
in the midbrain. To reduce the number of parameters in the
optimization described later, the spectral axis was resampled
from 128 to 50 tonotopic channels spanning 5.3 octaves. This
resulted in spectrograms with a spectral sampling rate of 9.4
cycles/octave and temporal sampling rate of 100 Hz.

For the Object-Based Model, we generated idealized stimuli
directly in the time-frequency domain. For the temporal tasks,
simple click trains were generated by spacing vertical bars at
the prescribed click rate for a given task, and the bars were

smoothed in time with a decaying exponential window with a 10
ms time constant. This smoothing helped to spread out temporal
modulation energy, rather than having all of the temporal
modulation focused solely at the prescribed click rate and its
harmonics.

For the spectro-temporal tasks in general, the stimuli were
designed directly in the modulation domain, coupled with
random phase, and an inverse Discrete Fourier Transform was
performed to obtain the spectrograms in time-frequency; this
process is illustrated in Figures 5D,E. We constructed four
classes of noise stimuli, referred to as Narrowband Up (NB
Up), Narrowband Down (NB Dn), Broadband Up (BB Up), and
Broadband Down (BB Dn). The BB Up and BB Dn classes shared
energy over range of modulations defined by Gaussians centered
at (±16 Hz, 0.5 c/o), and the classes were distinguished by added
energy defined by a Gaussian centered at (+16 Hz, 0.25 c/o)
and (−16 Hz, 0.25 c/o), respectively. The ratio of the Gaussian
peaks between target to shared modulations was 2:1. The NB Up
and NB Dn classes were designed similarly, except the shared
modulations were centered at (±10 Hz, 0.5 c/o). The variances
of the Gaussians are as specified in Figure 5D.

4.2. Auditory Cortical Receptive Fields
We considered an ensemble of 2145 STRFs estimated from
recordings from non-behaving ferret primary auditory cortex
in response to TORC stimuli (Klein et al., 2006). The STRFs
spanned 5 octaves in frequency over 15 channels (spectral
sampling rate of 3 cycles/octave), with base frequencies of 125,
250, or 500 Hz. Furthermore, the STRFs spanned 250 ms in time
over 13 bins (temporal sampling rate of 52 Hz).

We modified the STRFs (1) so that we had finer spectral
sampling compared to the original coarse 15 channels of coverage
and (2) for convenience so that the frequency range of the STRFs
aligned with the output of the auditory peripheral model. To
this end we assumed the base frequency of each STRF to start
at 90 Hz, and resampled the spectral axis so that the STRFs
spanned 5.3 octaves over F = 50 channels. We used cluster
analysis (described previously in Carlin and Elhilali, 2013) to
verify that shifting the base frequency of each STRF was not
unreasonable since examples from each cluster could be found
at each original base frequency (data not shown). We also
resampled the temporal axis to span 250 ms over T = 25
temporal bins, again to gain finer temporal sampling compared
to the original STRFs. Thus, each STRF can be viewed as an
image patch h(t, f ) ∈ R

50×25, with a spectral sampling rate of
9.4 cycles/octave and a temporal sampling rate of 100 Hz.

In general, the ensemble formed a richly structured
representation of natural sounds, exhibiting sensitivity to
localized, spectral, temporal, and joint spectro-temporal acoustic
events (Theunissen et al., 2000). We also found that the ensemble
contained a large number of “noisy” STRFs, i.e., shapes that
appeared unconverged or had no clear preferred spectro-
temporal tuning. We used a two-step procedure to remove
these noisy STRFs. First, all STRFs were sorted according to
the SNR associated with each recording and an initial subset
was selected keeping STRFs that had an SNR of at least 2.4 dB.
Next, we sorted this subset according to a separability index
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SPI ∈ [0, 1], defined as SPI: = 1−σ 2
1 /

∑
j σ

2
j , where σi is the i’th

singular value for a given STRF (Depireux et al., 2001). An earlier
study (Carlin and Elhilali, 2013) found that SPI was useful for
characterizing clean vs. noisy STRFs, with clean, well-structured
STRFs having small SPI and noisy STRFs having large SPI. Using
this measure, we removed STRFs with SPI ≥ 0.5, yielding an
approximately “de-noised” ensemble of 810 STRFs. Finally,
from this subset, we randomly selected 10 ensembles of size
K = 100 STRFs and considered these as the initial ensembles
H0 = {h0

k
(t, f )}, k = 1, 2, · · · ,K for this study.

Lastly, upon ensemble construction, we modeled the notion
of a neuron having a finite spectral and temporal integration
window by incorporating a spectro-temporal mask in the
definition of neural firing rate. For each STRF, a mask was
automatically determined by a least-squares fit of a non-oriented
Gaussian envelope to a thresholded (at 0.75 standard deviations)
and fully rectified STRF.

4.3. Optimization and Implementation Details
All simulations and analysis in this study were performed using
MATLAB. Although subproblems (P1–P4) posed for each model
were convex, it was not possible to determine the optimal
regression coefficients and STRFs (or STRF modulation profiles)
in closed form, necessitating the use of numerical techniques.
The optimal parameters for the Feature-Based Model were
found using fmincon function in the MATLAB optimization
toolbox. We used 5 s of audio for both the target and reference
stimuli. The optimal parameters for the Object-Based Model
were determined using CVX, a package for specifying and solving
convex programs (Grant and Boyd, 2008, 2014). For this model,
we scaled each stimulus token to have unit Euclidean norm,
as this seemed to improve optimization convergence. We used
75 tokens, each 250 ms in length, for both the target and
reference stimuli.We run each algorithm until the relative change
in the objective function is small (threshold of 10−6 for the
Feature-Based Model and 10−4 for the Object-Based Model) or
a maximum number of iterations is reached (30 for the Feature-
Based Model, 10 for the Object-Based Model).

4.4. Feature-Based Model Analysis
In line with previous neurophysiological studies (see e.g., Fritz
et al., 2003), we quantified the effect of model-induced plasticity
on the receptive fields by computing the difference between
Euclidean-normalized active and passive STRFs (1STRF). This
allowed us to directly visualize changes in STRF shape, and
1STRF was aligned to the target (or reference) tone frequencies
to visualize average population patterns across different tasks.
We also derived a measure of relative gain change (1A) from
the difference STRF at task-related frequency channels. This
was computed as the relative change in (normalized) active and
passive STRFmagnitudes at the location of absolute maximum in
1STRF at a particular target or reference channel.

4.5. Object-Based Model Analysis
For the Object-Based Model, we also considered 1STRF defined
above to visualize changes between the active and passive STRFs.

To visualize model-induced changes in the spectro-temporal

modulation profiles, we considered the difference between the
modulation transfer functions of the active and passive STRFs
(1MTF). Average population changes could be visualized in this
domain regardless of individual STRF shape and phase (David
et al., 2008; Yin et al., 2014). For the click rate discrimination
task in particular, all changes in the modulation domain occurred
along the rate axis at a scale of 0 cyc/oct due construction of
the click train stimuli. For this reason, we considered changes in
modulation profile only at this scale in our analysis.

In addition to change in the modulation domain, we sought
to characterize STRF changes observed in the time-frequency
domain. For spectro-temporal modulation noise discrimination,
the model induced clear changes in STRF orientation and
directional tuning, so we employed a directionality measure
(DIR) to characterize the degree to which a neuron was sensitive
to downward vs. upward drifting modulations (Depireux et al.,
2001). Directionality was defined as DIR = (E1 − E2)/(E1 +

E2), where E1 is the energy in the right-hand plane of the
modulation profile, i.e., E1 =

∑
ω,�>0 |H(ω,�)| and similarly

so for E2 but for negative rates. DIR ranges between [−1,+1],
with large positive values indicating sensitivity to downward
modulations, and large negative values indicating sensitivity to
upward modulations. Finally, to quantify model-induced change
in directional tuning, we report the difference in directionality
between active and passive settings, defined as 1DIR = DIRA −

DIRP. Positive changes in1DIR indicate a shift toward sensitivity
to downward modulations, and negative changes indicate a shift
toward sensitivity to upward modulations.

For click rate discrimination, the model appeared to induce
subtle changes in the temporal bandwidth of the STRF main
excitatory subfield in the time-frequency domain. We extracted
this temporal bandwidth in a simple non-parametric fashion as
follows. First, the STRF was interpolated (by zero-padding in the
modulation domain) and thresholded at two standard deviations
to keep significant peaks. Next, the STRF was half-wave rectified
and bounding boxes determined for islands of excitatory activity
that exceeded threshold. Themain excitatory subfield was defined
as that which contained the neuron’s best frequency/best latency
peak, and temporal bandwidth was defined as the temporal width
of the corresponding bounding box.
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