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Chemical synapses are comprised of a wide collection of intricate signaling pathways
involving complex dynamics. These mechanisms are often reduced to simple spikes or
exponential representations in order to enable computer simulations at higher spatial
levels of complexity. However, these representations cannot capture important nonlinear
dynamics found in synaptic transmission. Here, we propose an input-output (IO)
synapse model capable of generating complex nonlinear dynamics while maintaining
low computational complexity. This IO synapse model is an extension of a detailed
mechanistic glutamatergic synapse model capable of capturing the input-output
relationships of the mechanistic model using the Volterra functional power series. We
demonstrate that the 10 synapse model is able to successfully track the nonlinear
dynamics of the synapse up to the third order with high accuracy. We also evaluate
the accuracy of the 1O synapse model at different input frequencies and compared its
performance with that of kinetic models in compartmental neuron models. Our results
demonstrate that the IO synapse model is capable of efficiently replicating complex
nonlinear dynamics that were represented in the original mechanistic model and provide
a method to replicate complex and diverse synaptic transmission within neuron network
simulations.

Keywords: volterra expansion, synaptic modeling, multi-scale modeling, glutamatergic synapse, computational
modeling

Introduction

Computational multi-scale and large-scale modeling are increasingly used to gain insights on brain
functions and dysfunctions (Dyhrfjeld-Johnsen et al., 2007; Bouteiller et al., 2011; Hendrickson
et al., 2013; Mattioni and Le Novere, 2013; Dougherty et al., 2014; Yu et al., 2014). At the synaptic
level, a large number of receptors, mechanisms, and pathways modulate synaptic strength, function,
and plasticity. Numerous studies (Sakimura et al., 1995; Nakazawa et al., 2002) have repeatedly
shown that modifications of molecular processes can result in functional and behavioral changes.
Similarly, many pathological conditions, including autism and Alzheimer’s disease, have been
hypothesized to have molecular origins (Francis et al., 1999; Trottier et al., 1999; Rogawski, 2013).
If computational modeling is to help in better understanding the mechanisms underlying normal
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and pathological cases, multi- and large-scale models are essential
for taking into account relevant processes that take place at all
levels.

Mathematical models that simulate physiological systems
are developed to depict the system of interest, or at least
provide a reasonable view of some of its inherent mechanisms
and functions. Markov kinetic state models (MSM) represent
a popular choice of model structure used to represent many
dynamical physiological systems (Prinz et al., 2011). However,
integration of a large number of kinetic models with varying
temporal dynamics without simplification can increase the
computational loads, ultimately leading to prohibitively long
simulation times.

Large networks in the range of 1 million neurons
(Izhikevich and Edelman, 2008) and up to 1 billion neurons
(Ananthanarayanan et al., 2009) have been successfully modeled
with varying amount of detail. These large scale models
must adequately address the computational requirements in
running simulations with large numbers of models. Current
methodologies to accommodate these requirements can be
divided into two major strategies: (A) Provide increasing
computational power to offset the cost, and (B) reduction of
model complexity to improve computational efficiency. In many
cases, both strategies are used. For strategy (A), the underlying
concept is straightforward: the computational cost of large
simulations is met by providing high performance computers,
as seen in (Allen et al., 2001; Markram, 2006; Hendrickson
et al, 2012). Still, despite significant advances in technology
and computing, the computational power required to simulate
large-scale models comprising a large number of biomolecular
details still exceeds the capabilities of today’s most performant
computers.

To remedy the issue described above, large-scale models
often use empirical representations of the effects originating
from smaller-scale systems. This leads us to strategy (B), in
which large-scale neuron networks often use simplified models
of the smaller-scale neuron and synapse models to alleviate the
computational burden. Neuron representations, for example,
can include single compartment integrate-and-fire models.
Simplified synapse models often consist of alpha synapses (i.e.,
a basic exponential rise and decay equation) to approximate
the waveform of postsynaptic changes in conductance. Many
models have been reduced even further, simply limiting the
response to Dirac peaks and focus solely on the observation
of time-based events. Such simplifications allow each level to
be isolated in its own environment with its own set of rules,
thereby constraining the overall system complexity. Ultimately,
however, using empirical methods to represent microscale
parameters overlooks the effects of microscale changes on
macroscale systems (Weinan and Engquist, 2003), which thus
inherently results in measurable errors between empirical (i.e.,
approximations) and actual values, particularly with regards to
nonlinearity.

This leads to an incentive to instead an create intermediate
model, one which does not capture the full details of the Markov
kinetic models with all its given states, but instead use an
alternate representation to replicate the complex nonlinearities

which are lost in more simplistic models such as exponential
synapses. In some cases, external modifications were made
to the traditional exponential synapse form so that varying
non-linearities, including desensitization as well as STDP
characteristics like facilitation and depression, may be replicated
(Tsodyks et al., 1998; Dittman et al, 2000). These types of
models require a priori knowledge on the biological system of
interest to calibrate their nonlinear features, which could prove
limiting in cases where sources of nonlinear dynamics are not
yet fully known. Synapses are very complex structures with many
different cellular pathways and mechanisms, much of which is
still being investigated; defining all possible nonlinear sources
beforehand in a model would be difficult, if not impossible,
when the knowledge of these synaptic mechanisms is still
incomplete. Currently, the nonlinear synapse models developed
so far can only take into account more of the commonly
noted nonlinear behaviors. Regardless, they provide an efficient,
nonlinear alternative to traditional exponential synapses and
have helped demonstrate the impact of nonlinear synapses in
neuron population models (Tsodyks et al., 1998).

Here, we propose to use the Volterra functional power
series (Berger et al, 2010) to capture the dynamics of the
nonlinear systems in a very compact form and use them to
bridge hierarchical scales (Figure 1). Unlike previous nonlinear
synapses, modeling with the Volterra series does not impose
any predefined structural assumption on the system it models—
the model is instead defined by input-output relations extracted
from the data itself, thus making it a functional “input-output”
model of the system. The Input-Output (IO) model uses kernels
to represent the functional properties of the system modeled,
effectively replicating the dynamics and behavior of the process
without requiring a priori knowledge on its internal structure
and its underlying mechanisms. Furthermore, the Volterra-based
model requires little computational power. The Input-Output
model can therefore reduce complex nonlinear differential
systems into input-output transformations, which describe the
causal relationship between the input and output properties
of the system, while maintaining the nonlinear dynamics of
the system model and reducing its computational complexity
(Marmarelis and Marmarelis, 1978). The generality of this
methodology means that it can be applied to various phenomena,
including those from mechanical systems (Bharathy et al., 2008),
biomedical systems (Berger et al., 1988a,b; Jo et al., 2007; Song
et al., 2009a,b) and economics (Tu et al., 2012).

This article introduces an input-output model of the
Elementary Objects of the Nervous System Synaptic Modeling
Platform (referred to as the EONS synapse model), using the
Volterra functional power series. The EONS synapse model is
a detailed, parametric model of the glutamatergic synapse that
includes kinetic receptor channels and diffusion mechanisms
(Bouteiller et al., 2008). The input-output model, which from
this point forward will be referred to as the IO synapse model,
is proposed to serve as an extension to the EONS synapse
model for multi- and large-scale simulations, and be fitted to
the nonlinear dynamics simulated by the EONS synapse model.
This article investigates the validity and performance of the
IO synapse model through comparisons of the IO synapse
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FIGURE 1 | Synapse models can have various representations, which differ in computational efficiency and model detail. (A) The exponential synapse is
a commonly used synapse model that produces a postsynaptic response from a simplistic equation. The result is fast but lacks more complex dynamics typically seen
in an actual synapse. (B) The EONS synapse model is a detailed, parametric model of a hippocampal glutamate synapse. Markov kinetic state models and other
additional mechanisms govern the overall postsynaptic response, resulting in an accurate and nonlinear response more characteristic of the response that would be
observed in an actual glutamatergic synapse. (C) The IO synapse model uses the Volterra functional power series to faithfully reproduce the nonlinear details seen in
the EONS/RHENOMS model. As this 10 synapse model characterizes the dynamic relationships between the input events and the corresponding output, much of the
computationally intensive calculations are waived through the use of this methodology. (D) Schematic representation of the computation time required and the
detailed accuracy of each model. The 10 synapse model can provide a much more accurate representation than the exponential synapse, while computationally

model simulation results with the results obtained with the
original EONS synapse. To proceed with the validation, first
and foremost is a direct comparison between the results of
the IO synapse model with EONS in a standalone simulation
of the synapse, then simulated alongside a hippocampal CAl
pyramidal cell model in a hybrid simulation environment (Allam
et al, 2012). Next, the IO synapse model is provided with
random interval train input with mean firing rates ranging
from 2 to 10Hz to determine the degree of nonlinearities
that the model is capable of capturing. Finally, to further
evaluate the efficiency of the IO synapse model, the kinetic
receptor models were implemented directly in the NEURON
simulation environment and simulation times between 10 and
kinetic models were compared. The results clearly indicate that
the IO synapse model is capable of replicating the complex
functional dynamics of a detailed glutamatergic synapse model,
while significantly reducing computational complexity, thereby
enabling simulations on larger temporal (seconds to minutes)
and spatial scales (large network of neurons containing highly
elaborate functional synapses).

Materials and Methods

Parametric Model of the Hippocampal CA1
Synapse

The synapse model introduced here is a non-parametric
representation of the parametric EONS synapse model which
simulates a glutamatergic synapse on a CAl pyramidal cell;
details of the model can be found in Bouteiller et al. (2008).
Briefly, the EONS synapse model is a highly detailed model of a
generic glutamatergic synapse, and includes a number of receptor
models as well as various mechanistic properties of the synapse,
including but not limited to, voltage-dependent presynaptic
calcium entry, probabilistic vesicular release, neurotransmitter
diffusion and reuptake, and postsynaptic potential induction
through ionotropic receptors. Models used in the EONS
synapse model are derived from published experimental results
and computational models. Many models in EONS contain
differential equations and thus require ODE solvers to compute
and simulate. In particular, kinetic models of the ionotropic
AMPA and NMDA receptors (noted AMPAr and NMDAr,
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respectively) include ordinary differential equations requiring
a relatively large computation time. The AMPAr model was
derived from the model presented in Robert and Howe (2003),
and comprises 16 states, each state representing a different
conformation of the receptor (open vs. closed, resting or
desensitized). The AMPAr current is calculated through the
following equation:

Iampa = nbappa x (8202 + 8303 + g404) x (V = Vi)

where Ixppal is the total current contributed by AMPAr, Oy,
represent the open states with associated conductances g, with
n being the number of glutamate molecules bound, and Vi,
is the reversal potential of AMPAr.nbaypa, which represents
the number of AMPA receptors, was set to 80 in the EONS
synapse model, which fits the range of approximately 46-174
AMPAr reported in hippocampal synapse (Matsuzaki et al,
2001); AMPAr dynamics are known to be relatively fast (Robert
and Howe, 2003), with currents returning to baseline in less
than 30 ms. However, the dynamics of AMPAr desensitization
are much slower and the receptor can take up to approximately
500 ms to recover from desensitization. The conductance gaypa
is used for estimations by the IO receptor model of the AMPA
receptor model, where:

gampra = (€202 + 303 + g404)

NMDAr is characterized by slower dynamics than the AMPA
receptor (about 300ms). The kinetic model used in the
parametric modeling framework is the 8 states receptor model
developed by Erreger et al. (2005) (alternative models were
investigated as well—results not presented here). NMDAr
current is defined in a similar manner as the AMPAr current:

INMpa = nbNmpa X gnmpa X (V — Viey)

For NMDAr, the number of NMDA receptors (nbnpypa) is
set to 20, which is in range of reported studies (Racca et al.,
2000). The parameter gnppa, however, is intrinsically different
from the conductance of AMPAr because of the nonlinear
response to voltage due to the magnesium block properties. This
feature was separately accounted for in the IO synapse model
and is explained in more detail in the next section. Because
calculations of both AMPAr and NMDAr kinetic models are
time-consuming, constituting a potential bottleneck for larger
scale simulations, we propose to derive their corresponding
Input-Output counterparts.

Structure of the Input-Output Model
Representation of the Overall Schematic

The framework of the IO synapse model follows a modular
structure similar to the original EONS model—see Figure 2 for

A
Postsynaptic E
Current
J_L Antpa [IBAVPA V’—
esicle " " gSVN
Presynaptic R\;'eas‘e Ciffision 2 ® (To Neuron) 20 o
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W Yes/No gNMDA A\ @
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postsynaptic potential. The calculated response is then passed on to the NEURON

FIGURE 2 | Structure of the EONS synapse model. (A) For every presynaptic event, the EONS synapse calculates the probability of vesicle release based on past
release events. (B) For the original EONS synapse model, in the event of a vesicle release, glutamate diffusion is calculated and depending on postsynaptic receptor
location, the result is used for deriving the open states in the kinetic models of the receptors. (C) The IO synapse model accounts for both the diffusion and kinetic
receptor dynamics to calculate the predicted open states of the receptors. The open states are used to calculate conductances and resulting currents based on the

model.
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an overview. The IO synapse model contains three components:
the presynaptic release component, the AMPAr component,
and the NMDAr component. Using such a modular structure
allows for additional components to be easily implemented and
integrated in the future. The presynaptic release component uses
the Dittman model of facilitation/depression (Dittman et al.,
2000), with the parameters described in Song et al. (2009b)
to approximate the short term plasticity seen in experimental
studies. This model calculates the probability of vesicle release. A
random number generator compared with the calculated release
probability determines whether a release event occurs or not. If
a release event takes place, it is passed on to the AMPAr and
NMDAr Input-Output models. The AMPAr 10 receptor model
calculates the conductance values of AMPAr. For NMDAr, due
to the additional complexity of the magnesium block of the
channel, the open state probability is calculated first; the receptor
conductance is then calculated with the following two equations,
as stated in Ambert et al. (2010):

N 82— &1
g =g+ 11 eavm
8max = Iy £0
1+ (—Iﬁg )e“SZFl//m/RT
ENMDA = Zmax X O(1)

where gy represents the total conductance in the absence of
any magnesium, g, g represent the open state conductances
with one glutamate bound and 2 glutamate molecules bound,
respectively. gjis set at 40 pS while g, is set at 247 pS. represents
the external magnesium concentration and is set The value o =
0.01 represents the steepness of the transition between g; and
0. Mgngrepresents the external magnesium concentration and
is set at 1 mM. Kj is the equilibrium constant for magnesium
set at 3.57,F is Faraday’s Constant (9.64867.104 C mol~!), R is
the molecular gas constant (8.31434 ] mol~! K=1), and T is the
temperature at 273.15 K. The variable {/m represents the affinity
between NMDAr and magnesium, which is dependent on the
postsynaptic potential of the synapse; the value is set to 0.8. Here
we utilize the open state O(t) as the output data during training
of the 10 receptor model of the NMDA receptor; the estimated
conductance is then calculated from the predicted open state
value by the IO receptor model.

Reduction of Receptor Models through the
Laguerre-Volterra Modeling

The Input-Output model for receptors uses the Volterra
functional power series together with Laguerre basis functions
(Berger et al., 2010). The general form of the Volterra functional
power series is described by:

N L

u(® = co+ Y.y o ()v

n=1 j=1
N L ji
+D 00> (o) i () V(8

n=1j1=1 j

L L
+ YD e (i 2) Vil () V5 (D)
1=1j2=1
M
Vi) = Y b (D) x(t— 1)

=0

where v represents the basis functions convolved with the
input for a memory window length My and c,, are the scaling
coefficients used to have the basis functions fitting the shape
of the training data. N denotes the number of basis function
sets and L represents the number of basis functions for each
set. Each set is representative of basis functions of different
decay constants, which is further elaborated in the description
of Laguerre basis functions. Nonlinearities are captured through
modeling higher model orders, represented as kernels. For the
Oth order kernel, the only required value is ¢o. This corresponds
to the baseline signal in the presence of no event. Values for ¢; and
v; represent the 1st order kernel and account for responses to a
single event. cy; and v, represent 2nd order nonlinearities within
an individual set of basis functions, whereas ¢,y and v, represent
cross kernels. Nonlinearities occur when multiple events interact
with each other and represent the differences between the output
of the system and the linear solution of the model given by only
the 1st order kernels. As is shown in the equations, 2nd order
consists of the basis functions cross multiplying with each other
(basis functions within a set are multiplied with each other for
2s and basis functions are multiplied with outside sets for 2x).
Higher orders involve more cross multiplications between basis
functions.

For basis functions, the Laguerre equations are used for
their orthogonality and convergence properties. Additionally,
the signals reproduced using Laguerre basis functions have high
resemblance to signals encountered in physiology and biology.
More details of the methodology are described in Ghaderi et al.
(2011). In brief, the Laguerre basis functions are derived from
Laguerre polynomials, which are defined as:

The Laguerre polynomials are orthogonal from the interval of
0 to infinity with a weight function ¢*/2, and thus the Laguerre
functions can be defined as I, (x) = e */2L,(x). In the time
domain,—x/2 is replaced with p - t where p is a time scaling factor
that corresponds to the decay of the basis functions. With proper
normalization the equations take the following form:

bo (1) = I (t) = \/2pe™?*
by () = I () = /2p2pt — 1)e !
by(t)y =1L () = JTp(Zp%z — 4pt + l)eipt

A visualization of the Laguerre basis functions is shown in
Figure 3. The basis functions are then scaled with coefficient
values that are fitted to provide the appropriate response
when all functions are convolved with the input signal and
summed. To capture nonlinear responses, the basis functions
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FIGURE 3 | Graphical representation of the first five Laguerre basis
functions. The basis functions are scaled with coefficients and summed to
produce the first order response to the system. Furthermore, these basis
functions are multiplied with each other to produce the functions used for
reproducing nonlinear responses.

are cross multiplied with each other as described previously.
These functions together correspond to one set of basis functions
with one given decay value, p. Because of the complexities of
receptor responses, two sets of basis functions are used with
different decay values represented by p. The first set covers
the general response of the system within a short time frame
to capture the overall waveform. The other covers a much
longer time frame and accounts for slower mechanisms, such as
desensitization. We found that using two basis function sets yield
better approximation of the dynamics seen in the original kinetic
models. The p-values were determined via gradient descent to
find the optimal decay values with the lowest absolute error while
fitting the data. The fitting process is further elaborated later in
the description on coefficient estimation.

Note that increasing the order exponentially increases the
number of equations and coefficients used for the input-output
model. Previous uses of the generalized Laguerre-Volterra model
(Song et al., 2009b) have shown that models up to the 3rd
order are generally sufficient for modeling most neural spiking
activity. In this study the model uses 3rd order for low frequency
presynaptic activity and 4th order for higher input frequencies.

Model Estimation and Validation

The IO receptor models were trained using a series of Poisson
random interval train inputs and with the responses of the kinetic
models of AMPA and NMDA receptors. These responses are
the total conductance gappa for the AMPA receptor, and the
open state of the receptor O(t) for the NMDA receptor. The
open state was chosen as the response to be modeled for the
NMDA receptor to avoid complications that may arise with the
Magnesium blockade; this blockade is thus factored in afterwards
when calculating NMDA conductance. The input frequency used
for training was either 2 Hz for 3rd order models, or a hybrid of
2 and 10 Hz frequency trains for both 3rd order and 4th order

models. Poisson random impulse trains (RIT) are used because
they provide broadband input in order to highlight nonlinearities
and dynamics for a wide range of input patterns, rather than with
events at fixed intervals. A total of 1000 input events was used
for training for 3rd order models and 2000 input events for order
4th models (this ensured a broad spectrum of input was covered
for both 2 and 10 Hz mean input frequencies). The number of
Laguerre basis functions used for each set is 4 for the AMPAr 3rd
order IO receptor model. The number of basis functions per set
was reduced to 3 for the NMDAr model with cross terms and
for 4th order models; for models with cross terms and higher
order models, the number of coefficients needed to be estimated
is much larger, therefore the number of basis functions per set
was changed to reduce calculation time required.

The 10 synapse model coefficients were estimated with the
MATLAB simulation environment and the Control System
toolbox. Training the model involved iterating over various decay
constants p for each set to find optimal values, yielding the lowest
absolute error between the actual response of the model and
predicted response using the estimated coeflicients and decay
constants. Estimation of the coeflicients was done by taking
the inverse function of the basis functions multiplied with the
training data:

c=y- vl
() =c- V()

Here, V(t) represents the matrix of all the basis functions
(including both sets of basis functions with their given p-values)
and their cross terms convolved with the input, x(t). This matrix
is inverted using the pinv function in MATLAB, then multiplied
with the training data to estimate the best fit coefficients for
the I0 model. The training estimate values are subtracted from
the true training data set to determine the difference at each
instant; these differences are then summed together to determine
the absolute error of the training estimate given the p-values
and the estimated coefficients. Finally, p-values are determined
by gradient descent, choosing the p-values with the lowest
absolute error when training to fit the data. The optimal p-
values we obtained were 0.52 and 0.03 for the basis function
sets associated with AMPAr, and 0.049 and 0.002 for the basis
functions associated with NMDAr.

Validation of the optimal coefficients and decay constants was
performed following the training procedure; it was done with
a novel RIT input different from the input used for training.
The length of the input signal for validation was set to 20s. The
average frequency of the input signal is generally 2 Hz unless
otherwise specified. For validation, the normalized root mean
square error (NRMSE) was calculated as shown in the following
manner:

YN () —m-))z)z

NRSME =
( Yyt

where y represents the expected response of the EONS synapse
model, ¥ is the predicted response generated by the IO synapse
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model, and N is the total length of the response. In the
responses the baseline is set as 0; as such, the error analysis
presented here tracks mainly the differences in amplitude values
and nonlinearities between the actual and estimated models.
Estimated coeflicients were stored in a file and then loaded into
the NEURON simulation environment (Hines and Carnevale,
1997).

Implementation in the NEURON Environment

The IO synapse model structure was implemented in NEURON
with the use of module (mod) files. The module files accept
the decay values and the coeflicients as parameters. Because
the number of basis function equations and coefficients differs
between models of different orders, separate module files were
made for different order models. In general, 3rd order models
were used with 2Hz Poisson random interval train events to
simulate synaptic activity. The 4th order model was tested when
simulating with higher frequency inputs and compared to the 3rd
order model. In our models, the third order model requires 68
coefficient values whereas 4th order models use 209 coefficients—
thus, the number of inputs to the module files is different. As
a result, the basic structure of the IO synapse model, which
is dependent on model order, is described in the module file.
Notably, the module file was set to have a memory window of 2 s,
keeping all input events triggered within the last 2 s of the current
time point in memory for calculation of the IO synapse model
responses. The width of this 2s memory window was chosen as
there were no significant contributions to the responses for events
that take place more than 2 s prior to the current time point.

Simulation and Model Configuration

To test the IO synapse model in a cell simulation, the CAl
pyramidal cell model proposed by Jarsky (Jarsky et al., 2005) is
used as a template. Synapse locations are randomly generated
on the apical dendrite of the cell. Unless otherwise indicated,
simulation input trains consist of Poisson random interval trains
having a mean frequency of 2 Hz and the number of synapses
is 16. NEURON simulations with the use of the EONS synapse
model were run on cluster nodes with dual quad-core Intel
Xeon 2.3 GHz processors with 16 Gb RAM. IO synapse model
simulations were conducted with a single Fedora-based computer
with Intel quad-core 2.67 GHz processor and 8 Gb RAM. All
results were obtained with 20 s of simulated time.

Results

The 10 Synapse Model Accurately Reproduces
Nonlinear Dynamics Seen in the Parametric
EONS Synapse Model

Results and simulation times for both the IO synapse model and
the original platform were compared under the same simulation
conditions (20s simulated time, 2 Hz Poisson random interval
train input) to evaluate performance of the IO synapse model
in terms of accuracy and speed. For the original platform,
simulations were run in Java, the native language code of the
EONS/RHENOMS synaptic platform. The IO synapse model
was prototyped first in MATLAB, then ported to the NEURON

simulation environment. Two scenarios were explored in these
studies. For the first one, synapse models were simulated alone
(independently from their connected neuron) and compared
for speed and accuracy (i.e., in a simulated voltage-clamped
condition). The NRMS error was 3.3%, making the IO synapse
model a reliable alternative to the original platform. Further
investigation highlights the differences in error for individual
events (or pairs of events if they are close to each other) for
the first 2's with presynaptic activity. This duration was chosen
as it equals the memory window of the IO synapse model.
Consequently, the response of the IO synapse model takes into
account the nonlinear interactions induced by previous events
that are within a 2 s timeframe of the current time point. Table 1
shows the NRMS error for the events indicated as shown in
Figure 4A. Here, we see that some error is present even in
the first few events without any previous activity. This error
would indicate that lower order nonlinearities are being partly
compensated in the model to better fit higher order linearities.
The error overall remains fairly constant at around 3% until
reaching the 10th event, where the last three events indicated are
shown to deviate more significantly. Furthermore the direction of
the error is different in comparison between the first few events
and the following, as seen in the error difference chart on the
top of Figure 3. In the first few events, the IO synapse model
has more under-estimate error, whereas in the last few events
observed, the error consisted in over-estimation of the output.
Such analysis shows that the IO synapse model is accurate not
only according to the overall RMS error, but even high order
nonlinearities are well fitted in the model. This results in some
compensation from the lower order nonlinear interactions, but
in return responses that must consider up to 10 events in the past
are still described accurately by the IO synapse model.

In the second scenario, we placed 16 synapses on a CAl
pyramidal neuron model in the exact same configuration for both
the EONS and the IO synapse models. The original parametric
EONS-NEURON framework used a communication protocol
that ran MPI for interfacing multiple nodes processing the EONS

TABLE 1 | NRMSE comparison between the EONS synapse model and the
10 synapse model.

Synapse model alone, total 3.3%

i. 1st + 2nd event 3.08%
ii. 3rd event 2.87%
iii. 4th + 5th event 3.77%
iv. 6th event 3.07%
v. 7th event 21%

vi. 8th event 2.2%

vii. 9th event 2.49%
viii. 10th event 4.47%
ix. 11th event 6.82%
x. 12th event 5.08%
Synapse model with NEURON 5.66%

i through x refers to the error comparisons of the event responses as shown in Figure 4.
All events indicated are within a window of 2 s, which corresponds to the memory window
of the IO synapse model. Hence the response at x. considers all nonlinear contributions
of events preceding it.
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A Comparison Between the 10 Synapse Model
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FIGURE 4 | Comparison between the 10 synapse model and the original EONS synapse model. (A) Expected EPSC response from the original EONS
synapse model (blue) and the 10 synapse model (red, dashed). The error difference between the two traces is plotted in black, to allow for comparison on when the
two models diverge. Both simulations were run in the single synapse configuration and in voltage-clamped conditions. (i) through (x) designate individual or double
responses to events within the first 2 s of presynaptic activity - the NRMSE of each response is presented in Table 1. Scatterplot on bottom right shows direct
comparison of y-values (current) between the two models, where each point represents a different time point in the results. Results are shown to be nearly identical to
each other, with only minor differences as shown in the error comparison and scatterplot. (B) Response from the EONS synapse model (blue) and the IO synapse
model (red) when connected to a neuron model within the NEURON simulation environment. (C) Somatic response in a neuron model using the EONS synapse model
(blue) and the 10 synapse model (Red, dotted) within the NEURON simulation environment. In the simulation, stochastic vesicle release was disabled for consistency
and all synapses fired in response to a pre-synaptic event. Both responses are nearly identical. The minor differences noted in the synaptic current as shown in the
other comparisons do not significantly affect the response of the postsynaptic cell.

synapse model to communicate with the NEURON simulator; ~ postsynaptic current based on the postsynaptic potential of the
for details on the NEURON simulation environment, please  neuron model from the previous time point. The neuron model
see (Hines and Carnevale, 1997). At every time point in the  then uses the postsynaptic currents from EONS to re-calculate
simulation, instances of the EONS synapse model calculate the postsynaptic potentials at the locations of the synapses and
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at the soma. As such, there is always an error between the value
calculated from the previous potential and its current value. To
minimize this error, the difference between two successive time
points must remain small. Furthermore, in the EONS synapse
model, the neurotransmitter release model required a time step
of 0.5 s in order to accurately simulate the diffusion profile of
the neurotransmitter release (Bouteiller et al., 2008).Using step
sizes larger than 0.5 s yielded an inaccurate representation of the
neurotransmitter diffusion profile in the cleft. To ensure accurate
representation during the training phase of the IO synapse
model, we therefore simulated results from the EONS synapse
model at a fixed time step of 0.5 ps. Additionally, it ensures all
events are captured and errors as a result of desynchronization
remain minimal. Results used for validation were also run at
0.5ps for consistency. The IO synapse model was simulated
directly within the NEURON environment and therefore the
postsynaptic potential is accurately represented at every time
point. The NRMS error comparison between the original EONS
synapse model and the IO synapse model remained small at
5.66%, when compared to the original platform, and postsynaptic
responses from both synapse models matched up relatively
well, as shown in Figures 4B,C; comparison of somatic voltages
yielded virtually identical profiles.

Higher Order 10 Synapse Models More
Accurately Replicate Eons Synapse Model
Results When Given Randomized Inputs with
Higher Mean Frequency
The 3rd order IO receptor models were trained with a random
interval train input having a mean frequency of 2Hz. This
frequency value was chosen to reflect the typical firing rate
of hippocampal CA1 and CA3 neurons (Berger et al., 1988a).
However, the mean firing rate (MFR) can often vary widely
within hippocampal pyramidal cells, even during the resting state
(Ranck, 1973). We therefore opted to evaluate how the accuracy
of the IO synapse model varied with different input frequencies.
Thus, 3rd and 4th order IO synapse models were trained with
randomized input events. The input events used for training
consisted of a concatenation of random Poisson trains with a
mean frequency of 2 and 10 Hz. The responses of the IO synapse
models were then validated against the original EONS synapse
model results for accuracy measurement. The input events for
the validation tests consisted of Poisson randomized input events
with a range of mean frequency values, as shown in Figure 5.
IO synapse model simulations were conducted in both fixed
time step and variable time step. Fixed time step was simulated
with an interval of 0.1 ms; this corresponds to the bin size used
for training the receptor models. Variable time step was used
to further reduce calculation time for the IO synapse model.
The method used was CVODE, an algorithm readily available
in NEURON (Hines and Carnevale, 1997). The error for both
simulations were compared with each other to assess whether
there were discrepancies between fixed and variable time steps.
In Figure 5, the normalized RMS error was plotted as a
function of average input frequency rate for 3rd and 4th order
IO synapse models. In the presented results, the 3rd order 10
synapse model was re-trained with a new set of input events

0.4 ) )
—Fixed Time Step (3rd Order)

—Fixed Time Step (4th Order)
—Variable Time Step (3rd Order)
—Variable Time Step (4th Order)

0.35F
0.3F
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Input Frequency
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FIGURE 5 | Accuracy of the 10 synapse model with various input
frequencies. The normalized RMS error is plotted for the 3rd order IO
synapse model simulated at fixed (blue) and variable (red) time step
simulations and for the 4th order 10 synapse model simulated at fixed (green)
and variable (purple) time step simulations. With the 3rd order model, the error
noticeably increases at higher frequencies. The 4th order model yields
constant error at all tested frequencies.

in order to better capture the higher frequency nonlinearities.
The training input events consisted of a hybrid of 2 and 10 Hz
Poisson randomized interval trains: the first 500 events averaged
a mean frequency of 2Hz and the second 500 events averaged
a mean frequency of 10 Hz, for a total 1000 input events. The
IO synapse model was validated with simulations using input
frequencies of 1, 2, 4, 6, 8, and 10 Hz. In validation, simulations
at higher frequencies resulted in higher error for the 3rd order
IO synapse model when compared with results from the EONS
synapse model, with normalized mean square error (NRMSE) of
up to 35% in simulations with 10 Hz input frequency. At lower
frequencies (1-4 Hz) the error remained around 10%.

Higher frequencies are commonly associated with more
nonlinear behavior. In order to more accurately account for such
nonlinearities, we implemented an IO synapse model utilizing
4th order Volterra functional power series. The 4th order 10
synapse model was trained and validated similarly to the 3rd
order IO synapse model; the only difference was the number of
input events, which was increased from 1000 to 2000 events to
better estimate the large number of coeflicients. The 4th order
model was found to have an error difference of 10% across
the frequency spectrum when compared to the EONS synapse
model and thus captures nonlinearities associated with higher
frequencies more accurately (up to 25% more accurate with 10 Hz
input) than the 3rd order IO synapse model.

Computational Complexity of Kinetic Receptor
Models are Reduced in 10 Synapse Models
within NEURON

A large portion of the calculation time required for the EONS
synapse model is due to the data exchange process between
the EONS synapse model and the neuron model (Allam et al.,
2012). This, however, does not clearly establish whether there
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is benefit from using the Volterra functional power series over
kinetic models. To investigate this, the two postsynaptic receptor
models, AMPAr (Robert and Howe, 2003) and NMDAr (Ambert
et al., 2010) were re-implemented in NEURON using kinetic
modeling schematics (Carnevale and Hines, 2006). The kinetic
models are functionally identical to the models used in the
EONS synapse model, but now implemented in the NEURON
environment using NEURON integrated ODE solvers. These two
kinetic models were used together and their output currents
summed to determine postsynaptic current from the synapses
in the neuron model. This configuration allows for a direct
comparison of simulation times between the EONS synapse
model and the IO synapse model as the only difference lies in
structure between the two model types. The Jarsky hippocampal
CA1 pyramidal cell model was used for all simulations (Jarsky
etal., 2005). Additional simulations were conducted with a single
compartment Izhikevich model with similar results; these results
were further analyzed in a manuscript yet to be published. All
simulations were run using adaptive time step methods, and total
number of steps are also presented to demonstrate difference in
the number of steps required per simulation.

In the first condition, synapse weights were calibrated to
reflect physiological conditions leading to postsynaptic neuron
firing (Table 2). Under these conditions, the IO synapse model
required 617 s of simulation time with 67,319 simulation steps,
while the kinetic models required 1090 s and 107,640 steps. In
the second condition, synapse weights were reduced to 0. This
condition was chosen to investigate the simulation time required
with minimal neuron model computation, thus reflecting more of
the contributions of the synapses to the simulation benchmarks.
Calculation of the compartments within the neuron model still
take place, however as the inputs to the neuron is set to 0,
calculations by the neuron model should have minimal influence
on the simulation time. Under these conditions, the neuron
using IO synapse models required 3.7 s of simulation time with
417 steps, while the one using kinetic models needed 589 s and
40,760 steps. In both cases, the IO synapse model outperforms
the kinetic models and requires less steps for calculation. Notably,
the speedup is more significant in simulations in which the
computational contribution of the neuron model is minimal (i.e.,
when simulation times are used to calculate synaptic models
only).

Several points can be made about the results of these
simulations. First, regardless of whether the kinetic models
or the IO synapse model was used, the neuron model

TABLE 2 | Simulation time and number of steps required to simulate the
original kinetic models vs. 10 synapse model within NEURON, as well as
the speedup between the two conditions.

Action potential fired No action potential

Kinetic models 1090s 107,640 steps 589s 40,760 steps
1O Synapse model 617s 67,319 steps 3.7s 417 steps
Speedup 1.77x 159x

Kinetic models in general require more steps to calculate thus leading to longer simulations
in simulations utilizing adaptive time step algorithms.

independently of the synaptic model used can take up
a significant portion of simulation time depending on its
complexity. Reducing the synaptic weight to 0minimizes
the neuron model’s computational weight to the simulation,
thereby emphasizing the synaptic component. Furthermore, all
simulations conducted in this part of the study were simulated
within NEURON under adaptive time step conditions. This
results in a direct comparison between the kinetic models and
the IO synapse model based on the Volterra functional power
series. Differences in simulation time and number of steps seen
in the results are therefore directly indicative of the difference in
modeling methodology. Notably, the relative speedup between
the IO synapse model and the kinetic models is shown to
be significantly larger in simulations with the synaptic weights
being set to 0. This result suggests that (1) calculation of
the changes in potential in the neuron model compartments
requires a significant amount of simulation time, and (2) for
synapse activity alone, kinetic models require much more steps,
thus resulting in longer simulation times compared to the IO
synapse model. This is likely because kinetic models contain rate
equations which require previous time points to calculate the
state values. In contrast, the Volterra functional power series
models the conductances of the receptors and accounts for the
nonlinearities analytically—as a result, the response of the IO
synapse model does require past values to calculate present
values.

Of importance, the number of synapses modeled also impacts
computational speed. Neurons have a large number of synapses:
a typical pyramidal CA1 neuron has been reported to have up
to 30,000 synapses (Megias et al., 2001). The results reported in
the previous sections were obtained with 16 synapses. To address
this point we varied the number of synapses distributed on the
neuron and recorded the simulation times (Figure 6; also see
Supplementary Figure 1 for more details). For these simulations
the computational contributions of the neuron model were
minimized by reducing synaptic weight to 0. The results indicated
that the neuron comprised of IO synapse model retains a total
calculation time of less than 1min even in simulations with
up to 1000 synapses. Meanwhile, the calculation time required
for the kinetic models ranges from 10 min with 10 synapses,
to 18 min with 1000 synapses. The number of steps remained
almost constant for both models: 400 steps for the IO model, and
40,000 steps for the kinetic model. Measuring the approximate
speedup of the IO model in comparison to the kinetic model
as a function of the number of synapses gives approximately a
150x speedup at 10 synapses, number which decreases as the
number of synapses increases, to finally stabilize at about 50x
speedup for 1000 synapses. Additional tests performed at up to
5000 synapses confirm that beyond 1000 synapses, the speedup
of the IO synapse model remains around the same at around 50x.

Discussion

Utilization of detailed models, such as Markov kinetic states
receptor models, reflect the inherent mechanistic properties
of the system of interest. Their utilization can shed some
light on potential abnormalities and dysfunctions underlying
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FIGURE 6 | Simulation Time varies as a function of the number of
synapse instances. Here, simulation time is represented in logarithmic scale.
Computation time required for the kinetic synapse model is within the range of
10-20 min, while the computation time required for the 10 synapse model
ranges between 3 and 30's. Dashed line represents the speedup of the 10
synapse model against the kinetic synapse model based on number of
synapses. At low number of synapses, the speedup of the IO synapse model
is highest at around 150x faster than the computation time required for the
kinetic synapse model. The speedup is shown to be decreasing, but stabilizes
at around 50x speedup in later values.

pathological cases, as well as identify possible solutions to
re-establish normal receptor function, thereby facilitating
identification of new therapeutics. Although these models
are designed to be as mechanistically close as possible to the
physiological structures they represent, their computational
complexity often restrict the extent of what may be simulated,
thereby making large-scale simulations impractical. This
consequently impedes the creation of a unified computational
platform that bridges micro- to macroscale dynamics. Yet
function and dysfunctions that appear in pathological cases
often stem from modifications at the molecular level, giving
rise to altered macroscopic levels of activity leading to the
observed phenotype. It is therefore essential to determine
how changes propagate from the molecular and synaptic
levels up to the network level. In this article, we described the
development and characteristics of an IO synapse model that
extracts and successfully replicates the functional properties
generated by detailed kinetic models, while significantly reducing
computational complexity thereby enabling simulations at a
larger scale.

To do so, training and calibration of the IO synapse model
was done on a local scale, yielding parameters values for the
Volterra functional power series to accurately describe the
dynamics of the system with a low computational complexity. We
assessed the accuracy of the model compared to its parametric
counterpart, and determined the speed gain obtained. We then
went on to demonstrate that large-scale simulations could be
performed with a very large number of IO synapse models,
number unreachable using traditional parametric models.

Synapse models routinely used in large scale simulations
typically consist of linear exponential synapses (Roth and
Rossum, 2000; Hendrickson et al., 2012). These synapses, while
sufficient to replicate the global waveform of synaptic responses,
are not detailed enough to replicate nonlinear behaviors or to
have any application for studying molecular-level modifications
or drug-target interactions. On the contrary, the IO synapse
model may faithfully reproduce nonlinear dynamics under a wide
range of conditions (e.g., pathological or drug-treated), with a
computational cost nearly equivalent to the exponential synapse.

The Volterra functional power series was chosen as the
framework for the IO synapse model for its capability to
capture and fit nonlinear dynamics. In the current study, we
demonstrated that by capturing nonlinearities up to the 4th
order, the IO synapse model was able to adequately replicate
synapse dynamics with input trains of varying frequency,
ranging from an average of 1 to 10Hz. Future renditions
of the IO synapse model may include more complex models
with higher nonlinear dynamics (e.g., functional contribution
of metabotropic receptor). The methodology described in this
study may not be sufficient for such models. Ongoing studies
have therefore been initiated to further build on the Volterra
functional power series, such as using maximum-likelihood
method for estimating systems with binary output (Berger et al.,
2010); using the Poisson-Volterra model where the output can
be represented with Dirac functions weighted by amplitude
of the postsynaptic responses (Song et al., 2009b); including
sparsity to reduce the number of required coeflicients (Song
et al.,, 2013); and even accounting for non-stationary behavior
through stochastic state point process filters (Chan et al., 2009)
to overcome potential limitations associated with using higher
order Volterra representations and ensure their applicability to
more general cases.

In our current study, we used the EONS synapse model
to develop two separate IO receptor models—the AMPAr and
NMDAr models. Initially, we first considered the implementation
of a single IO synapse model for the postsynaptic component
of the model (rather than one for each receptor type). Since
an input-output model is based on input-output relationships
it was presumed that all nonlinearities may be taken together.
This would then require only one overall IO synapse model to
be implemented, rather than multiple IO receptor models, thus
presumably becoming more computationally efficient. However,
several key factors influenced the choice of making the system
more modular. First, the different receptors have different
rise and decay characteristics. This had an impact on the
overall estimation accuracy and the dynamics were not properly
captured due to different decay rates (results not shown).
Consequently, the decision to use separate input-output models
for each ionotropic receptor allowed for each of the models to be
more adequately calibrated, yielding more accurate results. If the
postsynaptic response was represented by a single input-output
model, the rise and decay rate of the input-output model would
need to be averaged out between the two receptor models that
it represents. Another reason for separating receptor models is
the existence of specific characteristics associated with different
types of receptors. The magnesium blockade is a clear example
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of such model-specific characteristics; here, using a separate
model allows for the magnesium blockade factor to be separately
accounted for in the NMDAr IO model only. If the entire synapse
model was represented by only one input-output model, it would
not be possible to associate the magnesium blockade effect with
only NMDAr. Consequently, a more complex multi-input model
would be required.

When considering MSM, the complexity of a kinetic model
can vary significantly depending on its states and mechanisms.
For example, ionotropic receptor models can be represented
with only a few states and equations (Robert and Howe, 2003;
Ambert et al., 2010), but large systems with intricate pathways
may require significantly more states and equations to model, as
is the case of the metabotropic glutamate receptor (Doi et al.,
2005; Greget et al., 2011).The IO synapse model circumvents
this issue by capturing the input-output relationships of the
kinetic models. This means that no matter how intricate the
original model may be, the IO synapse model will attempt to
capture and replicate the outputs of the model using the same
functional structure (sets of basis functions and coefficients)
and consequently with the same computational complexity. This
can facilitate integration of a large number of microscopic
components with less concern for growing complexities, as would
be the case for kinetic models with high numbers of states and
rate equations. Furthermore, input-output modeling can even be
extended into macroscopic levels, e.g., to reduce neuron models
to a set of Volterra functions. Such methods could provide a
way to extend multi-scale modeling even further, modeling even
larger neuronal ensembles.

Notably, one limitation of our IO synapse model is that
its input-output reference data is captured from a parametric
model, which may not capture the full dynamics of the biological
element. Ideally, the IO synapse models would be trained
using experimental results. However, individual synapses and
their dynamics are particularly difficult to measure, making
it difficult to extract long, stable, and consistent sets of data
from synapses. In this case, kinetic models may be better
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