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Non-accidental properties (NAPs) correspond to image properties that are invariant to

changes in viewpoint (e.g., straight vs. curved contours) and are distinguished from

metric properties (MPs) that can change continuously with in-depth object rotation (e.g.,

aspect ratio, degree of curvature, etc.). Behavioral and electrophysiological studies of

shape processing have demonstrated greater sensitivity to differences in NAPs than in

MPs. However, previous work has shown that such sensitivity is lacking in multiple-views

models of object recognition such as HMAX. These models typically assume that object

processing is based on populations of view-tuned neurons with distributed symmetrical

bell-shaped tuning that are modulated at least as much by differences in MPs as in

NAPs. Here, we test the hypothesis that unsupervised learning of invariances to object

transformations may increase the sensitivity to differences in NAPs vs. MPs in HMAX.

We collected a database of video sequences with objects slowly rotating in-depth in an

attempt to mimic sequences viewed during object manipulation by young children during

early developmental stages. We show that unsupervised learning yields shape-tuning in

higher stages with greater sensitivity to differences in NAPs vs. MPs in agreement with

monkey IT data. Together, these results suggest that greater NAP sensitivity may arise

from experiencing different in-depth rotations of objects.

Keywords: inferotemporal cortex, ventral stream, HMAX, invariance, object constancy, object recognition, learning

1. Introduction

Invariant object recognition is a notoriously challenging computational problem (Marr, 1982).
Our visual system has to deal with large intra-class variations owing to the effect of 2D and 3D
transformations (including translation, scaling and rotation) because small changes in an object’s
3D view may yield large changes on its 2D projection on our retinas. Yet, despite these large intra-
class variations, primates are capable of robustly and effortlessly recognizing objects (Thorpe et al.,
1996), vastly outperforming the best existing computer vision systems.

Object constancy requires the development of visual representations that remain stable
across object transformations (Földiák, 1998). In particular, one may distinguish between those
object properties that will remain stable across changes in viewpoint and those that will not
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(see Figure 1, for an illustration). Properties such as the degree
of curvature of an object’s contours, its length, or the amount of
expansion of a cross section are examples of properties that will
be affected by changes in viewpoint. Conversely, there also exist
qualitative shape properties that remain stable across changes in
viewpoint, e.g., whether an edge is straight or curved, whether a
surface is convex or concave, or whether a cross section ends at
a point vs. a side. These qualitative properties are known as non-
accidental properties (NAPs) and need to be contrasted with their
quantitative counterparts known as metric properties (MPs).

There is a long history of studies related to NAPs in
computational vision (see Lowe, 1984, for review): From a
theoretical point of view, a visual system needs to focus on the
detection of image structures that are unlikely to have arisen by
accident. For instance, the probability of a curved edge to appear
straight because of projection is extremely small and would
happen as an “accident” of viewpoint (Richards et al., 1996).
The stability of NAPs over viewpoints makes them useful for
achieving object constancy. Indeed, NAPs have been the focus of
a prominent psychological theory of object recognition called the
Recognition-by-Components (RBC) theory (Biederman, 1987).
Briefly, this structural-description theory states that the visual
system may encode a finite visual vocabulary of basic 3D shapes
called geons. These geons can be differentiated on the basis

FIGURE 1 | Representative appearance changes undergone by objects

during out-of-plane rotations. Variations of metric properties here include:

(A) increasing angle at a point and (B) increasing size, shape and curvature of

cross section of a cone (C) increasing size, shape and curvature of cross

section of a cylinder (D) decreasing length of a cylinder and (E) decreasing

area of cross-section and increasingly skewness of the edges of a cube.

of differences in NAPs, and generic object categories can be
represented as compositions of geons. This theory has motivated
the design of a number of experimental studies and it is
now relatively well established that our visual system exhibit
greater sensitivity to differences in NAPs compared to MPs (see
Biederman, 2007, for review).

Behaviorally, it has been shown that participants can more
accurately distinguish between two objects that differ along an
NAP vs. an MP (Biederman and Bar, 1999). Furthermore, when
trained to recognize novel object categories where two NAPs
(the degree of curvature and the degree of parallelism) are
systematically varied, adult participants are more likely to treat
a change in NAP as categorical (as opposed to within-category
variation) compared to a similar change in MP (Abecassis et al.,
2001). When a more sensitive paradigm is employed, preschool
children, like adults, find it easier to discriminate NAPs vs. MPs
(Amir et al., 2014). In addition, both adults and 4 month olds
exhibit a saccadic preference for NAPs vs.MPs (Amir et al., 2011).

The neural basis of NAP selectivity was more directly studied
by Kayaert et al. (2003) who recorded neuronal responses in the
inferior temporal cortex (ITC) of the macaque. It was shown
that neural responses are more strongly modulated by changes in
NAPs than by equally large pixel-wise changes in MPs (Kayaert
et al., 2003).

Further work later showed that such increased NAP sensitivity
is incompatible with multiple-viewsmodels of object recognition
such as the HMAX (see Riesenhuber and Poggio, 1999; Serre,
2014, for reviews), which assume that shape processing is
based on broadly-tuned neuronal populations with distributed
symmetric bell-shaped tuning: Shape-tuned units in these
models are modulated at least as much by differences in
MPs as in NAPs (Amir et al., 2012). It remains an open
question—if and how—HMAX can be modified to account
for the increased NAP sensitivity found both behaviorally and
electrophysiologically.

Here, we test the hypothesis that mechanisms for learning
transformation sequences may increase the model sensitivity to
differences in NAPs vs. MPs. Given thatMP changes result in part
from generic object transformations (3D rotation), and given the
focus of the original model on 2D transformations, we reasoned
that learning invariances to natural object transformations
should yield a decrease in the sensitivity of model units to
MPs compared to NAPs (see Tarr and Kriegman, 2001, for
a similar argument). To test our hypothesis, we created a
database of video sequences with objects slowly rotating in
depth in an attempt to mimic sequences viewed during object
manipulation by young children during early developmental
stages (Figure 3).

Several algorithms have been proposed for learning
transformation sequences (e.g., Perrett et al., 1984; Foldiak,
1991; Hietanen et al., 1992; Wallis et al., 1993; Einhäuser et al.,
2002; Wiskott and Sejnowski, 2002; Spratling, 2005; Stringer
et al., 2006; Masquelier et al., 2007). Here, we consider a
simple form of sequence learning via a “temporal pooling”
mechanism similar to that used in the Hierarchical Temporal
Memory algorithm (Hawkins and Blakeslee, 2004). The basic
idea is to incorporate invariance pooling mechanisms in
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intermediate stages of the HMAX to include more generic object
transformations (such as 3D rotation).

In the original model, IT-like units in the the last stage
are organized in feature columns (Figure 2A) modeled after
those found in cortex (Tanaka, 2003): Each feature column is
characterized by its tuning for a distinct visual feature over a
range of positions and scales. Feature selectivity is learned from
individual object views (Serre et al., 2007b) and each column
activity reflects the degree of similarity between an input stimulus
and the corresponding preferred feature. Assuming N feature
columns, the resulting population activity encodes an input
stimulus as an N-dimensional pattern of activity (Figure 2B).
The difference in the pattern of activity associated with two
distinct input stimuli reflects the visual dissimilarity between the
two stimuli and does not distinguish between an MP vs. NAP
change (1MP−Base ≈ 1NAP−Base; Figure 2C).

In the extended model, feature columns include multiple
views of the same feature sampled from short object
transformation sequences (∼300ms). The responses of features
within a column are then combined via a max operation (as
done in the original model for invariance to position and
scale; Figures 2A,B). Such unsupervised learning mechanism
is consistent with both human behavioral (Wallis and Bülthoff,
2001; Cox et al., 2005) and nonhuman primate (Li et al.,
2008, 2010) studies which suggest that tolerance to object
transformations is at least partly supported by the natural
temporal contiguity of visual experience. As we will show, the
proposed pooling mechanism yields a visual representation
which exhibits greater tolerance to object transformations and,
as a result, a greater sensitivity for NAP compared to MP changes
(1MP−Base < 1NAP−Base) in agreement with neurophysiological
data.

FIGURE 2 | Feature columns, invariance to object transformations and NAP sensitivity. (A) Feature columns in the extended (bottom) vs. the original (top)

model (i.e., w/ and w/o temporal pooling). One of the key computational mechanisms in the HMAX builds on the proposal by Hubel and Wiesel (1962) to achieve

tolerance of 2D transformations via a selective pooling mechanism (at the level of complex cells) over afferent units with the same preferred selectivity (feature) but

slightly different positions and scales (not shown). Here, we propose a simple extension of this idea to include a more general form of pooling, i.e., over a

transformation sequence of the preferred stimulus learned through visual experience. This pooling is done within feature columns which include different views of the

same feature learned from object transformation sequences. (B) Shown are the corresponding patterns of (column) activity for the original and the extended model.

(C) Sample stimuli used to probe the selectivity for MP (1MP−Base) vs. NAP (1NAP−Base) changes from a Base stimulus as done in Kayaert et al. (2003). Whereas the

original model fails to exhibit any sensitivity to NAP vs. MP changes (1NAP−Base ≈ 1MP−Base), the extended model exhibits greater tolerance to object

transformation through the “temporal pooling” mechanism and, as a result, greater sensitivity to NAP vs. MP changes (1NAP−Base > 1MP−Base ). Shown in red is the

hypothetical stimulus location driving the unit response.
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2. Materials and Methods

2.1. Video Database
We used a consumer-grade camera to collect short video
sequences (30Hz) with the aim to mimic object manipulations
(Figure 3). Everyday objects were placed in diverse environments
and the camera was moved slowly around the object to create
3–5 s long videos of the object undergoing a transformation
(combination of small translation, scaling, and in-depth
rotation). The video database included 12 common objects
routinely found in a dorm room with at least 20 video sequences
per category for a total of about 240 video sequences. For
each category, the object background, initial viewpoint, and
magnitude of the rotation was varied as much as possible.

2.2. The HMAX Model
Here, for convenience, we used a somewhat simplified
implementation of the HMAX, which includes only four
processing stages (Serre et al., 2007b). We only very briefly
review the model architecture as details of the implementation
have been described elsewhere (see Serre et al., 2007b; Serre,
2014, for details) and source code for the model is publicly
available at: http://serre-lab.clps.brown.edu/resources.

The HMAX model of object recognition combines a
hierarchical build-up of invariance and selectivity (inspired by
Fukushima, 1980) with the idea of multiple-views (view-based)
recognition of 3D objects (Riesenhuber and Poggio, 1999, 2000).
Over the years, several related hierarchical models have been
developed (Mel, 1997; Wallis and Rolls, 1997; LeCun et al.,

1998; Riesenhuber and Poggio, 1999; Ullman et al., 2002; Amit

and Mascaro, 2003; Wersing and Köerner, 2003; Masquelier and
Thorpe, 2007; Mutch and Lowe, 2008; Jarrett et al., 2009; Pinto
et al., 2011; Saxe et al., 2011).We focus here on theHMAX because
the underlying parameters of the architecture were explicitly
derived from available neuroscience data and because this was
the model originally tested for NAP modulation and compared
against IT data by Amir et al. (2012). Without loss of generality,
we expect related models to exhibit similar trends.

Each processing stage in the HMAX model is organized in
columns. Each column contains a complete dictionary of S unit
selectivities for that particular layer. For instance, a column in
the first S1 stage (modeled after simple cells in striate cortex; see
Lades et al., 1993, for an early system using Gabor filters for face
recognition) contains a complete range of orientation and spatial
frequency tuning and a column of S2 units (corresponding to
units in intermediate areas of the ventral stream of the visual
cortex) to a complete dictionary of shape-tuned units (see later).
Simple units pool over afferent units using a Gaussian-like tuning
operation. That is, the response y of a simple unit, receiving
the pattern of inputs x from the previous layer is given by y =

exp−γ ||w− x||2, where γ defines the sharpness of the tuning
around the preferred stimulus of the unit corresponding to the
weight vector w. These columns are then replicated at different
positions and scales, which is the key mechanism by which the
model gains its tolerance to 2D transformations (position and
scale) at the level of C units. The pooling operation at the level
of complex units is a max operation over afferent units. That is,
the response y of a complex unit from the previous layer is given
by y = maxj∈pool xj. The parameters governing the invariance
properties of the C units (i.e., the size of the pooling range over

FIGURE 3 | Representative frames sampled from a collected video database of everyday objects undergoing 3D transformations (i.e., combination of

translation, scaling, and in-depth rotation).
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position and scale) is constrained by available physiology data
(Serre et al., 2007a).

In the original model, the only learning that takes place
is at the level of the dictionary of S2 units. This is done
via an imprinting learning rule whereby during the training
procedure, units store patterns of neural activity associated with
the presentation of patches of natural scenes that are presented
in their receptive field (see Serre et al., 2007b, for details).
More sophisticated algorithms have been proposed for learning
intermediate visual features (e.g., Shams and von der Malsburg,
2002; Ullman et al., 2002; Masquelier and Thorpe, 2007; Hu
et al., 2014). Here, without loss of generality, we used the simple
imprinting learning rule to stay as faithful as possible to the
original model but it is expected that other algorithms would
yield qualitatively similar results.

2.3. Measuring NAP Selectivity
Here we conducted in silico experiments on the HMAX model
with the aim to mimic the experimental methods described in the
original studies (Kayaert et al., 2003; Amir et al., 2012) as closely
as possible. The stimulus set consisted in the 36 basic shapes
used in Kayaert et al. (2003). Each of the 36 stimuli exhibited
five level of variations along a single dimension: four metric
variations of increasing amplitude (denoted MP1–MP4) and one
non-accidental variation (denoted NAP). The NAP variation
was calibrated so that the resulting change from the base shape
(measured by the euclidean distance directly on pixel intensities)
was equal or less than the change associated with MP2.

Sample stimuli are shown on Figure 4. The NAP/MP percent
modulation for model units was computed using the same
formula as described in the original study by Kayaert et al. (2003):
(response basic shape—response to object variation)/(response
basic shape)∗100.

3. Results

We first reproduced the results by Amir et al. (2012)
demonstrating that the original HMAX failed to exhibit a greater
sensitivity for NAPs vs. MPs. We trained a baseline model with
the object video dataset (Section 2; Figure 3). As in the original
electrophysiology study, units were selected based on their
visual responsiveness to the base images in the stimulus dataset
used for electrophysiology (see Kayaert et al., 2003, for details)
which yielded 243 NAP-MP comparisons. For each model unit,
we computed the NAP and MP percent modulation for its
preferred stimulus (Section 2). Figure 5A shows the MP percent
modulation vs. NAP percent modulation for each unit in the
original model. We found an average of 20% NAP modulation,
compared to an average 22% MP modulation from the base
object. A wilcoxon signed-rank test confirmed no significant
NAP vs. MP modulation (p = 0.76). Overall, only 49% of the
units had a greater NAP modulation, as compared to the 63%
found in IT (Kayaert et al., 2003).

We then proceeded to extend the model to learning
invariances from transformation sequences. In the original
model, IT-like units are organized in feature columns whose

FIGURE 4 | Sample stimuli from the study by Kayaert et al. (2003). The column labeled BASE corresponds to a reference image. The column labeled NAP

corresponds to a transformation of the base image where an NAP was changed. MP1, MP2, MP3, and MP4 correspond to a transformation of the base image with

an MP of increasing magnitude.
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FIGURE 5 | Percent modulation of C2 units from the base image to MP2 vs. percent modulation of C2 units from the base image to NAP for (A) original

HMAX (B) the extended model.

selectivity is determined by a simple imprinting learning rule
(Section 2). Each feature column (C2 unit) is hard-coded by
considering afferent (S2) units tuned to the same preferred
feature but with receptive fields at different locations (and
scales), yielding a visual representation which is tolerant to 2D
transformations. However, no mechanism for invariance to 3D
transformations is present in the original model yielding a “salt-
and-pepper” organization of feature columns for changes in
viewpoint (Figure 2A).

Here, we extended the invariance pooling mechanism to
also include different views of a feature undergoing a 3D
transformation during a relatively small (∼300ms) time window.
This was done by considering feature columns which include
multiple units with a selectivity for different views of the same
feature occurring in close temporal proximity.

Visual responsiveness for this new set of C2 model units
was assessed as for the original model which yielded 159 NAP-
MP comparisons. As shown on Figure 5B, this model extension
yielded a dramatic increase in NAP vs. MP modulation with
an average 35% NAP modulation vs. a 24% MP modulation. A
Wilcoxon test showed a significant modulation for NAP vs. MP
(p < 0.01). We further observed that 71% of the newmodel units
were now more strongly modulated by a change in NAP vs. MP.
As seen in Figure 5B, the majority of data points now fell below
the diagonal, illustrating a greater sensitivity to NAP change.
Table 1 summarizes these findings and provides a comparison to
IT data reported in Kayaert et al. (2003).

Interestingly, we also found that learning transformation
sequences yielded a significant improvement in object
recognition classification accuracy over changes in viewpoint.
We used the scikit-learn toolbox (Pedregosa et al., 2011) to
train and test a multi-class linear SVM on the original and
extended model outputs using a random split procedure of
the video dataset (n = 15). The regularization parameter was
optimized using a cross-validation procedure. We found an
overall significantly higher accuracy for the extended model
(95.2 ± 2.1%, chance level: 8.3%) vs. the original model (85.6 ±

TABLE 1 | Comparison between IT Data (Kayaert et al., 2003), the original

as well as the extended HMAX.

% NAP % MP Sample Wilcoxon % units

Modulation Modulation size p-value NAP>MP

from base from base Modulation

IT Data 33 21–26 n = 243 p < 2e-06 63

Original HMAX 20 22 n = 243 p = 0.7645 49

Extended HMAX 35 24 n = 159 p = 1.2e-05 71

Sample sizes correspond to the number of NAP-MP comparisons as done in the original

study.

1.8%, p < 0.01) suggesting that the proposed unsupervised
invariance learning algorithm does indeed yield a model with
greater generalization to changes in viewpoint.

4. Discussion

We have described a simple extension of a hierarchical model
of object recognition (HMAX) which enables the network to
learn transformation sequences. The original model includes
mechanisms for building tolerance to 2D transformations
(position and scale). We have shown that the proposed extension
yields a model with better generalization capability for more
complex transformation sequences which also include 3D
rotations. Most importantly, we have shown that the resulting
model exhibits greater sensitivity for NAPs vs. MPs in better
agreement with IT data (Kayaert et al., 2003).

While our study has focused on the HMAX model, we
expect our main results to apply broadly to the general
class of feedforward hierarchical models (see Serre, 2014, for
review). Despite differences in their specific wiring and detailed
architecture, tolerance to object transformations in these models
arise from Hubel-Wiesel types of pooling mechanisms and we
thus expect our results to generalize to this broad class of
models. Similarly, we also expect different learning rules to
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yield qualitatively similar results. While the present learning rule
yielded NAP modulation in excellent agreement with IT data, it
remains an open question whether other learning rules would
provide similar or better fit to data.

Overall, our study suggests that the greater sensitivity
for NAPs over MPs, as reported in several behavioral and
electrophysiological studies (see Biederman, 2007, for review)
may be driven by computational mechanisms for invariant object
recognition.
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