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Experimentally mapping synaptic connections, in terms of the numbers and locations of

their synapses and estimating connection probabilities, is still not a tractable task, even

for small volumes of tissue. In fact, the six layers of the neocortex contain thousands

of unique types of synaptic connections between the many different types of neurons,

of which only a handful have been characterized experimentally. Here we present a

theoretical framework and a data-driven algorithmic strategy to digitally reconstruct

the complete synaptic connectivity between the different types of neurons in a small

well-defined volume of tissue—the micro-scale connectome of a neural microcircuit.

By enforcing a set of established principles of synaptic connectivity, and leveraging

interdependencies between fundamental properties of neural microcircuits to constrain

the reconstructed connectivity, the algorithm yields three parameters per connection

type that predict the anatomy of all types of biologically viable synaptic connections.

The predictions reproduce a spectrum of experimental data on synaptic connectivity not

used by the algorithm. We conclude that an algorithmic approach to the connectome

can serve as a tool to accelerate experimental mapping, indicating the minimal dataset

required to make useful predictions, identifying the datasets required to improve their

accuracy, testing the feasibility of experimental measurements, and making it possible to

test hypotheses of synaptic connectivity.

Keywords: neocortex, algorithm development, connectome mapping, synaptic transmission, in silico,

somatosensory cortex, cortical circuits

Introduction

The connectome is a key determinant of the computational capability and capacity of the
brain (Chklovskii et al., 2004; Hofer et al., 2009; Seung, 2012). In a spatial region where all
local neurons can potentially interact monosynaptically, the activity of each individual neuron
is shaped by the spatio-temporal pattern of activation of its input synapses, and its impact
on other neurons is determined by the synapses it forms on its many targets. Mapping
neurons’ input and output synapses is therefore fundamental to understanding their function
in neural microcircuitry, and ultimately, the functional role of each type of neuron in the
brain. However, mapping all the synapses formed between all the neurons in the brain is still
a technically insurmountable challenge, which becomes even more extreme if one considers the
importance of variations between individuals, species, and genders, and the changes associated
with different stages of development. Furthermore, while electronmicroscopy (EM) combined with
automated or semi-automated reconstruction techniques (Denk and Horstmann, 2004; Chklovskii
et al., 2010; Kleinfeld et al., 2011) makes it possible to characterize the anatomy of synaptic
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connections in increasingly large volumes of neural tissue,
no currently available technique can characterize the synapses
formed by neurons belonging to different electrophysiological
types.

There is a long tradition of studies exploring the statistics
of connectivity in an attempt to identify general organizing
rules that predict connectivity. Early findings that thalamus
innervates layer 4 of the cortex without targeting specific neuron
types (Peters and Feldman, 1976; Peters et al., 1979) have been
generalized in rules stating that connections are untargeted, that
the fraction of axo-dendritic appositions forming synapses is
constant, and that most connections are formed of only one
synapse (Braitenberg and Schüz, 1998; Braitenberg, 2001). Early
attempts to predict intracortical connectivity, using these rules,
did not take account of the specific morphology of axonal and
dendritic arborizations and, while later approaches improved on
these attempts by using reconstructed arbors, they still concluded
that most connections consist of a single synapse (Hellwig, 2000).
However, all studies of synaptically coupled pairs of neurons in
the neocortex report multiple synapses (Deuchars et al., 1994;
Markam et al., 1997; Markram et al., 2004; Feldmeyer et al.,
1999, 2006; Reyes and Sakmann, 1999; Wang et al., 2002; Silver
et al., 2003; Silberberg and Markram, 2007; Frick et al., 2008),
and (Shepherd et al., 2005) found that the mean number of
synapses between cell pairs is proportional to the axo-dendritic
overlap. Fares and Stepanyants (2009) have therefore proposed
an algorithm that includes a step to explicitly remove structurally
weak connections (i.e., connections with too few synapses).

These studies were handicapped by the lack of data on the
cellular composition of neural tissue (i.e., neuron densities and
the proportions of neurons belonging to different morphological
types or m-types). However, a recent draft digital reconstruction
of a neural microcircuit (height: 2082µm; diameter: 460µm),
in the somatosensory cortex of a P14 Wistar rat, identifies 55
layer-specific and morphologically distinct types of neurons, as
well as 207 morpho-electrical types (Markram et al., 2015). This
implies that there could be as many as 3025 (552) unique types of
connections between neurons belonging to different m-types and
42,849 (2072) between morpho-electrical types, of which only a
negligible number have been experimentally characterized. The
reconstruction also provides an estimate of the total number of
neurons (∼32,000), and the layer-wise densities and numbers for
each type of neuron—its neuronal composition.

On the assumption that the neuronal morphologies and
neuronal composition are complete, we developed a theoretical
framework and a data-driven algorithm to predictively
reconstruct the micro-scale connectome. The algorithm
implements established principles of connectivity (e.g., all
connections in neocortex involve multiple synapses, synapse
locations are largely determined by the incidental apposition
between neuronal arbors) and leverages interdependencies
between fundamental microcircuit properties (e.g., numbers
of synapses/connection, bouton densities) to constrain its
predictions. The algorithm is also based on a set of logical
arguments that can be invoked when the neuronal composition
is provided: (1) Since all possible postsynaptic targets are present,
all synapses formed between the neurons of the microcircuit

(intrinsic synapses) are also necessarily present; (2) since the
total number of synapses can be estimated from the number of
boutons, the bouton densities reported experimentally constrain
the number of synapses on individual neurons, and ultimately
in the whole microcircuit. These facts create interdependencies
in the connectivity between different types of neuron. In other
words, the number of synapses formed on one type of neuron
constrains the synapses that can be formed on other types,
creating a multi-constraint problem: the algorithm has to derive
the numbers of connections and synapses between all types of
neuron simultaneously—a Sudoku-like approach.

Here we describe the derivation and validation of the
algorithm. The interdependencies described above, combined
with additional insights into the properties of the microcircuit,
make it feasible to predict the micro-scale connectome from
sparse experimental data (also see Egger et al., 2014). A first
draft predicted connectome using this algorithm is presented in
Markram et al. (2015). The predicted connectome contains 7.8
million connections and 36 million synapses.

Results

A Theoretical Framework for Microcircuit
Connectivity
We identified five fundamental anatomical properties
of microcircuit connectivity and developed a theoretical
framework that describes their interdependencies and facilitates
simultaneous derivation of the connectivity between all neurons.
The first property is the neuron density in each layer and for
each morphological type (Cd). An increase in the density of a
certain type of neuron potentially affects the connectivity of the
whole microcircuit. Increased density implies increased neuron
numbers. Thus, maintaining the same level of connectivity to
neurons of that type requires more axons and/or higher bouton
densities, and maintaining the same connectivity from neurons
of that type implies an increase in the density of the synapses
they form on postsynaptic targets. This would in turn reduce the
space available for extrinsic synapses formed by afferent axons
from outside the microcircuit (i.e., it would increase the fraction
of synapses between the neurons; intrinsic synapses). The second
fundamental property is the total length of the axons formed
by neurons of specific types, which connect to other neurons
within the microcircuit (Al)—a key factor in determining the
number of appositions and synapses that can be formed. The
third fundamental property is the density of boutons (Bd) on
the axons of each type of neuron, which determines how many
synapses can form for a given Al. Together with Al and the
number of synapses per connection, Bd also determines the
range for the total number of connections that a neuron can
form and creates interdependencies between all neuron types.
For example, with constant Bd, any increase in connectivity to
one type of neuron must be compensated by a reduction in the
number of connections to other types. The fourth fundamental
property is the mean number of synapses per connection (Sm)
for each connection type (connections between pairs of neurons
belonging to specified morphological types). This scales the
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number of target neurons that can be contacted by a presynaptic
neuron with a given number of boutons. An important related
property is the standard deviation of the number of synapses
per connection (Ssd), which reflects the biological variability
of anatomical strength of connections. The fifth property is
the connection probability for each type of connection (Cp).
Together with Cd, this property determines the total number of
connections formed by a neuron and the Sm required to reach
the correct Bd.

The dependencies are illustrated qualitatively in Figure 1A.
If we define Ĉd as the integral of neuron density (Cd) over the
spatial extent of the axonal arborization of a presynaptic neuron
type (i.e., total number of potential target neurons), and Ĉp as the
mean of the soma-distance-dependent connection probability
(Cp) over the same extent, then the dependencies between the
properties are expressed by:

∑

b∈M
Sm

〈
a, b

〉
· Ĉp

〈
a, b

〉
· Ĉd

〈
b
〉
= Al 〈a〉 · Bd 〈a〉, (I)

where
〈
a, b

〉
refer to the pre and postsynaptic morphological

types, andM to the set of all types in the reconstruction.
Since the neuronal composition is given, the values for Cd

and Al are fixed (Markram et al., 2015). Previous experimental
studies provide sparse data for the remaining three microcircuit
properties (Bd, Sm,Cp). Combined with the principles just
described, the interdependencies between these properties make
it theoretically feasible to use sparse data for a few types of
connections to constrain the solution for all types. Thus:

∑

b∈U
Sm

〈
a, b

〉
· Ĉp

〈
a, b

〉
· Ĉd

〈
b
〉

= Al 〈a〉 · Bd 〈a〉 −
∑

b∗∈K
Sm

〈
a, b∗

〉
· Ĉp

〈
a, b∗

〉
· Ĉd

〈
b∗

〉
, (II)

where the set of all morphological types is separated into one
set, whose properties are unknown (b ∈ U), and a second set
where they are known (b∗ ∈ K). However, this formulation on its
own provides predictions only for the sum of the product of all
unknown Sm and Ĉp. Assuming no specificity for any particular
b ∈ U, Peters’ rule can be used to split the sum into predictions
of the Sm · Ĉp product for individual b ∈ U. However, predicting

Sm and Ĉp separately requires further information (see below).

Established Principles of Connectivity
In a neocortical microcircuit, the arbors of the majority of
neurons overlap, coming into close contact with most other
neurons, and providing nearly all-to-all potential connectivity,
at least within a given layer (Kalisman et al., 2005). We refer
to points of contact between neurons as appositions, defined
as contacts where the distance (a touch distance) between the
neurons is less that the maximum distance (see also Hill et al.,
2012) that can be bridged by a spine on the postsynaptic neuron,
the swelling of a bouton on the axon, and minor bending of
the axon (i.e., no directed axonal growth is required to form
the contact (Silver et al., 2003; Karube et al., 2004; Kawaguchi,
2005, for reviews see Somogyi et al., 1998; Nimchinsky

FIGURE 1 | A connectome selected from incidental appositions is

constrained by connectivity measures and circuit parameters. (A)

Logical dependencies between connectivity metrics in a pathway. Green edges

indicate that when one metric increases, the other also increases, provided the

rest remains unchanged, vice versa for red. Metrics are: Bouton density (Bd ),

connection probability (Cp), mean number of synapses per connection (Sm),

cell density (Cd ) and axonal length (Al ). (B) Part of the unitary microcircuit after

all morphologies are placed (5% cell density shown). The resulting high density

of fibers leads to a myriad of pairwise morphological appositions.

Magnification: Example of a pair of morphologies with all 12 axonal appositions

between them highlighted. (C) Resulting connection probabilities for neuron

pairs within 100µm of each other (horizontal distance between somas) in all

types of pathways, if a synapse was placed at every single apposition.

et al., 2002; Stepanyants and Chklovskii, 2005; Sala and Segal,
2014). A previously developed supercomputer-based application
(Kozloski et al., 2008) was used to identify all appositions in
the digitally reconstructed microcircuit (Figure 1B). Defining a
maximal touch distance of 2.5µm for excitatory and 0.5µm
for inhibitory synapses, we found ∼600 million appositions,
and the same, nearly all-to-all potential connectivity within a
layer observed in experiments (Figure 1C). The first rule of
connectivity is, therefore, that virtually all neurons within a
layer of a microcircuit are potentially connected—a tabula rasa
rule. The next step for the algorithm is to identify a subset
of these appositions that can form biologically viable synaptic
connections.
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Biologically, synapses can only form at appositions. However,
in the reconstruction, digitally reconstructed neurons are placed
randomly in the same 3D volume, and it was not clear
whether this procedure could accurately reproduce synapse
locations in biological tissue. A recent study resolved this
issue, demonstrating that, provided the vertical orientations and
layer placement of neurons are respected, this procedure does
indeed reproduce the statistical distributions of synapse locations
observed in biological studies (Hill et al., 2012), and that synapse
locations on dendrites are invariant with respect to the specific
exemplar morphologies used. The second rule thus states that the
location of synapses is established by the incidental appositions of
semi-randomly placed neurons—the synapse location rule. This
rule implies that the algorithm does not need to specifically align
neurons to reproduce the biological locations of synapses. There
are two important exceptions: (1) excitatory axons never form
synapses on excitatory somata; (2) only Chandelier axons form
synapses on axons of other neurons (Somogyi et al., 1982, 1998;
DeFelipe, 1999; Szabadics et al., 2006). The algorithm implements
these exceptions by prohibiting the formation of excitatory
synapses on excitatory somata, and by allowing Chandelier axons
to form synapses exclusively on the axonal initial segments of
pyramidal neurons.

Given these two rules, one approach would be to derive the
connectivity based purely on appositions. However, when we did
so, we found that the predicted density of synapses on axons
was considerably higher (> 3µm−1 for most m-types, Table 2)
than reported bouton densities (≈ 0.2µm−1, Wang et al.,
2002; Romand et al., 2011). In fact, converting all appositions
to synapses would lead to densities approximately 18 times
higher than the value observed in biology. Thus, conversion of
all appositions to synapses would violate Equation (I). Earlier
studies had also observed that a connectome, in which all axo-
dendritic appositions become synapses, would be massively over-
connected and proposed that, while each apposition is a potential
synapse, actual synapses form at only a fraction of them—
the filling fraction (Stepanyants et al., 2002; Stepanyants and
Chklovskii, 2005). We therefore use this finding as the third
rule—the fractional conversion rule.

Simple Apposition Pruning Cannot Account for
Synapse Numbers
As a first attempt to implement the fractional conversion rule, we
applied Peters’ Rule, which has been used extensively to predict
connectivity frommorphology (Peters and Feldman, 1976; Peters
et al., 1979; Braitenberg and Schüz, 1998; Braitenberg, 2001;
Stepanyants and Chklovskii, 2005). This rule proposes that
the actual number of synapses along a dendrite is a constant
fraction of the number of potential synapses. The simplest
way of implementing the rule would be to select a fraction
of potential synapses randomly, converting each into an actual
synapse with a constant, independent probability. We therefore
set this probability to the estimated overall Bd (0.2µm

−1), divided
by mean Bd, based on potential synapses (4.7µm−1). One can
only expect to reach this full biological density, if axons are fully
utilized to form synapses. In the reconstruction, this was only
true if all postsynaptic targets were present (i.e., all dendrites

and somas were fully represented). Even though the neuron
densities were provided and validated in the accompanying
study (Markram et al., 2015), we tested the prediction by
comparing the volume of the neuropil occupied by dendrites
in the reconstruction with the volume found in EM studies.
Dendrites occupied 35% of the volume (Figure 2A), which
compares reasonably well with the 33% reported previously in
Hippocampus (Mishchenko et al., 2010). The validity of the
volume comparison requires that the digitally reconstructed
neurons accurately capture dendritic diameters. Comparison
showed that the digitally reconstructed diameters provide a
reasonable match to previous results and that previous estimates
fell within the range of the results in the reconstruction (Romand
et al., 2011; Figure 2B). Diameters of hippocampal dendrites
measured in EM also matched the reconstruction (not shown,
Mishchenko et al., 2010). We therefore conclude that using
reported biological Bd in Equation I is a good first approximation.

Randomly removing a fraction of potential synapses (i.e., of
appositions) in this manner reduced the density of potential
synapses to biological levels, but also reduced Cp and Sm
(Figures 3A1,A2). This produced a unimodal distribution for
the numbers of potential synapses between pairs of neurons,
in which most connections only had one potential synapse (see
also Hellwig, 2000). Such a distribution contradicts experimental
findings, which show that the distribution of synapse numbers is
bimodal, i.e. that about 90% of neuron pairs are not connected
(see also Bienenstock et al., 1982), and that the remaining pairs
are always connected by multiple synapses (Deuchars et al., 1994;
Markam et al., 1997; Markram et al., 2004; Feldmeyer et al.,
1999, 2006; Reyes and Sakmann, 1999; Wang et al., 2002; Silver
et al., 2003; Silberberg and Markram, 2007; Frick et al., 2008).

FIGURE 2 | Validation of volumetric dendrite densities. (A) Fraction of the

volume occupied by dendrites in a reconstructed microcircuit, surrounded by

neighboring microcircuits on six sides. Contributions from cells residing in

different layers are indicated by different shades of blue. Contributions from the

surrounding microcircuits are stacked in different shades of green. Red solid

horizontal lines indicate biological volume fractions in hippocampus

(Mishchenko et al., 2010). (B) Distribution of diameters of basal dendrites of

L5_TTPCs. Blue bars: reconstruction for (dark) terminal and (light) intermediate

segments, squares and dashed lines indicate the mean; red circles: mean

values for P14 of Romand et al. (2011).
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FIGURE 3 | Simple approaches to filtering of potential synapses do not

reproduce biological connectivity. (A) Comparing the results of a simple

random pruning of potential synapses to biological data: Potential synapses

were removed with a uniform, independent probability, otherwise an actual

synapse is allowed to form. (A1) Resulting connection probabilities, (A2)

resulting mean number of synapses per connection (maximal distance

100µm). Markers indicate the type of pathway, red triangle: excitatory, blue

semicircle: inhibitory. Left side indicates the type of the presynaptic m-type,

right side indicates the postsynaptic m-type. Gray, dashed line indicates the

identity (x = y). (B) Connection probability (B1) and synapse numbers (B2) in a

network of L5_TTPC2 neurons (maximal distance 100µm) based on potential

synapses when the maximal reach of potential synapses is changed. Bars

indicate means, error bars standard deviations. (C) Comparing connectivity

based on all potential synapses to biological data. (C1) Resulting connection

probabilities, and (C2) mean number of potential synapses per connection.

Markers and gray line as in (A). Black, dashed lines indicate the fits used to

predict the mean number of synapses.

Therefore, the fourth rule states that connections always involve
multiple synapses—the multi-synapse rule. To enforce this rule,
the algorithm prunes connections with too few potential synapses
(see below).

We also attempted to reach biological Bd values by enforcing
stricter rules with respect to what constitutes a potential synapse,
i.e., by reducing the maximal reach of a potential synapse, its
touch distance, toward 0µm. This procedure reduced the number
of potential synapses to a level compatible with biological bouton
densities, but also led to significant changes in Cp (Figure 3B1)
and Sm (Figure 3B2), with lower touch distances leading to a
small decrease inCp and a large decrease in Sm. In brief, it failed to
reproduce biological connectivity, which is characterized by low
Cp and high Sm.

The simple implementation of Peters’ Rule and the reduction
in the touch distance both led to results that violated the multi-
synapse rule. This indicates that neither is a valid solution for
pruning appositions. Although both approaches produce valid
solutions for Equations (I) and (II), and both yield correct values
for the product Sm · Ĉp, in both cases, Sm itself is too low.

General, Multi-synaptic, and Plasticity-reserve
Pruning
Fares and Stepanyants have proposed a two-step process which
implements the fractional conversion rule while maintaining the
multi-synapse rule (Fares and Stepanyants, 2009). The first step
is similar to the simple implementation of Peters’ Rule described
above, again starting with a potential synapse at each apposition
and randomly removing a fraction of them; the second selectively
removes all connections with a low number of potential synapses.
However, this approach cannot determine the mean number of
synapses for unknown connection types, and cannot, therefore,
be generalized to the wholemicrocircuit. It also does not use Bd or
Cp as constraints. This means it cannot exploit interdependencies
in the parameters to constrain the solution.

Although our estimate of Cp based on all potential synapses
was approximately five times higher than the biological Cp,
we nonetheless found a strong correlation between these
probabilities and previously reported connection probabilities for
different types of connection (Figure 3C1; r = 0.88, p < 0.01,
N = 13). Similarly, while Sm based on all potential synapses
was consistently much lower than in experiments, the number
of potential synapses and the number of reported synapses per
connection were also correlated (Figure 3C2; p < 0.01, r = 0.78,
N = 38), with two distinct relationships, one for excitatory
to excitatory connections, and one for all other connection
types (Figure 3C2). Minimizing the sum of absolute errors, the
optimal linear fit to the E→E data was Sm = 1.5 · Sstrucm , where
Sstrucm is defined as the mean number of potential synapses per
connection. For other types, we optimized a general square root
function which yielded Sm = 9 ·

√
Sstrucm − 1 − 2. This indicates

that the numbers of potential synapses, at appositions between
different types of neurons, carry information about the number
of connections and synapses they form.We used this information
to modify the approach of Fares and Stepanyants (2009) in a
number of ways.

Using data for the well-characterized connections formed
between layer 5 thick-tufted pyramidal neurons (Markam et al.,
1997) as a benchmark, we found that the distribution of the
number of potential synapses per connection in the reconstructed
microcircuit was much wider than the distribution of actual
synapses per connection, observed experimentally (Figure 4A;
potential synapses in gray, experimental values in red). In other
words, the SD of the number of synapses per connection (Ssd)
was considerably larger. This was because the reconstruction
displayed an excess, both of connections with too few potential
synapses (left side of the distribution), and of connections with
too many (right side). This was true for all connection types that
have been characterized experimentally (not shown). Therefore,
the first step in the algorithm randomly eliminated potential
synapses until the right side of the distributions matched the

Frontiers in Computational Neuroscience | www.frontiersin.org 5 October 2015 | Volume 9 | Article 120

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Reimann et al. Predicting the connectome

FIGURE 4 | Schematic of the three pruning steps. For an exemplary pathway (L5_TTPC2 to L5_TTPC2), we show how the distributions of inter-bouton intervals

(IBI, inverse of bouton density), synapses per connection and connection probability are matched after three pruning steps. (A) Connectivity based on all potential

synapses (i.e., appositions) is characterized by short IBIs, an extremely wide distribution of potential synapses per connection, and almost 100% connection

probability. Top: An exemplary L4_PC surrounded by 3 LBCs with all potential synapses highlighted. (B) Randomly removing a fraction (1− f1 ) of potential synapses

removes the right hand side of the distribution of synapses per connection. Top: This removes a fraction of potential synapses in all three connections. (C) Removing

connections formed by too few potential synapses also culls the left hand side, but inter-bouton intervals are still too short. Top: The panel shows the removal of one

complete connection that does not have the required number of potential synapses. (D) The last step randomly removes more connections, leading to correct

inter-bouton-intervals and connection probabilities only slightly below reported values emerge. Top: One of the two remaining connections is (randomly) removed.

biological data, where available, and predicted Ssd (see below)
where they were not (Figure 4B). The first parameter of the
algorithm—f1—is thus the fraction of potential synapses that
remains in an m-type to m-type specific connection after general
pruning. Based on the finding that the number of potential
synapses per connection always follows a geometric distribution

(P
(
n = k

)
=

(
1− p

)k−1 · p, see Figure 4A; van Ooyen et al.,
2014; but see Fares and Stepanyants, 2009), f1 can be calculated
from Ssd as follows (for detailed derivation see Methods):

p′ = 1

Ssd + 0.5
, (IIIa)

f1 =
p

1− p
· 1− p′

p′
. (IIIb)

The second step pruned all potential synapses belonging to
connections with too few potential synapses to match the left
side of the biological distribution (Figure 4C, see Methods).
The second parameter of the algorithm, µ2, therefore defines
the placement of a sigmoidal cutoff function for multi-synaptic
pruning, which can be calculated from Sm and Ssd, using the
expression (for detailed derivation see Methods):

µ2 = 0.5+ Sm − Ssd. (IV)

With the correct values of f1 and µ2, both Sm and Ssd matched
biological data, where available, and predicted values where they
were not. However, the values for Bd were still approximately four
times higher than the biological values, even after accounting for
the fact that a fraction of boutons form multiple synapses (Bopp
et al., 2014). Additionally, if all remaining potential synapses
were converted to synapses, there would be no room for rewiring
of the microcircuitry. This would contrast with experiments
on pyramidal neurons which have found a near doubling of
connection probabilities following stimulation (Chklovskii et al.,
2004; Lamprecht and LeDoux, 2004; Le Be and Markram, 2006;
Neves et al., 2008; Holtmaat and Svoboda, 2009; Wilbrecht et al.,
2010). The same experiments suggest that at most half of the
possible multi-synapse connections are functionally active, and
that the rest serve as a reservoir for rewiring plasticity. The
synapse location rule implies that rewiring has no effect on the
distribution of synapse locations. The fifth rule therefore states
that only a fraction of potential multi-synapse connections are
functionally realized—the plasticity reserve rule. Guided by this
finding, we added a third pruning step, in which we randomly
removed a fraction of the potential multi-synapse connections
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found after the second step (for the L5_TTPC pathway, the
fraction was 0.19). The third parameter—a3–was therefore the
fraction of potential multi-synapse connections retained after
plasticity-reserve pruning. This can be calculated from m-type
specific Bd values as shown below (for detailed derivation see
Methods):

a3 =
Bd

B2
, (V)

where B2 refers to the bouton density for a given m-type if all
potential multi-synapse connections were retained.

After this step, the reconstruction not only matched reported
biological Bd, but also reported biological distance-dependent
connection probabilities for pyramidal neurons (on average 85%
of the reported biological level, Figure 4D; lowermost graph,
Perin et al., 2011). The finding that over 50% of multi-synapse
connections were held in reserve, is consistent with the doubling
of Cp following stimulation of the microcircuit, reported for this
type of connection, (Le Be and Markram, 2006).

Validation and Robustness of the Algorithm
The algorithm does not directly use biological data to prune
potential synapses. Instead, they are pruned using the three
parameters just described, which capture the interdependencies
between Bd, Sm, and Cp and can therefore be derived using

variable amounts of biological data. The algorithm allows for the
use of biological data to directly specify the three parameters
for connection types where data is available (the biological
parametrization approach), and predict the three parameters
for each connection type where they are not (the derived
parametrization approach).

Given the extremely large parameter space and number
of appositions (∼600 million), the computational cost of
iterative parameter optimization would be prohibitive. However,
calculating a set of parameters for each m-type specific
connection type from unpruned appositions yields a unique
solution for each connection type without iteration. Values for
individual neuron to neuron connections can then be derived
statistically from these solutions.

The derivation of the parameters and the three step pruning
process were validated against known biological data. A search
of the literature for rat somatosensory cortex found only 38
m-type specific connection types where Bd, Sm, and Ssd have
been measured experimentally, and 14 with estimates for Cp

(see the accompanying paper, Markram et al., 2015). When we
ran the algorithm on the whole microcircuit, we found a near
perfect match between the number of synapses per connection in
the reconstruction and the available biological data (Figure 5A;
purple diamonds), and no statistical evidence for any mismatch
(Table 1). We also observed no statistically significant differences

FIGURE 5 | Biological synapse numbers and bouton densities recreated for different touch distances. (A) Resulting mean number of synapses per

connection in pathways, where available biological data on mean and standard deviation of synapse numbers as well as bouton densities are used to fully constrain

algorithm parameters. Results for different values of the maximal reach of potential synapses (touch distance): Stars: 0.75µm; triangles: 1.25µm; diamonds: 2.5µm;

circles: 3.75µm. Mean values compared to biological values in Table 1. (B) Same for the bouton densities of individual m-types. Mean values compared to biological

values in Table 3. (C) Box-plots of the parameter values determined by the biological parameterization procedure for inhibitory to excitatory (I → E), excitatory to

inhibitory (E → I), inhibitory to inhibitory (I → I), and excitatory to excitatory (E → E) pathways and different touch distances (left to right). Markers indicate the median,

thick lines the 25 and 75% percentiles and thin lines the full data spread.
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between the bouton densities of the axons of presynaptic m-types
and the available biological data (Figure 5B; purple diamonds;
see Methods). We conclude, at this stage, that the algorithm can
be applied to any connection type for which biological data is
available. This validates the equations for the derivation of the
parameters and the simultaneous derivation of connectivity for
multiple connection types.

To explore the robustness of the algorithm, we tested its
sensitivity to changes in the touch distances used to define
potential synapses (Figure 5A, different colors). By changing the
touch distance from 0.75 to 3.25µm, we found that the resulting
numbers of synapses per connection, after pruning, were less
sensitive to changes in the touch distance than the numbers of
potential synapses per connection that went into the algorithm.
This was because the algorithm could maintain the number of
synapses per connection by adjusting parameters, increasing f1
(i.e., less general pruning) and/or increasing µ2 (i.e., more multi-
synapse pruning). Furthermore, the algorithm could still achieve
biological Bd by increasing a3, although if a3 became too large,
this could lead to violation of the plasticity reserve rule. With
many connection types, it was impossible to fully reproduce the
values of the biological properties using amaximal touch distance
of 0.75µm and, for a few, it was still impossible with a distance of
1.25µm (Figure 5B, Tables 1, 2). These failures were due to the
lack of sufficient potential synapses to solve the multi-constraint
problem. This made it necessary to assign different priorities
to the properties the algorithm had to reproduce. For the data
in Figure 5, we gave the highest priority to Sm, then Ssd, with
Bd last. Consequently, reproduction of biological values failed
in the inverse order. When the algorithm failed to reproduce
biological values for a property, the relevant parameter reached
its maximum allowed value (Figures 5B,C, right). Thus, a value
of 1.0 for a3 indicates that reaching biological bouton density
would require all available multi-synapse connections, or even
more. However, the plasticity reserve rule states that a3 <<

1. When the maximal touch distance used to define potential
synapses was set to 0.75µm, 17 connection types violated
this condition. At 1.25µm, only two violations were observed.
At distances of 2.5µm and above, all 38 tested connection
types satisfied the condition. This finding suggests that the
required optimal touch distance for defining potential synapses
is∼2.5µm.

In the case of f1, we observed very wide distributions of
values between major classes of connection (I–I—inhibitory
to inhibitory, I–E—inhibitory to excitatory, E–I—excitatory
to inhibitory, E–E—excitatory to excitatory; Figure 5C, left)
and even within classes. In contrast, µ2 values were tightly
distributed, and only varied slightly with touch distance
(Figure 5C, central panel). With moderate reductions in touch
distance, the algorithm can solve the multi-constraint problem
by applying less pruning (i.e., by increasing f1). Only when f1
had already reached its maximal value of 1, was it necessary
to increase multi-synapse pruning (i.e., to increase µ2). This
led to estimates for the minimal number of synapses needed to
stabilize a connection in a given connection class. The estimate
was significantly higher for inhibitory (12.52 for I–I, 13.82 for
I–E) than for excitatory connections (6.56 for E–I, 3.50 for

E–E), a finding that matches the experimental data (for example
compare Markam et al., 1997; Markram et al., 2004; Silberberg
and Markram, 2007). Together, these results show that it is
impossible to use a single set of parameters for all connection
types, although it may be possible for types within one of the
major classes. Fares and Stepanyants found that a single set of
parameters leads to good matches for the three E–E connection
types they studied. These findings match our own. On the other
hand, Shepherd et al. (2005) found that the ratio of the functional
to “geometrical connection strength” (i.e., axo-dendritic overlap)
for a number of trans-laminar E–E connection types depended
on the layers involved and even on the position of cells in a barrel.
This seems to indicate that different sets of parameters might be
needed to relate structure to function in these cases. However, the
functional connection strength they measured also depended on
the strength of individual synapses (synaptic weight), and was not
a measure of synapse numbers alone.

Validity of the Predicted Connectivity
To test the possibility of predictingmicrocircuit properties purely
from appositions, we used predicted values for each of the
microcircuit properties (the derived parametrization approach),
without using connection specific biological data. For Sm we
relied on the relationship between potential synapses (i.e.,
appositions) per connection and synapses per connection, as
shown in Figure 3C. While Equation II alone could only yield
a result for the product Sm · Ĉp, this new finding makes it
possible to separately predict the two values. We also relied
on the finding that the distribution of synapses per connection
was typically narrow (mean c.v. of 0.32 for available biological
data). We could then use the coefficient of variation for the
biological data, combined with the predicted Sm, to predict
Ssd. For Bd we used an average value (0.2µm−1, see Table 2;
Methods). Although distance has a profound effect on the value
of the Cp, relatively few studies normalize their estimates with
respect to this parameter (Markam et al., 1997; Holmgren et al.,
2003), and fewer still provide a distance-dependent profile (Perin
et al., 2011). This means that the available biological data for
Cp is largely unusable for this algorithm. We therefore decided
that the algorithm should not rely on biological estimates of
Cp. Instead we predicted Cp using the predicted value of Sm
(see Equation I).

We tested the derived parametrization for connection types
with previously reported values for Sm (Figure 6A), finding a
highly significant match (r = 0.87, p < 0.01, N = 38). This is
an indication that it is possible to accurately and simultaneously
predict Sm for multiple connection types. Only three of the 38
connection types (see Table 1) displayed statistically significant
differences (p < 0.05) between predicted and biological values.
Synapse numbers were overestimated for excitatory connection
types onto one type of basket cell and underestimated for the
connection from L4 spiny stellate cells onto L2/3 pyramidal cells
(see Table 1).

In this approach, we replaced connection type specific bouton
densities with the overall mean bouton density (0.2µm−1). Under
these conditions, mean values for individual m-types correlated
poorly with known biological values (Figure 6B, r = 0.38, p =
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TABLE 1 | Mean number of appositions or synapses per connection for different touch distances.

Pathway All Pruned Predictive Bio

From To 2.5µm 0.75µm P 1.5µm P 2.5µm P 3.75µm P 2.5µm P

L23_BTC L23_PC 3.43 15.0 0.50 15.9 0.27 16.6 0.21 17.4 0.20 13.3 0.38 15.06

L23_LBC 4.12 15.0 0.39 16.3 0.25 16.7 0.25 17.3 0.25 16.0 0.64 14.56

L23_MC 3.05 11.2 0.48 11.7 0.31 12.1 0.24 12.7 0.21 11.5 0.81 11.211

L23_NBC 3.78 15.6 0.45 16.6 0.32 17.3 0.25 18.7 0.20 14.4 0.50 15.86,13

L23_SBC 4.95 20.2 0.43 21.6 0.31 22.8 0.21 24.8 0.17 18.3 0.44 20.56

L23_PC L23_PC 2.01 2.8 0.45 2.8 0.47 2.9 0.49 2.8 0.44 3.1 0.63 2.91

L23_LBC 2.16 7.8 0.15 7.9 0.14 8.5 0.08 8.3 0.15 8.5 0.10 7.16

L23_NBC 2.09 3.8 0.27 3.8 0.28 3.9 0.26 3.7 0.32 8.0 0.00 3.46,13

L23_LBC L23_LBC 4.20 13.7 0.28 15.0 0.23 14.8 0.54 15.6 0.24 17.6 0.25 12.312

L23_SBC 5.25 14.4 0.24 15.2 0.24 14.9 0.53 15.6 0.24 20.3 0.12 12.312

L23_LBC L23_SBC 4.02 13.2 0.34 14.4 0.25 15.0 0.55 15.7 0.26 16.0 0.35 12.312

L23_SBC 4.79 13.8 0.26 14.9 0.23 15.4 0.49 15.7 0.23 18.9 0.16 12.312

L4_BTC L4_PC 3.67 15.1 0.46 16.3 0.23 16.6 0.45 18.1 0.17 14.8 0.91 15.06

L4_LBC 4.12 15.1 0.37 16.0 0.28 16.2 0.58 16.9 0.27 15.0 0.87 14.56

L4_MC 3.64 11.4 0.40 11.9 0.28 12.3 0.53 12.4 0.24 14.4 0.06 11.26

L4_NBC 5.34 16.5 0.33 17.5 0.25 18.0 0.50 18.5 0.22 19.0 0.35 15.86,13

L4_SBC 5.65 21.4 0.33 22.7 0.23 23.9 0.40 24.4 0.21 19.7 0.83 20.56

L4_PC L4_LBC 2.24 7.7 0.20 7.9 0.16 7.9 0.34 7.9 0.20 8.3 0.15 7.16

L4_NBC 2.24 3.9 0.25 3.8 0.31 3.8 0.59 3.7 0.33 8.3 0.00 3.46,13

L4_LBC L4_LBC 4.31 13.9 0.28 14.0 0.29 14.1 0.61 14.6 0.29 15.2 0.36 12.312

L4_SBC 6.06 14.1 0.29 14.5 0.29 14.8 0.54 14.6 0.27 20.8 0.13 12.312

L4_LBC L4_SBC 4.14 13.4 0.31 13.6 0.31 14.7 0.53 14.3 0.29 16.3 0.38 12.312

L4_SBC 5.84 13.7 0.32 14.0 0.32 13.6 0.71 14.4 0.30 20.2 0.11 12.312

L4_SP L4_SP 2.05 3.4 0.49 3.6 0.32 3.5 0.68 3.5 0.35 3.1 0.44 3.42,8

L4_SS L23_PC 1.70 4.3 0.17 4.6 0.43 4.8 0.57 4.7 0.35 2.5 0.00 4.53,10

L5_BTC L5_TTPC1 4.59 17.3 0.16 17.6 0.15 18.4 0.28 18.9 0.13 18.3 0.28 15.06

L5_MC 5.12 13.0 0.31 13.4 0.30 13.5 0.59 13.6 0.28 18.4 0.06 12.07

L5_BTC L5_TTPC2 4.70 16.8 0.17 17.9 0.13 18.8 0.25 19.3 0.12 18.9 0.24 15.06

L5_MC 5.29 13.2 0.29 13.7 0.29 13.7 0.56 13.8 0.27 19.4 0.06 12.07

L5_STPC L5_STPC 2.40 4.0 0.46 4.2 0.32 4.2 0.71 4.3 0.26 3.9 0.77 4.04

L5_TTPC1 L5_MC 2.43 9.0 0.34 9.1 0.34 9.2 0.64 9.5 0.31 9.4 0.58 8.57

L5_TTPC1 3.79 5.9 0.23 6.1 0.18 6.2 0.33 6.3 0.13 6.0 0.47 5.65,9

L5_TTPC2 3.75 5.9 0.22 6.2 0.16 6.1 0.35 6.3 0.13 5.9 0.57 5.65,9

L5_TTPC2 L5_MC 2.50 9.2 0.31 9.2 0.31 9.2 0.66 9.7 0.30 9.7 0.47 8.57

L5_TTPC1 3.94 5.8 0.31 6.0 0.22 6.0 0.44 6.2 0.16 6.3 0.21 5.65,9

L5_TTPC2 3.89 5.9 0.28 6.0 0.22 6.0 0.45 6.1 0.17 6.2 0.27 5.65,9

L6_BTC L6_TPC_L1 4.04 16.1 0.23 17.5 0.13 18.3 0.26 19.5 0.13 16.9 0.51 15.06

L6_TPC_L4 3.83 15.9 0.26 17.1 0.14 18.2 0.24 19.3 0.14 16.0 0.69 15.06

Mean number of potential synapses per connection in experimentally characterized m-type to m-type connections, based on all appositions (“All”) and after application of the pruning
algorithm (“Pruned”) for different maximal touch distances. P-values of a t-test comparing the number of synapses of individual connections reported in the literature against samples
in the reconstructed micro-scale connectome, are provided (low values indicate significant difference). Values < 0.05 are indicated in yellow, < 0.01 in orange, < 0.001 in red.
The column “Bio” is based on results from:
1Feldmeyer et al., 2006; 2Feldmeyer et al., 1999; 3Feldmeyer et al., 2002; 4Le Bé et al., 2007; 5Markam et al., 1997; 6Markram et al., 2004; 7Silberberg and Markram, 2007; 8Petersen
and Sakmann, 2000; 9Romand et al., 2011; 10Lübke, 2003; 11Fino and Yuste, 2011; 12Gupta et al., 2000; 13Wang et al., 2002.
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FIGURE 6 | Validation of the Predicted Connectivity. Results emerging from the biological parametrization: (A) Comparison of the resulting mean number of

synapses per connection to biology. Markers indicate the type of pathway as in Figure 3. (B) Comparison of bouton densities of a number of m-types to biology.

Purple squares: mean densities, red error bar: standard error of mean (SEM) of biological data, blue error bar: SEM of model data. (C) Comparison of the mean

connection probabilities in the model against biological data. Squares indicate connection probabilities of all cells within 100µm, diamonds connection probabilities

resulting from an in silico patch experiment (see Methods).

TABLE 2 | Connection probabilities for distances up to 100 µm.

Pathway All appositions Pruned Bio

From To 0.75µm 1.5µm 2.5µm 3.75µm 2.5µm P

L23_PC L23_PC 0.44 0.50 0.55 0.59 0.06 0.43 0.0558

L4_SS L23_PC 0.25 0.32 0.36 0.40 0.01 0.06 0.031,7

L4_SP L4_SP 0.52 0.57 0.62 0.66 0.06 0.41 0.075

L5_MC L5_TTPC1 0.89 0.95 0.98 0.99 0.10 0.0 0.334

L5_TTPC2 0.88 0.94 0.97 0.99 0.10 0.0 0.334

L5_STPC L5_STPC 0.36 0.42 0.47 0.52 0.05 0.08 0.032

L5_TTPC1 L5_TTPC1 0.62 0.71 0.78 0.85 0.07 0.0 0.123

L5_TTPC2 0.64 0.72 0.79 0.85 0.09 0.01 0.123

L5_TTPC1 L5_TTPC2 0.66 0.74 0.82 0.88 0.08 0.0 0.123

L5_TTPC2 0.66 0.75 0.83 0.9 0.09 0.01 0.123

L6_TPC_L1 L6_TPC_L1 0.37 0.44 0.48 0.52 0.07 0.39 0.0396

L6_TPC_L4 0.37 0.43 0.48 0.53 0.06 0.43 0.0396

L6_TPC_L1 L6_TPC_L4 0.33 0.37 0.40 0.42 0.08 0.38 0.0396

L6_TPC_L4 0.34 0.37 0.39 0.42 0.05 0.44 0.0396

Mean connection probabilities in experimentally characterized m-type to m-type connections, based on all potential synapses (“All appositions”) and after application of the pruning
algorithm (“Pruned”) for different maximal touch distances. P-values as in Table 1. The column “Bio” is based on results from: 1 Feldmeyer et al., 2002; 2 Le Bé et al., 2007; 3 Perin
et al., 2011; 4 Silberberg and Markram, 2007; 5 Petersen and Sakmann, 2000; 6 Beierlein and Connors, 2002; 7 Lübke, 2003; 8 Holmgren et al., 2003.

0.016,N = 40), but around half of the individual m-types showed
no statistically significant difference between the predicted and
the biological bouton densities for individual neurons (Table 3).
These results imply that a single value for the Bd of all m-types
is insufficient to fully constrain individual Bd for each m-type.
However, because of the interdependencies between the solutions
for each connection, it may not be necessary tomeasure the Bd for
every m-type.

Even though Cp was not used as a constraint, the
strong correlations with biological values remained, even after
completing all three pruning steps (Figure 6C, r = 0.71, p <

0.01, N = 14; see also Table 2). The only exceptions involved
connections from Martinotti Cells (MCs) in layer 5, where the
algorithm did not predict the high values (>0.3) reported by
previous studies (Silberberg and Markram, 2007), and MC to PC

connections in layer 2/3, for which some reports have suggested a
Cp close to 1 (Fino and Yuste, 2011). However, Equation I shows
that stronger connectivity would require an increase in axonal
arborization or a major reduction in density of L5 PCs. Since the
cell densities are well validated (see Markram et al., 2015), it is
possible that previous reconstructions of the axonal arborizations
of MCs were incomplete (but see below).

Validation of Emergent Microcircuit Features
To validate the predicted micro-scale connectome as a whole,
we compared some of its emergent anatomical properties to
biological data not used in the reconstruction. We found that,
overall, it accurately reproduced the layer-specific densities
of GABAergic synapses determined in an earlier EM study
(DeFelipe, personal communication) (Figure 7A, r = 0.79,
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TABLE 3 | Mean densities of appositions and bouton densities after pruning for different touch distances.

m-Type All Pruned Predictive Bio

2.5µm 0.75µm P 1.5µm P 2.5µm P 3.75µm P 2.5µm P

L1_DAC 3.32 0.13 0.12 0.13 0.12 0.13 0.07 0.13 0.11 0.15 0.37 0.18

L1_DLAC 3.53 0.18 0.73 0.19 0.91 0.20 0.97 0.20 0.94 0.23 0.31 0.20

L1_HAC 2.96 0.16 0.01 0.20 0.86 0.19 0.45 0.21 0.95 0.19 0.31 0.21

L1_NGC_DA 3.28 0.16 0.33 0.17 0.52 0.16 0.28 0.18 0.61 0.19 0.87 0.20

L1_NGC_SA 3.25 0.16 0.44 0.16 0.47 0.16 0.62 0.16 0.45 0.18 0.89 0.18

L1_SLAC 3.51 0.13 0.23 0.12 0.18 0.15 0.53 0.13 0.17 0.15 0.49 0.18

L23_BP 3.27 0.20 0.83 0.20 0.81 0.19 0.89 0.20 0.86 0.23 0.56 0.19

L23_BTC 2.82 0.14 0.00 0.19 0.71 0.20 0.86 0.20 0.88 0.18 0.23 0.20

L23_DBC 3.29 0.24 0.17 0.25 0.48 0.24 0.20 0.25 0.50 0.20 0.00 0.27

L23_LBC 3.20 0.10 0.00 0.13 0.02 0.14 0.04 0.15 0.07 0.17 0.97 0.17

L23_MC 3.01 0.14 0.00 0.23 0.59 0.23 0.70 0.24 0.98 0.19 0.01 0.24

L23_NBC 2.99 0.13 0.00 0.20 0.71 0.21 0.97 0.21 0.99 0.19 0.42 0.21

L23_SBC 3.26 0.14 0.00 0.21 0.54 0.21 0.32 0.21 0.47 0.20 0.15 0.23

L4_BP 3.34 0.12 0.67 0.11 0.63 0.11 0.59 0.11 0.60 0.18 0.45 0.13

L4_BTC 3.25 0.15 0.12 0.18 0.88 0.17 0.53 0.19 0.90 0.21 0.37 0.19

L4_DBC 3.46 0.26 0.95 0.27 0.89 0.27 0.89 0.26 0.91 0.22 0.26 0.26

L4_LBC 3.60 0.15 0.00 0.17 0.09 0.19 0.28 0.18 0.15 0.20 0.62 0.21

L4_MC 3.22 0.16 0.02 0.17 0.22 0.19 0.59 0.19 0.39 0.18 0.38 0.20

L4_NBC 3.53 0.18 0.38 0.20 0.76 0.19 0.73 0.20 0.66 0.24 0.01 0.19

L4_SBC 3.69 0.15 0.05 0.18 0.50 0.19 0.82 0.19 0.60 0.22 0.55 0.20

L4_SP 3.89 0.18 0.00 0.21 0.46 0.21 0.50 0.21 0.66 0.24 0.00 0.22

L4_SS 3.42 0.14 0.00 0.17 0.04 0.17 0.08 0.17 0.33 0.20 0.01 0.18

L5_BP 3.76 0.16 0.94 0.16 0.91 0.16 0.86 0.16 0.91 0.24 0.02 0.16

L5_BTC 3.93 0.13 0.23 0.12 0.23 0.13 0.27 0.13 0.30 0.19 0.28 0.16

L5_DBC 3.84 0.19 0.46 0.19 0.57 0.19 0.58 0.20 0.73 0.22 0.81 0.21

L5_LBC 4.05 0.15 0.17 0.15 0.15 0.15 0.26 0.15 0.30 0.22 0.00 0.17

L5_MC 3.89 0.19 0.93 0.19 0.99 0.17 0.22 0.19 0.97 0.24 0.01 0.19

L5_NBC 3.60 0.17 0.20 0.17 0.27 0.18 0.51 0.17 0.29 0.21 0.31 0.19

L5_SBC 4.08 0.21 0.90 0.21 0.93 0.21 0.89 0.22 1.00 0.25 0.65 0.22

L5_TTPC1 3.58 0.12 0.00 0.13 0.06 0.14 0.15 0.14 0.21 0.20 0.00 0.15

L5_TTPC2 3.56 0.13 0.08 0.14 0.41 0.14 0.32 0.15 0.76 0.22 0.00 0.15

L5_UTPC 3.36 0.16 0.00 0.20 0.13 0.20 0.51 0.20 0.37 0.20 0.22 0.21

L6_BPC 2.76 0.13 0.00 0.18 0.32 0.19 0.63 0.18 0.45 0.15 0.00 0.19

L6_DBC 2.74 0.06 0.62 0.06 0.55 0.07 0.69 0.06 0.61 0.13 0.53 0.08

L6_LBC 2.86 0.14 0.78 0.13 0.74 0.13 0.64 0.14 0.88 0.18 0.11 0.14

L6_MC 2.97 0.13 0.25 0.13 0.18 0.14 0.35 0.13 0.26 0.16 0.59 0.15

L6_NBC 2.51 0.11 0.14 0.11 0.12 0.12 0.21 0.12 0.11 0.12 0.20 0.16

L6_NGC 2.99 0.21 0.00 0.43 1.00 0.35 0.56 0.44 0.95 0.19 0.00 0.43

L6_SBC 2.88 0.17 0.63 0.18 0.67 0.18 0.83 0.17 0.58 0.16 0.32 0.19

L6_UTPC 2.40 0.15 0.00 0.19 0.65 0.20 0.79 0.20 0.92 0.15 0.00 0.20

Mean bouton densities in experimentally characterized m-types, based on all potential synapses (“All”) and after application of the pruning algorithm (“Pruned”) for different touch
distances. P-values as in Table 1.

p = 0.11, N = 5). However, the predictions for L5 to L6
were significantly different. In the reconstructed connectome,
L5 pyramidal somata were characterized by an average of 123
GABAergic synapses (Figure 7B), a value that matched the
range of 100–200 found in a 3D confocal microscopy study
of the perisomatic GABAergic (vGAT) innervation of the same
m-type (DeFelipe, personal communication). Taken together,
these validation tests suggest that the reconstructed connectome

provides a reasonable reproduction of the overall and layer-
specific level of inhibitory synapses in the microcircuit. They
also suggest that a major increase in the size of the MC axonal
arborization to increase the connection probability onto PCs is
not possible, since it would also increase the overall density of
GABAergic synapses (see Figure 6C). Another way of increasing
MC to PC connection probabilities would be to make MCs
target only PCs. Given, however, that MCs already form 90%
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FIGURE 7 | Validation of emergent properties. (A) Volumetric density of

inhibitory synapses at the centers of the layers compared to measurements

from electron microscopy. Purple circles indicate means, red lines the SD of

the EM data (DeFelipe, personal communication), blue lines the SD of the

reconstruction. (B) Distribution of the number of inhibitory synapses on the

somas of L5_TTPC1 and L5_TTPC2 cells. Red bar: experimental data

(DeFelipe, personal communication). (C) Distribution of intervals between

efferent synapses in the model (blue bars) and biological inter-bouton intervals

(red lines) for two m-types. Biological data from (Karube et al., 2004) (L23_MC)

and (Anderson et al., 2002) (L6_PC). (D) Distribution of the number of

synapses per bouton under the assumption that efferent synapses with an

unbiologically low interval between them (<1µm) were formed by the same

bouton. Red lines: Data from (Bopp et al., 2014, mouse) and (DeFelipe,

personal communication). (E) Distribution of the number of common neighbors

of pairs of L5_TTPCs. Blue bars: Data from the reconstructed connectome

obtained in an in silico patch experiment (see Methods). Red line: Data from

(Perin et al., 2011). Black line: Data expected in a network with uniformly and

independently random connectivity. (F) Left: Unidirectional connection

probability between L5_TTPCs with different numbers of common neighbors.

Blue bars, red line, black line as in (E). Right: The ratio of the mean number of

common neighbors of connected and unconnected pairs of L5_PCs resulting

from the data in the left panel. Blue: data for the two types of L5_TTPCs in the

reconstructed connectome, red: (Data from Perin et al., 2011).

of their synapses on PCs, this is not a viable solution (see
Figure S2). Taken together, these results suggest that it may
be necessary to revisit the experimental data on MC to PC
connection probabilities.

The algorithm not only reproduced bouton densities as
described above (Figure 5B), but also reported distributions
of boutons, although they were not used by the algorithm
(Figure 7C). This match to biological data supports the notion
that a statistical approach to connectivity is valid. However, we
found that, when a single axon in the reconstruction formed

two synapses, the interval between them was often shorter than
1µm (Figure 7C). This contradicted previous reports that such
biological axons do not display such short intervals (Anderson
et al., 2002; Karube et al., 2004), and implied that the same
bouton may form synapses onto two different postsynaptic
neurons. To test this possibility, we counted the number of
occurrences of multiple synapses on the same bouton (interval
between synapses < 1µm), and compared the results to data
from EM studies (DeFelipe, personal communication). In both
cases, ∼20% of boutons formed multiple synapses (Figure 7D;
although Bopp et al. (2014) report fewer multiple synapses
in mouse). This further supports the statistical nature of
connectivity.

To test the emergence of complex connectivity, we conducted
in silico 12 patch-clamp experiments, in which recorded neurons
occupied the same relative positions as those used in a previous
in vitro study (Perin et al., 2011; see Methods), and identified
all synaptically coupled pairs. The in silico experiments found
the same distribution of numbers of common neighbors found
in vitro (Figure 7E). As in the in vitro study, we also found
a significant dependency between connection probabilities for
pairs of neuron, and the number of their common neighbors
(Figure 7F, left). Taken together, these data indicate a degree of
clustering among synaptically connected neurons, similar to the
clustering observed in biology (Figure 7F, right).

Robustness of the Predictive Connectivity
We have shown that, when the micro-scale connectome
algorithm is constrained with biological data, it accurately
recreates many features of biological connectivity, and that when
it is constrained with predicted properties of the microcircuit,
it is slightly less accurate. The derived connectome allowed
us to make verifiable predictions for m-type to m-type
connections that have not yet been measured experimentally.
To assess the precision of the predictions, we evaluated the
internal variability of the results generated by the algorithm.
Seven microcircuits were generated from the same pool
of reconstructed morphologies, using different exemplar
morphologies in different random positions for each instance
(see also Markram et al., 2015). As a measure of variability, we
calculated the standard deviations of the Cp at a distance between
somata of 100µm (Figure 8B), and the mean numbers of
synapses per connection for all seven microcircuits (Figure 8A).
We found that, on average, the 95% confidence interval was
around 5% of the mean value for the connection probabilities
and smaller than 2% of the mean value for synapse numbers
(see Methods). This suggests a precision of roughly±2% of the
mean, when biological properties are known, and roughly ±5%
when they are not.

Two constants were crucial for determining the connectome:
cell densities and total axonal length (see Markram et al., 2015;
Figure 1A). Values for these constants were derived from the
digitally reconstructed microcircuit prior to any pruning. To
assess the impact of potential inaccuracies in cell densities,
we constructed two additional microcircuits with lower and
higher cell densities, using the approach in which all parameters
were derived. The first microcircuit contained 25,000 neurons
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FIGURE 8 | Variability and robustness of emergent connectivity. (A) Mean number of synapses per connection for all connection types, against the standard

deviation of the mean across N = 7 reconstructions. Blue dots: data, red line: linear fit. Inset: Distribution of the coefficient of variation of the measurements of the

mean, i.e., SD divided by mean. Red line: Mean CV. (B) Same, for the mean connection probability of individual connection type. (C) Distributions of the number

of synapses in all connections for different neuron densities. Blue: microcircuit containing 31,000 neurons (control case); red: Only 25,000 neurons in the same

volume; green: 35,000 neurons in the same volume. Dashed lines with disks indicate the mean. (D) Same for the number of afferent synapses per cell. (E) Box

plot of the probabilities that a neuron connects to a randomly picked cell within 100µm, for different neuron densities. Red lines indicate the median of the

probabilities for all cells, blue boxes the 25 and 75 percentiles and black whiskers the full data spread. (F) Means of the connection probabilities for all m-types,

normalized to the value of the control case (gray lines). The red line indicates the values expected if the changes in cell density were compensated exclusively by

changes in connection probabilities as outlined in Equation (I) and Figure 1, i.e., 31,000/25,000, 1 and 31,000/35,000.

and the second, 35,000. In both cases, the distribution of
synapses per connection was maintained (Figure 8C), as was
the total number of synapses per neuron (Figure 8D). The
reconstructions confirmed that connection probabilities were
higher when cell density was lower, and lower when cell
density was higher, as predicted by Equation I (Figures 8E,F).
The equation also made it possible to predict the size of
these changes (Figure 8F; gray lines, measured; red line,
calculated).

Discussion

We have isolated a set of fundamental principles and properties
of synaptic connectivity that govern the organization of the local
connectome, and used them in an algorithm that reconstructs
the micro-scale connectome of a 3D digitally reconstructed
microcircuit. Potential synapses were derived from the incidental
appositions between exemplars of morphologically reconstructed
neurons, placed randomly within their layer in such a way as to
respect layer-specific neuron densities and neuron numbers. We
found a relationship between synapse and apposition numbers
per connection, which allows prediction of synaptic connectivity
from appositions. By randomly removing potential synapses
that cannot form actual synapses, for functional reasons, we
arrived at a subset of biologically viable synapse locations.
However, this subset was still far larger than the number of
synapses observed in nature. We showed that simple statistical
pruning of potential synapses does not reproduce biological
connectivity, but that a three-step pruning process—general,
multi-synapse and plasticity pruning—does. We further showed

that the minimal biological data set required to reconstruct the
local connectome of a given microcircuit of neurons consists of
the mean bouton densities and the relation between the mean
number of potential synapses per connection and the mean
number of actual synapses per connection for as many m-types
as possible. The algorithm reproduces a spectrum of features
observed in actual neocortical microcircuitry, which vary by
less than ±5% across different statistical instantiations of the
microcircuit.

Implications for the Formation of Synaptic
Connections
The algorithm determined synapse locations statistically, using
3D neuronal reconstructions and applying basic principles and
properties of synaptic connectivity. The few cases where this was
not possible suggest that experimental data on these exceptions
could further improve the accuracy of the predicted connectome.
The rule that several synapses are required to form a viable
synaptic connection suggests that synapses act synergistically to
ensure the survival of connections—a fundamental synapse co-
dependency mechanism. This suggestion is supported by reports
that synaptic connections in the neocortex and many other brain
regions display heterosynaptic plasticity (Bonhoeffer et al., 1989;
White et al., 1990; Schuman and Madison, 1994; Royer and Paré,
2003). This may be a result of energy constraints that limit the
maximal number of synapses formed by an axon. Selection of
the set of active multi-synapse connections is likely to depend
on other types of microcircuit plasticity. One candidate could
be a spike-timing-dependent plasticity (STDP) rule that includes
re-wiring.
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The finding that the minimal number of potential synapses
between a pair of cells required for the formation of a synaptic
connection differs between m-type specific pathways points to
a variable level of synapse co-dependency for different m-type
to m-type connections. The algorithm also predicts that if Sm is
decreased, Cp will increase proportionally (if other fundamental
parameters remain constant). Thus, the level of synapse co-
dependency also determines the number of neurons that any one
neuron can target.

Bridging the Gap to Form a Synapse
The algorithm pruned potential synapses to predict actual
synapses. When potential synapses were defined by a maximum
touch distance of 1.25µm (i.e., all near touches closer than
1.25µm) on m-types known to form spines, the algorithm
successfully reproduced biological connectivity for many, but
not all m-type to m-type connections. With a touch distance of
2.5µm, the algorithm reproduced biological observations for all
connection types that have been characterized experimentally,
achieving a reasonable level of accuracy. The touch distances
required to reproduce biological connectivity are compatible with
biological observations. More than 10% of spine necks are longer
than 1.25µm (Arellano et al., 2007) and including the spine
head, around 50% of spines extend beyond 1.25µm, with a mean
length of 1.3µm and a maximum of 5.1µm (although 95% are
shorter than 2.6µm; Benavides-Piccione, DeFelipe, unpublished
observations). Boutons bridge an additional 0.25µm. The
algorithm therefore predicts that appositions 2.5µmor below are
biologically plausible locations for synapse formation. Since the
number of potential synapses in a connection is invariably higher
than the number of actual synapses, the fraction that become
actual synapses may be set, in part, by the probability that a
potential synapse closes this gap successfully.

Deviations from Experimentally Measured
Connectivity
Since connection probabilities are strongly dependent on the
distance between neuronal somata, and previous studies seldom
account for distance-dependent connection probabilities, it was
not possible to design a reliable algorithm based on these data.
Interestingly, an in silico patch experiment, using the same
sampling techniques as in vitro studies, predicted the same
distant-dependent Cp (see Methods; Figure 4D), yet when all
relevant cell pairs weremeasured the results deviated significantly
(Figure 6C, squares vs. diamonds). The algorithm therefore does
not rely on Cp, which is instead an emergent, hence predicted
property. Considering these limitations, the predicted Cp values
matched experimental data reasonably well. However, the value
for the L5_MC to L5_TTPC pathways was underestimated
(Figure 6C). The reason for this mismatch remains unclear, but
the experimental data for Cp for this pathway from different labs
are also incompatible (Silberberg and Markram, 2007; Fino and
Yuste, 2011).

The inter-dependencies among circuit properties, outlined in
Figure 1A, imply that increasing Cp beyond the predicted values
would require extreme changes to the other parameters. For
example, it would require halving Cd or Sm, or doubling Bd or Al

(or a combination thereof). Cd for PCs is supported extensively
by experimental data and validated in various ways (see Figure
S1A; Markram et al., 2015). It is therefore unlikely that this is the
source of the deviation.

To test the possibility that deviations were due to inadequate
reconstructions of axonal arborizations (i.e., that Al was too
low), we compared the density of inhibitory synapses in the
reconstruction against biological estimates. Since inhibitory
synapses in the microcircuit are formed by local interneurons, we
expected that they would reach their full density in a microcircuit
fully surrounded by six other microcircuits (Figure 7A). We
found that in this configuration, the predicted density of
inhibitory synapses was indeed highly correlated with data from
EM, especially in layer 5, where the underestimation of Cp is
apparently the greatest. Increasing Al for the axons of Martinotti
cells sufficiently to reproduce the reported Cp (i.e., doubling its
value) would increase the predicted density of inhibitory synapses
well above reported values.

We also considered another possible explanation, namely that
Martinotti cells are entirely selective, using all their boutons to
form synapses onto pyramidal cells. Given, however, that even
in the current configuration, more than 90% of L5_MC synapses
form on pyramidal cells (Figure S2), 100% specificity would
produce only a minor increase in Cp. It is also possible that
MC connections to PCs are specifically oriented toward each
other. There is no evidence for orientation in the horizontal
plane. However, if MCs are consistently positioned just below or
above PCs (Kozloski et al., 2001), this could explain the observed
deviation in Cp.

A final possibility is that biological values for Sm are
overestimated. This possibility is supported by the fact that
experimental values for Sm are based on light microscopic
analysis and the only data validated by EM are for PC to PC
connections. This example illustrates how deviations between
the predictions of the algorithm and biological data can be used
to challenge biological observations and their interpretations,
or the assumptions used in the design of the algorithm (see
Supplementary Table 1).

As more methods for large-scale experimental reconstruction
of synaptic connectivity are developed and employed—for
example EM with automated or semi-automated reconstruction
techniques (Denk and Horstmann, 2004; Chklovskii et al.,
2010; Kleinfeld et al., 2011)—we expect more deviations of the
predictions of the algorithm to be found. They will be a valuable
source of information for further refinement of the algorithm,
for example providing additional data points for Sm or additional
exceptions to the synapse location rule.

A Large Potential for Information Storage
After multi-synapse pruning, we found that there was still
an excess of potential synapses (Bd values higher than
reported). This excess guided step 3 (removal of multi-
synapse connections), and thereby predicted the potential of a
connection for rewiring—its plasticity potential. The formation
and elimination of multi-synapse connections during rewiring
has been demonstrated experimentally (Le Be and Markram,
2006). In the algorithm, rewiring potential is represented by
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the third parameter of the algorithm, a3, whose value, for
a touch distance of 2.5µm, lies in the range 0.2–0.3 for
excitatory connections, and 0.1–0.25 for inhibitory connections.
For all connection types, touch distances ≥ 2.5µm yielded
values ≤ 0.5 compatible with the doubling of connection
probabilities under stimulation, observed experimentally (Le Be
and Markram, 2006), These values allow a first approximation
of the information storage capacity of the microcircuit. For
example, values of a3 = 1 or a3 = 0 would leave no degrees
of freedom for the selection of active connections, since either
all would be active, or all would be inactive. The information
contained in a given wiring diagram and the mean hamming
distance between wiring diagrams are both maximal for a3 =
0.5. At a3 = 0.3 it is still possible to reach 88% of the
maximum, while at 0.1 it is only possible to achieve 50%. This
indicates the presence of substantial potential for plasticity, with
significantly larger potential in excitatory than in inhibitory
connections.

Conclusion

The algorithm presented here provides a method for predicting
the micro-scale connectome from sparse experimental data.
When all afferents from beyond the microcircuit are accounted
for (e.g., in reconstructions of the whole brain), it will be possible
to use synapse density on the dendrites (i.e., complete utilization
of dendrites) as an additional constraint, further improving the
predictions. Since the predictions will fail if data on neuronal
composition and morphologies are incorrect, the algorithm can
be used to test experimental data. In this way, the predicted
micro-scale connectome can complement future experimental
work, accelerating progress toward a complete mapping of the
connectome.

Methods

Pruning Potential Synapses
The modeled volume of neural tissue contained a large number
of axo-dendritic, axo-somatic and axo-axonic appositions that
we considered as locations of potential synapses. A preparatory
filtering step eliminated all potential synapses, except those that
were located on biologically plausible parts of the postsynaptic
cell: dendrites in the case of pyramidal to pyramidal connections
(Somogyi et al., 1998; Feldmeyer et al., 2002; Kawaguchi
et al., 2006; Kubota et al., 2007); the axon initial segment for
connections in the case of chandelier cells (ChCs) (Somogyi,
1977; Somogyi et al., 1982; Howard et al., 2005; Szabadics et al.,
2006) and dendrite or axon for others.

To derive a biologically plausible connectome, we employed a
three step pruning algorithm, a modified version of the algorithm
proposed in (Fares and Stepanyants, 2009):

In the first step—general pruning—for each synapse we drew
an independent random number R in the interval [0,1) and
compared it against a parameter f1.

If R < f1 the potential synapse was admitted to the second step
or else kept inactive in a pool accessible to structural plasticity
mechanisms.

In the second step—multi-synapse pruning—we drew random
numbers R ∈ [0, 1] for every connection. A connection was
defined as the set of all potential synapses between a pre- and a
postsynaptic cell. The connection was admitted to the next step
only if

R <

(
1 + e−16/µ2·(Ns−µ2)

)−1
, (M-I)

where Ns was the number of potential synapses forming the
connection, and µ2 a parameter to this second step. Thus,
the probability of admitting a connection is a rising sigmoidal
function of the number of potential synapses contributing to the
connection. In this simplified version of the criterion described
by (Fares and Stepanyants, 2009), the width of the transition
of the sigmoidal is set to its offset from the origin (here:
µ2) multiplied by 0.25. In the results presented in (Fares and
Stepanyants, 2009), the 95% confidence region for this parameter
was very wide compared to that of the offset. This suggests that
this parameter is relatively unimportant for achieving a good fit
to the biological data. The value of 0.25 used to calculate the
width of the transition was chosen to ensure that the fraction of
connections with only one synapse was <1%.

In the third step—plasticity pruning—whole connections were
again removed randomly and independently. This time, however,
potential connections were converted into active connections
whenever R < a3 (a3 being the parameter of the third step),
guaranteeing that connection pruning was independent of the
number of potential synapses. Connections removed during this
process were placed in a pool of viable multi-synaptic connections
for future use by structural plasticity mechanisms.

Finding Parameters for the Pruning Algorithm
The pruning algorithm required three parameters for each
individual pathway, i.e., for each combination of pre- and
postsynaptic m-type. Depending on the pathway, we employed
one of two methods to find a suitable combination of
parameters that differed in which properties of connectivity
we tried to match. For 38 pathways that have been reliably
characterized experimentally (see Table 1), we tried to match the
experimentally measured mean and standard deviation of the
distribution of synapses per connection. For all other pathways
(N = 2987), we first predicted the mean number of synapses
per connection from the mean number of potential synapses
(i.e., appositions) per connection (1.5 · Sstruc,m for E-E pathways,
9 ·

√
Sstruc,m − 1−2 for all other pathways). Next, we combined a

generalized coefficient of variation of the distribution of synapses
per connection of 0.32 with its predicted mean to predict its
standard deviation. In both cases, we used the total number of
efferent synapses on the presynaptic morphology type, derived
from biological mean bouton densities multiplied by axon
lengths, to further constrain the parameter space. Specifically, we
used the same target fraction of potential synapses to be kept
for each connection type of the same presynaptic morphology
type, i.e., we did not assume any connection specificity beyond
the specificity already present in the potential synapses.

Both strategies fully constrained the parameters. The
way biological or generalized constraints lead to algorithm

Frontiers in Computational Neuroscience | www.frontiersin.org 15 October 2015 | Volume 9 | Article 120

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Reimann et al. Predicting the connectome

parameters is described in detail in the Supplementary
Methods, and illustrated in Figure S1. Briefly, we quantified
the impact of the parameters on the connectivity metrics in
the derived connectome analytically, based on the finding that
the number of potential synapses per connection follows
a geometric distribution. Mathematically, the problem
turns into an equation system with the three parameters as
unknowns, meaning that three constraints are needed to find
a unique solution. Of the metrics and parameters introduced
in Figure S1, any combination of three leads to a unique
solution.

To derive the connectome, we combined three constraints:
Sm, Ssd, Bd. Solving the set of equations (see Supplementary
Methods), led to the following equations:

f1 =
p

1−p
· 1−p′

p′
, (M-II)

where p is the inverse of the initial number of potential synapses
per connection in the input and p

′ = 1
Ssd+0.5 is the inverse of the

mean number of potential synapses per connection after the first
step. Then:

µ2 = 0.5+ Sm − Ssd (M-III)

a3 =
Bd

B2
, (M-IV)

where B2 is the bouton density after the first two pruning steps.
In our derivation of the connectome, we used these equations to
determine parameter values.

Calculation of Bouton Densities
Since the density of fibers decreased near the boundaries of
the volume of the digital reconstruction, we calculated bouton
densities in the most central region, where densities have been
shown to match biological levels (see Figure 2, Markram et al.,
2015). For the calculation of volumetric bouton densities per
layer, we selected four 25 × 25 × 25µm volumes at the centers
of each layer. The volumes were offset by [–12.5µm, –12.5µm],
[–12.5µm, 12.5µm], [12.5µm, –12.5µm], and [12.5µm,
12.5µm] in the x/z directions from the geometrical center
of the layers, resulting in four non-overlapping volumes.
Densities for individual volumes were computed by counting
the number of (GABAergic) synapses it contained, and dividing
by the volume. Synapse counting in these volumes used spatial
indexing software as described in Tauheed et al. (2012). When
calculating the density of synapses along axons and intervals
between neighboring boutons, we only considered synapses
and parts of axons less than 37.5µm from the central y-axis
of the volume of the digital reconstruction (i.e., the analyzed
volume had roughly the same size as the one analyzed for
the volumetric densities). Efferent synapses separated by less

than 1µm on the same axon were considered as sharing a
bouton.

In silico Patch Clamp Sampling
To sample the connectivity of neuron pairs, we recreated a
previous in vitro patch clamp experiment (Perin et al., 2011).
We placed the recorded relative coordinates of simultaneously
patched somata at a random location within a target layer of the
digital reconstruction. For each resulting coordinate, we found
the closest neuron of a morphological type of interest. We then
analyzed the connectivity of the resulting sets of neurons, probing
up to 12 neurons and 132 connections simultaneously. We used
46 sets of patch coordinates with 8.2± 3.4 coordinates each.
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