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application to feedback control
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This paper presents a new model-based method to define muscle synergies. Unlike the

conventional factorization approach, which extracts synergies from electromyographic

data, the proposed method employs a biomechanical model and formally defines the

synergies as the solution of an optimal control problem. As a result, the number of

required synergies is directly related to the dimensions of the operational space. The

estimated synergies are posture-dependent, which correlate well with the results of

standard factorization methods. Two examples are used to showcase this method:

a two-dimensional forearm model, and a three-dimensional driver arm model. It has

been shown here that the synergies need to be task-specific (i.e., they are defined for

the specific operational spaces: the elbow angle and the steering wheel angle in the

two systems). This functional definition of synergies results in a low-dimensional control

space, in which every force in the operational space is accurately created by a unique

combination of synergies. As such, there is no need for extra criteria (e.g., minimizing

effort) in the process of motion control. This approach is motivated by the need for fast

and bio-plausible feedback control of musculoskeletal systems, and can have important

implications in engineering, motor control, and biomechanics.

Keywords: muscle synergy, real-time control, model-based approach, optimization, operational space, task-

specific, dynamic redundancy, unique solution

1. Introduction

The human musculoskeletal system has a redundant structure—there are more degrees of
freedom than required to perform a certain task (kinematic redundancy), and each degree of
freedom is actuated by multiple muscles (dynamic redundancy). These redundancies make the
control problem challenging. Humans usually take this ability for granted, without noticing the
complexities involved.

Muscle synergy has been proposed as a possible strategy to reduce the dimensions of the
control space (the number of variables modulated by the nervous system) in the control of
musculoskeletal systems (for a short review see Tresch and Jarc, 2009). According to this hypothesis,
the central nervous system (CNS) activates a group of muscles together; within each group, the
muscles are activated via fixed patterns. Therefore, instead of activating all the muscles individually,
the CNS combines a far fewer number of bundles of activation to build the required muscle forces.
There are, however, important questions that need to be answered regarding the plausibility of this
theory.
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1.1. Structure and Number of Synergies
The structure of the dimension reduction in the nervous system
viamuscle synergies is not properly understood.Muscle synergy is
often defined as fixed relations between instantaneous activation
levels of multiple muscles (Ting, 2007; McKay and Ting, 2008;
Berniker et al., 2009; Roh et al., 2011; Safavynia et al., 2011;
Kutch and Valero-Cuevas, 2012; Steele et al., 2013; Zelik et al.,
2014). Alternatively, time-varying patterns (also called themotor
primitives) are proposed as the building blocks of muscle
activations (D’Avella and Tresch, 2001; Ivanenko et al., 2006;
Bizzi et al., 2008; d’Avella et al., 2008; Sartori et al., 2013). A
mixture of both approaches has also been investigated by Delis
et al. (2014).

The identification of the synergies is an important part of the
theory. Various methods have been proposed in the literature to
decompose muscle activities into a number of synergies. In the
majority of research articles, the goal has been to reconstruct
the measured muscle activities as closely as possible, using a
low-dimensional basis set (the synergies). Non-negative matrix
factorization (NNMF, Lee and Seung, 2000; Sharif Shourijeh et al.,
2015a) is a widely-used method in this application (d’Avella et al.,
2008; McKay and Ting, 2008; Berniker et al., 2009; Kargo et al.,
2010; Berger and d’Avella, 2014). This approach, however, is
unable to determine whether the synergies result from neural
origins (as claimed by the synergy theory), or are by-products
of other processes [e.g., biomechanical constraints (Kutch et al.,
2008; Kutch and Valero-Cuevas, 2012), or optimization (de Rugy
et al., 2013)].

There is also uncertainty about the number of synergies. The
usual practice is to examine the variance accounted for (VAF)
of the experimental EMG after synergy decomposition (Lockhart
and Ting, 2007; Roh et al., 2011; de Rugy et al., 2013; Moghadam
et al., 2013; Sartori et al., 2013; Steele et al., 2013; Delis et al.,
2014). In general, a fewer number of synergies produce a lower
VAF, and as the number of synergies increase, more variation in
the experimental data can be captured. Therefore, the number
of synergies beyond which no further improvement in VAF
is observed is usually chosen. Unfortunately this approach is
purely statistical, and does not provide significant insight into
biomechanical aspects of muscle synergy theory.

1.2. Dependency of the Synergies on the Task
and Posture
The dependency of synergies on the task and posture has not
been extensively investigated. Efforts have been made to find
shared synergies that can reconstruct EMG data in a variety of
tasks (e.g., Bizzi et al., 2008; Sartori et al., 2013; Zelik et al.,
2014). In the majority of the articles, however, synergies from
a single task are studied, without explicit investigation as to if
the synergies vary from one task to another. de Rugy (2010) has
shown that visuomotor adaptation occurs at the muscle synergy
level, suggesting the necessity of task-dependent synergies. It is,
therefore, reasonable to argue that the recruited set of synergies
may depend on the intended action. For example, the set of
synergies used during a hand-writing action is perhaps different
from the set recruited during a simple grasp motion, though the
same muscle are activated. Our hypothesis is that different sets

of synergies are known to the CNS, and the CNS chooses the
appropriate set to manipulate and perform the tasks.

Therefore, information about the intended task seems to
be essential in the identification of the synergies. For this
purpose, a quantifiable criterion is needed to distinguish between
tasks. We hypothesize that the desired controlled variable (or
the operational space) could provide such information. For
example, in a point-to-point reaching task, Morasso (1981)
found that the hand position and velocity follow a stereotypical
trajectory (straight line motion with bell-shaped velocity profile).
These findings suggest that the hand position is the actively
controlled variable, and the operational space is the two-
dimensional Cartesian space for hand position. On the contrary,
in an elbow flexion/extension task, joint angle and angular
velocities follow such stereotypical trajectories, meaning that
the controlled variable, rather than being hand position, is the
joint angle (i.e., the operational space is the one-dimensional
joint angle space, rather than a two-dimensional Cartesian space
for hand position). Scholz and Schöner (1999) have presented
the uncontrolled manifold theory to systematically identify the
controlled variable in various tasks. According to this theory,
the variability is higher in the dimensions irrelevant to the
intended task than those directly related to it. This theory aligns
well with the minimal intervention theory, which states that
the CNS activates muscles to control only the task-relevant
variable (Valero-Cuevas et al., 2009). Both theories support our
hypothesis that the synergies, if they exist, have a direct relation
with the intended task.

The effects of posture on synergies also needs to be studied.
d’Avella et al. (2008) proposed tonic and phasic synergies for
gravity balancing and acceleration, respectively. They were able to
estimate the tonic synergy coefficients based on the final posture,
and the phasic coefficients based on the velocity, using cosine
tuning curves. We would like to expand the idea of posture-
dependent synergies (by defining them based on the operational
space variables), and study the usefulness of these synergies in
motion control.

1.3. Functional Aspects of the Synergies
Most synergy analysis processes in the literature only
involve EMG reconstruction. Few studies have used synergy
decomposition while taking into account the reconstruction
of force/torque in the operational space. de Rugy et al. (2013)
and Moghadam et al. (2013) identified synergies corresponding
to various directions of wrist force and shoulder torque,
respectively. Nonetheless, de Rugy et al. (2013) found high levels
of error in the force reconstruction if too few synergies were
used.

Using synergies to control motion is another challenge.
Feedback control of musculoskeletal systems that act on task
space variables is a appealing; however, the literature is limited
(Lockhart and Ting, 2007; Ting, 2007), in which the center of
mass position was used as the feedback to construct a balance
controller.

More articles are available regarding the application of muscle
synergy in the feed-forward control of motions (for example
McKay and Ting, 2008; Berniker et al., 2009; Neptune et al.,
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2009; Kargo et al., 2010; Allen and Neptune, 2012). However,
these studies reported that the synergies need to be fine-tuned,
which is inherent to feed-forward control. Furthermore, despite
the reduction in the number of control inputs, the problem is still
redundant, requiring an optimization routine to solve for the best
combination of the synergies.

1.4. Relation to Optimal Control
There is a tight relation between muscle synergy theory and
optimal control of motion. Essentially, an optimal pattern of
muscle activities is inherently synergistic (de Rugy et al., 2013;
Steele et al., 2013).We also observe that the output of the nervous
system shows signs of optimality, meaning that if synergies do
exist, they are optimal.We, therefore, hypothesize that themuscle
synergy and optimality are interrelated—we show that synergies
can be defined directly through optimization. To support this
approach, we argue that the results of the optimization process
(perhaps in course of human evolution) may have been learned
and stored in the nervous system as synergies (see the discussion
in de Rugy et al., 2012). A high-level controller (e.g., a robust
or an optimal controller in Todorov and Jordan, 2002; Todorov
et al., 2005) can then employ the synergies for the control of
actions.

1.5. Relation of the Current Work with the
Existing Literature
The following work addresses some of the aforementioned
issues about muscle synergy theory via mathematical modeling
and optimization. The novel contribution of this paper is the
introduction of a model-based approach for the identification of
muscle synergies, as an alternative to the factorization methods
(in which the synergies are extracted from EMG data). It has
been previously mentioned that synergies may arise from a
background optimization process (either on-line optimization or
evolutionary adaptation, de Rugy et al., 2012, 2013); however,
no formal mathematical argument has been provided in the
literature.

We also propose that the number of synergies depends
on the intended task (i.e., the number of dimensions of the
operational space). As a result of our model-based approach, the
number of synergies is determined by the requirements of the
musculoskeletal system and the task, resolving the discrepancy
regarding the number of synergies in the literature. Furthermore,
by examining the operational space, it is possible to distinguish
between seemingly similar tasks, which may require substantially
different synergies. The task-specific definition of the synergies
is yet another novel contribution of our work that has not been
previously investigated.

Lastly, these synergies simplify the redundant force-sharing
problem in the musculoskeletal system, resulting in a unique
solution for the muscle activities. Uniqueness of the solution is
a fundamental feature of dimension reduction in motor control
that has not been properly addressed. As a result, a simple
feedback control scheme can be constructed without the need to
solve an on-line optimization problem. This idea resembles the
hierarchical control framework in Todorov and Jordan (2002)
and Todorov et al. (2005); however, their relation to muscle

synergy is less explicit. Such a fast and bio-plausible control
scheme has significant implications in various fields, including
faster simulation of musculoskeletal systems, predictive forward
analysis of motion, prosthetic and orthotic device design,
rehabilitation, and Functional Electrical Stimulation of muscles.

2. Materials and Methods

In this section, we will present the basics of our muscle synergy
framework for the control of musculoskeletal systems. Previous
studies show that optimization-based solutions to the muscle
force-sharing problem results in realistic muscle activation
patterns (for a review see Erdemir et al., 2007). Therefore, we have
based our mathematical arguments on optimization results.

Muscle synergies will be defined based on the task, and for a
certain operational space. For example, if the operational space
(the controlled variable) is the elbow flexion angle, one flexor
and one extensor synergies are needed. However, in reaching
actions where the operational space is the two-dimensional (2D)
position of the hand, flexion/extension synergies are irrelevant,
and the shoulder and elbow muscles are recruited to satisfy the
2D hand force requirements.We hypothesize that multiple sets of
synergies are known to the CNS, and different sets are recruited
during different tasks.

Two examples are provided to showcase our methodology; a
2D one-degree-of-freedom (one-DoF) musculoskeletal forearm
model (Sharif Shourijeh andMcPhee, 2013; Sharif Razavian et al.,
2015) has been used to explain the mathematical foundation
of the method. Then, the method is generalized to a more
complex three-dimensional (3D) human driver model (Mehrabi
et al., 2015a,b). Although differences exist in the aforementioned
tasks and recruited muscles, since the operational space in both
systems is one-dimensional, our method can define two posture-
dependent synergies that sufficiently control the motion.

2.1. Synergistic Control of a Simple Model
The simple musculoskeletal forearmmodel used to introduce our
muscle synergy framework is shown in Figure 1A. This model
consists of seven muscles: brachioradialis, brachialis, biceps
brachii (long and short heads), and triceps brachii (long, lateral,
and medial heads). The physical parameters for these muscles are
taken from Sharif Shourijeh and McPhee (2013). The model has
one DoF at the elbow joint (flexion/extension angle, θ), which is
considered as the operational space.

Since the model contains only mono-articular muscles, it is
possible to analytically solve for the optimal muscle activations,
ai, that minimize the instantaneous cost function J:

J =

m
∑

i=1

a2i (m = number of muscles) (1)

subject to the constraints:

∑

i

Firi(θ) = T (2)

and

0 ≤ ai (3)
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A B

FIGURE 1 | The musculoskeletal models. (A) The 2D forearm model. (B) The 3D driver model. Both models are one-DoF, but the operational spaces are different.

The cost function J in Equation (1) represents the muscular effort
at each instant of time. Equation (2) is the moment balancing
constraint that requires the muscles to generate a certain torque
T in the operational space. The muscle forces, Fi, act at posture-
dependent moment arms ri(θ), which are positive for the elbow
flexors (i.e., brachioradialis, brachialis, and the two biceps brachii
heads), and negative for the extensors (triceps brachii heads).

The inequality constraint (Equation 3) enforces the activations
to be positive. No explicit upper bound (i.e., ai ≤ 1) is assumed
for the activations since lower activations are strictly preferred
by the cost function, resulting in optimal activations that do not
violate the upper bound constraint. Therefore, our arguments are
only valid for sub-maximalmotions.

The muscle force can be estimated from the activation level
using a Hill muscle model as:

F = aF0max fl(θ)fv(θ̇ , a) cos(α) (4)

In the Hill muscle model, muscle activation, a, scales the
maximum muscle force F0max . Additionally fl and fv are force-
length and force-velocity relations (Thelen, 2003) that also alter
the muscle force. Lastly, muscle force in the tendon direction is
affected by the pennation angle α.

We can combine the non-linear terms in Equations (2, 4) and
rewrite the constraint (Equation 2) as:

∑

i

aihi(θ, θ̇) = T (5)

where hi(θ, θ̇) is the non-linear function that transforms muscle
activity to the torque in the operational space (similar to a
Jacobian that transforms joint torque to end-effector force); it
accounts for the force-length relation fl, force-velocity relation fv,
maximum force F0max , pennation angle α, and moment arm r(θ)
of muscle i. Therefore, h is positive for the flexors and negative
for the extensors. It should be noted that in Equation (5), we
have neglected the dependency of the force-velocity term on the
activation [i.e., fv = fv(θ̇)]. Figure 2 shows the value of h for
the long head of biceps brachii as a function of joint angle θ and

FIGURE 2 | The transformation hBIClong as a function of joint angle θ

and activation a, for θ̇ = 2 rad/s.

activation for θ̇ = 2 rad/s. As can be seen, h is not a significant
function of activation.

Solving this optimization problem (details given in the
Appendix) yields the optimal activations:

a∗i = 0 (6)

or

a∗i =
hi(θ, θ̇)

∑

j h
2
j (θ, θ̇)

T (7)

The optimal solutions (Equations 6, 7) are both valid answers
in different situations. When the joint torque T is positive, the
solution (Equation 7) is valid for the flexor muscles, which have
h(θ, θ̇) > 0. For the extensors, however, h is negative resulting in
a negative (infeasible) answer if Equation (7) is used. Therefore,
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the optimal extensor activations when T > 0 are stated by
Equation (6) (i.e., no extensor activity.) The opposite argument
can be made when the joint torque is negative. In this case,
the optimal extensor activations are found using Equation (7),
while flexors are inactive1. Therefore, the closed-form solution
of Equation (7) can be used to efficiently calculate the optimal
muscle activations that generate a certain joint torque, T.

Alternatively, we can observe that the ratio of the activations
for the same-action muscles is independent of the required
torque; they all activate with fixed (posture-dependent)
relations—the same notion as muscle synergy.

a∗i
a∗j

=
hi

hj
= f (θ, θ̇) (8)

It is possible to define two synergies for this operational space: one
for a positive joint torque (flexor, Sf ), and one for a negative one
(extensor, Se). We can identify two representative muscles (i.e., a
flexor and an extensor) from the full set of muscles, and calculate
the synergy ratios of Equations (9, 10).

S
f
i =







a∗i
a∗f

=
hi
hf

S
f
i > 0

0 S
f
i ≤ 0

(9)

Sei =







a∗i
a∗e

=
hi
he

Sei > 0

0 Sei ≤ 0
(10)

In these relations, S
f
i and Sei are the flexor and extensor synergy

ratios for muscle i, respectively. We can calculate the optimal
muscle activation for muscle i based on the flexor and extensor
representatives (af , ae) using:

ai = af S
f
i + ae S

e
i (11)

The representative activations themselves can be calculated either
from the optimal values (Equation 7), or from any other control
logic. It is important to note that, regardless of the values of
(af , ae), if the synergy ratios of Equations (9, 10) are used, the
resulting torque is optimally produced.

The calculation of synergy ratios are straightforward in this
model; they are the ratio of non-linear transformation of muscle
i to that of the representative muscle. Although h is in general
a function of activation, we can safely neglect such dependency
and calculate h|a= 0.5. As shown later, this approach results in
near-optimal solutions. The flexor and extensor synergy ratios
for the 2D forearm model are shown in Figure 3, where the long
head of biceps and the long head of triceps are chosen as the
representative flexor and extensormuscles, respectively. It should
be noted that the choice of the flexor and extensor representatives
are arbitrary in this model because the muscles have explicit
flexor/extensor functions.

1A subtle detail that need to be considered in Equation (7) is that, depending on

which group is active, the summation in the denominator has to be calculated over

the same-actionmuscles (either flexors, or extensors).

2.2. Synergistic Control of the 3D Arm
As amore complex example, we have considered a 3D armmodel
rotating a steering wheel, Mehrabi et al. (2015a,b, see Figure 1B).
This model consists of four body segments: trunk, upper arm,
forearm, and hand. The trunk is assumed to be fixed, and the
upper arm is attached to the trunk using a spherical joint. The
elbow is modeled as a revolute joint, and the hand is connected to
the forearm via a universal joint. Since it is assumed that the hand
grips the steering wheel firmly, the whole system has only one
DoF. Therefore, knowing the steering wheel angle is sufficient to
find the arm joint angles. This argument is not valid in general,
as there is one extra DoF (supination/pronation) that is neglected
for the sake of simplicity. In the case that this extra DoF exists,
we will need more synergies to control the motion, which is out
of the scope of this paper.

The objective function is still the minimization of muscular
effort (Equation 1). However, the operational space in this model
is no longer the joint angle; instead, the desired operational space
(i.e., the variable that is controlled) is the steering wheel angle.

For this complex system of driver/steering wheel, the
mathematical arguments similar to Equations (1–7) are more
difficult to make. However, since the model has only one DoF, it
is possible to generalize the arguments to accommodate this 3D
arm as well.

Given the complex kinematics in this model, direct solution
for h (as used in Equation 5) is challenging. An efficient method
is to calculate it from the response of musculoskeletal system
similar to the experimental procedure in Berger and d’Avella
(2014). At a certain posture, activation of each muscle will
produce a torque in the operational space (in this case steering
rotation θ). We can define the non-linear transformation h(θ) as:

hi(θ) ,
Ti

ai
(12)

where ai is the activation of muscle i and Ti is the resulting torque
in the operational space. Having h calculated from Equation (12),
it is now possible to use the constraint of Equation (5), thereby
making similar arguments to calculate the optimal activations
and the synergy ratios:

Scwi =







a∗i
a∗cw

=
hi
hcw

Scwi > 0

0 Scwi < 0
(13)

Sccwi =







a∗i
a∗ccw

=
hi
hccw

Sccwi > 0

0 Sccwi < 0
(14)

These synergy ratios are calculated based on two representative
muscle activations: a counter-clockwise rotator and a clockwise
rotator, which are denoted by the subscripts cw and ccw,
respectively.

In general, h is a function of both the steering angle and
angular velocity. However, as previously shown in the 2D results
(Figure 3), h and synergy ratios, S, are not significantly affected
by θ̇ . Therefore, we assume that h is only a function of θ ; i.e., h =

h(θ). This assumption significantly reduces the complexity of
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FIGURE 3 | The flexor (A) and extensor (B) synergy ratios in the 2D model as functions of the joint angle (θ ) and angular velocity (θ̇ ). These synergies are

compared against the static synergies resulting from NNMF algorithm (the flat surfaces, see Section 2.3).

the synergies and the memory required to store them. However,
it comes at the expense of slight sub-optimality if the synergy
ratios of Equations (13, 14) are used (we will show later that they
are close to optimal). Furthermore, such an assumption aligns
well with the concept of posture-dependent synergies, whereas,
velocity-dependency has not been reported before.

To summarize the procedure, we can activate any muscle i
individually at a certain posture, measure the resulting torque,
and then calculate hi(θ) using Equation (12). Doing the same
procedure for all muscles and at various postures will result in
a set of posture-dependent hi(θ), which in turn can be used to
calculate the synergy ratios from Equations (13, 14). Figure 4
shows the synergy ratios for all 15 muscles in this model, where
latissimus dorsi (Jonsson and Jonsson, 1975) and anterior deltoid
(Hayama et al., 2012) are the clockwise and counter-clockwise
representatives, respectively. It is interesting to note that except
for three muscles (anterior deltoid, long head of triceps, and
latissimus dorsi) all others change function at a certain steering
wheel angle (from CCW rotator to CW rotator or vice versa).
This phenomenon limits us to chose any arbitrary muscles as the
representatives. This observation also highlights the necessity of
synergy dependency on posture.

2.3. Comparison with Non-negative Matrix
Factorization
The established method to extract the synergies usually involves
the generation of a large matrix containing all the EMG
data, which is then fed to a factorization algorithm. The
most widely used algorithm in this context is Non-Negative
Matrix Factorization (NNMF Lee and Seung, 2000). The NNMF

decomposes the original EMG data matrix, A, into two matrices:
the non-negative synergy matrix, S, and the non-negative
coefficient matrix, C as:

Am×l = Sm×nCn×l (15)

wherem is the number ofmuscles, l is the number of samples, and
n is the number of synergies. Each column of the synergy matrix
S represents a synergy, and contains the relative contributions of
each muscle in that synergy. A row in the coefficient matrix, C,
contains the activation level of the corresponding synergy for all
the samples.

The samples in the data matrix may vary based on the
experiment; they can be snapshots of the time-varying muscle
activities, or the average of the recodings from multiple trials.
Regardless, NNMF results in synergies that are essentially static—
i.e., they are the same for all samples.

It has been shown in Steele et al. (2013) that one obtains
similar synergies from NNMF with experimental EMG data as
from NNMF with optimal activations. Therefore, the standard
method of extracting synergies from the EMG data can be
replaced by applying NNMF to the optimal muscle activations.
Consequently, to compare our method with NNMF results,
we have used the synergies extracted from optimal muscle
activations as the benchmark. Figures 3, 4 show the synergies
extracted using NNMF. To obtain these synergies, the optimal
muscle activities were found such that the musculoskeletal
systems followed a random motion in their operational space.
These time-varying optimal muscle activities were gathered in
the matrix A, and fed to the NNMF algorithm to find the
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FIGURE 4 | The posture-dependent synergy ratios, Si , as functions of

steering angle. They are compared against the static NNMF synergies (the

gray constant lines).

static synergies. The calculated synergies were scaled so that the
activation of the representativemuscle would equal to unity.

As can be seen in Figures 3, 4, the NNMF synergies are
close to the average of the posture-dependent synergies; however,
because of the limited number of synergies (n = 2 in these cases),
NNMF is unable to capture all such variations. As a result, the
synergies resulting from NNMF are not suitable for for control
purposes (see section Results).

2.4. Feedback Control of Musculoskeletal
Systems
The major motivation for this work is the need for a fast and bio-
plausible feedback controller for the musculoskeletal system. The
usual practice of optimization for the control of amusculoskeletal
system is a time-consuming process, and cannot be used for real-
time applications. It is also unrealistic to assume that the CNS can
perform this amount of computations in real-time (de Rugy et al.,
2012). The definition of muscle synergy presented in this work
yields a unique solution for the force-sharing problem, thereby
eliminating the need for any on-line optimization, resulting in a
significantly faster feedback control scheme.

With the synergy ratios calculated beforehand, we can control
the musculoskeletal system in an optimal manner by calculating

FIGURE 5 | The schematic of the control loop. The output of the controller

is a signed activation. The positive and negative portions of the signal are used

to create muscle activations from the two synergy ratios.

only the representative muscle activations. All other muscle
activations can optimally be constructed using the synergy ratios:

for the 2D model : a = Sf abic + Seatri (16)

for the 3D model : a = Sccw adelt + Scw aLat (17)

where Sf , Se, Sccw, and Scw are vectors containing all the synergy

ratios, S
f
i , S

e
i , S

ccw
i , and Scwi , respectively.

The representative muscle activations can be found with
various control methods such as forward static optimization
(FSO), optimal control (e.g., model predictive controller,MPC, or
linear quadratic regulator, LQR), or even a simple proportional-
integral-derivative (PID) controller.

To show the effectiveness of the synergies for real-time
control, a simple PID controller is used to control the
musculoskeletal systems (Figure 5). The output of the controller
is a signed activation. Therefore, the positive and negative
portions of the signal should be separated. The positive values
are interpreted as the representative muscle activation for the
flexor or CCW synergies, for the 2D and 3Dmodels, respectively.
Similarly, the negative portion is interpreted as the extensor/CW
representative in the two models. The representative activations
can subsequently be multiplied by the corresponding synergy
ratios Equations (16, 17) to calculate all muscle activations.

3. Results

The simulation results for both the 2D and 3D models are
presented here. In these simulations, the objective was to
efficiently follow a desired trajectory in the operational space.

Two feedback control methods were used: an optimal
controller [forward static optimization (FSO), Sharif Shourijeh
et al., 2015b], and the PID controller. FSO was selected as our
optimal controller because of its feedback properties and the fact
that it results in optimal behavior (Anderson and Pandy, 2001).
For the FSO controller, we considered a weighted sum of the
muscular effort and tracking error as the objective function. The
weighting factors and the PID controller parameters are provided
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in Table 1.

J = w1

m
∑

i=1

a2i + w2(θ − θdes)+ w3(θ̇ − θ̇des) (18)

Two sets of simulations were run. First, the musculoskeletal
systems were driven by the optimal controller, resulting in our
gold standard muscle activation patterns. In these simulations,
the activation level of all themuscles were individuallymodulated
by the FSO controller for each time step. In the second and
third sets of simulations, the PID controller calculated the
signed activation signal based on the tracking error (i.e., the
difference between the desired and actual angle), which was used
to construct the muscle activity levels using muscle synergies
(Equations 16, 17). These muscle activities were used to drive the
musculoskeletal systems.

Figure 6 shows the performance of the two controller
methods for the 2D model. As can be seen in this figure, the
performance of the two controllers is very close. The tracking
error is comparable using the two controllers, and the muscle
activation patterns are also very similar.

The similarity of the activations resulting from the synergistic
controller (PID) and the optimal controller (FSO) suggests that
the synergies defined in the previous sections result in near-
optimal behavior. The numerical values of the physiological
cost (Equation 19) in Table 2 further show the closeness of
the two methods. Previous reports (Erdemir et al., 2007) have
shown that the optimal muscle activities (calculated by the FSO
controller) estimate realistic muscle activities, which implies that
our synergistic controller results in realistic activity patterns.

effort =
1

Tf

∑

i

∫ Tf

0
a2i dt (19)

Figure 7 presents the 3D model simulation results, which
contains an extra set of simulations to compare the NNMF
synergies with our posture-dependent synergies. Similar to the
2D model results, the optimal muscle activities are well-matched
by the synergies presented in this paper. However, the static
synergies from NNMF could not properly recreate the optimal
(gold standard) muscle activities. This happens because the
NNMF essentially averages the relative muscle activities for
the entire range of motion in the operational space, therefore
neglecting the changing importance and function of the muscles.

TABLE 1 | Numerical values of the parameters used in the two simulations.

Parameter 2D model 3D model

FSO w1 1 1

w2 3×106 1×104

w3 5×102 1×102

PID Kp 10 100

Ki 10 100

Kd 2 0

As a result, some muscles are over-activated (e.g., medial head
of triceps), incorrectly activated (e.g., posterior deltoid) or even
completely neglected (e.g., brachioradialis and brachialis). Our
definition of synergies allows for high reconstruction accuracy
with the minimum number of synergies (in these cases only
two synergies). The comparison of the numerical values of the
physiological cost (Table 2) further show that the two NNMF
synergies cannot reconstruct the optimal muscle activities as well
as the posture-dependent ones (the physiological cost increases
by 12% using NNMF synergies).

The synergistic controller performed similar to the optimal
controller, but was 2–3 orders of magnitude faster (Table 2).

FIGURE 6 | Comparison of the two control methods in the control of

the 2D forearm model.

TABLE 2 | Comparison of the two control methods.

Method Physiological effort Computation time†

2D forearm 3D driver 2D forearm 3D driver

model model model model

FSO (baseline) 7.35× 10−2 2.24× 10−1 26.50 s 136.0 s ‡

PID (posture-dependent) 7.41× 10−2 2.28× 10−1 24.30× 10−3 s 2.24 s ‡

PID (NNMF) – 2.52× 10−1 – 2.24 s ‡

† Simulations on a 3.60 GHz quad-core Intel CPU with 16 Gb of RAM.
‡ Total simulation time, which includes the time required for controller calculations, plus

the integration time of the musculoskeletal model.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 October 2015 | Volume 9 | Article 121

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Sharif Razavian et al. Model-based prediction of muscle synergies

FIGURE 7 | Comparison of the two control methods in the control of

the 3D driver model.

These results show that the synergistic controller can run in real-
time, which is an important requirement in many applications
including real-time control of functional electrical stimulation
and rehabilitation devices (see Section Discussion).

4. Discussion

Muscle synergy has been considered as a possible mechanism
employed by the human nervous system to control movements.
Previous investigations on muscle synergy usually relied on an
inverse extraction method—i.e., the synergies were extracted
from the measured muscle activities using a factorization
algorithm (e.g., NNMF, Lee and Seung, 2000). These methods
usually neglect the functional aspects of synergies and their
correspondence with the task.

Unlike previous research, we proposed a model-based
approach to define the synergies based on the principles of
optimality. It has been argued that muscle synergies may

arise from a background optimization process (perhaps during
evolution) (de Rugy et al., 2012, 2013). Our method relies
on these arguments, and defines the synergies by employing
optimization tools. However, unlike the on-line optimization
methods, e.g., (Todorov and Jordan, 2002; Todorov et al.,
2005), the synergies are optimally calculated and stored off-
line, and recalled during an on-line control process. In
support of our method, it has been reported that the muscle
activities estimated by optimal control approaches correlate
well with experimental EMG (Erdemir et al., 2007), and that
the synergies extracted from such optimal muscle activities
match the ones extracted from the EMG data (Steele et al.,
2013). The comparison between our results and the synergies
obtained from the common factorization methods (NNMF)
also show the plausibility of the optimal arguments. Therefore,
the presented method can be used as a theoretical model-
based framework to study muscle synergy—a tool that was not
available before.

Another distinguishing feature of our approach is the
dependency of the synergies on the posture and the task.
To the best of our knowledge (and perhaps because of the
vast number of the required experimental trials) no explicit
definition of posture-dependent synergies is available in the
literature. Our approach excels as it relates the synergies to
known biomechanical parameters (such as muscle strength and
moment arm, which are already available in the literature,
e.g., Garner and Pandy, 2001). The posture dependency, as
mentioned earlier in this paper and in de Rugy et al. (2012),
might be an important requirement of synergies, as muscles
may change function depending on the posture [e.g., wrist
muscles (Kakei et al., 1999)]. Our results comparing the posture-
dependent synergies and the fixed ones from NNMF support
our hypothesis that posture-dependent synergies can reduce the
dimensions of the control space more effectively; fewer synergies
are required to efficiently control the motion if synergies are
posture-dependent.

There are two schools of thought regarding the relationship
between synergies and tasks: some researchers try to find the
shared synergies that can explain muscle activities in a variety
of motions (e.g., Bizzi et al., 2008; Sartori et al., 2013), while
others look at specific tasks [e.g., point-to-point reach, (d’Avella
et al., 2008), or wrist articulation, (de Rugy et al., 2013)]. Task-
dependent synergies have been previously mentioned (e.g., in
Zelik et al., 2014), but no scientific method to distinguish the
tasks and relate the synergies to the operational space has been
shown. We argue that for the efficient control of a task, it is
essential for the CNS to recruit the synergies related to that
specific operational space.

This argument immediately raises questions about how the
CNS may learn and recall these synergies for every task. One
possible argument is that the synergies (especially the ones
related to locomotion) are fine-tuned over the course of human
evolution, and perhaps hard-coded into the spinal cord circuitries
(the so-called central pattern generators (Ijspeert, 2008) can
be viewed as an example). Alternatively, and especially in the
context of adaptation to new tasks, the synergies may be viewed
as flexible structures, decoded by the interneurons of spinal
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cord (similar to the concept of spinal-like regulators proposed
by Raphael et al., 2010). It has been shown in de Rugy (2010)
that the process of visuomotor adaptation likely happens at the
sensory level as well as the execution (muscle synergy) level. In
the light of their results, we can argue that in a novel task (e.g.,
a distorted operational space), the previously learned synergies
may not be able to span the new space (due to the highly non-
linear transformations from the synergy space to the operational
space); thus, the CNS needs to learn new synergies to effectively
maneuver in the new operational space. It is likely that during the
learning process, the CNS uses the previously known synergies as
a starting point, and by trial and error develops a new basis set
that is good enough (Loeb, 2012) to maneuver in the new task
space.

4.1. Application to Higher Degrees of Freedom:
Insights from Robotics
The dependency of the number of synergies on the operational
space dimensions can be explained from a mechanical point
of view. Assume an n-DoF robot (Figure 8A) with an n-
dimensional operational space; also assume that the robot is
non-redundant (i.e., there are n actuators). In a certain state of
the robot, each actuator can produces a force in the operational
space (denoted by the vectors Vi in Figure 8A). The set of all n
force vectors can be viewed as a basis set that spans the robot’s
operational space. To control the robot in its operational space, a
required end-effector force can be decomposed onto the basis set,
resulting in the decomposition coefficients Ci. These coefficients
correspond to each actuator effort (Khatib, 1987).

The human musculoskeletal system (Figure 8B) is different
from a robot in two ways: it is actuated by muscles (they can only
pull), and is also redundant (there are more actuators than the
degrees of freedom).

A B

FIGURE 8 | (A) A non-redundant robotic arm. The operational space is

spanned by the basis set Vi ; an arbitrary force can be decomposed into this

basis set, resulting in the required actuator efforts. (B) The human

musculoskeletal system. Since the muscles are pull-only actuators, one extra

basis vector is required to satisfy positive-decomposition constraint. The basis

set, Si , in this case are synergy-produced forces, which can be used to

decompose any arbitrary hand force.

The pull-only condition introduces the constraint that the
end-effector force vector has to be positively-decomposed (i.e.,
the coefficients Ci must be positive). To positively-decompose an
arbitrary vector in an n-dimensional vector space, n + 1 basis
vectors are needed (instead of n), meaning that n + 1 pull-only
actuators are needed.

The redundancy poses the challenge of non-uniqueness of the
solution—the number of muscles is usually larger than n + 1. In
order to reduce the redundant system to a non-redundant one,
multiple muscle has to be grouped into n + 1 synergies; this
way, each synergy’s pulling direction can be used as a basis vector
vectors (Si, i ∈ {1...n + 1} in Figure 8B) to span the operational
space (this is essentially the same concept as the cosine tuning
curvesmentioned before e.g., in de Rugy et al., 2013).

The CNS can therefore, control the redundant
musculoskeletal system by employing the best combination
of muscle activities that generate such basis vectors in each
posture. We argue that these best sets (or muscle synergies) are
known to the CNS, and the CNS can reach a unique solution for
the intensity of each synergy to generate a certain end-effector
force, and consequently control the motion.

Our results show that when the operational space is one-
dimensional, two posture-dependent synergies are enough to
generate the motion. As the dimensions of the operational space
increases, more synergies will be required; for instance, to control
two dimensional point-to-point reaching action, three synergies
are required so that any arbitrary hand force is positively-
decomposed onto the synergies basis set. This hypothesis is
supported by independent experimental analysis of reaching
action in d’Avella et al. (2008), that three synergies can account
for most of the variation in arm muscles EMG.

One important drawback of the application of the same
method to higher operational space dimensions is the possible
sub-optimality due to the force decomposition mechanism
mentioned above. Although each basis vector is optimally
produced by a single synergy, there is no guarantee that a
linear combination of two synergies (to create an arbitrary
force in the operational space) will remain optimal. Our one-
DoF results were indeed optimal, because the operational space
was always aligned with the optimally produced basis vectors.
Our informal studies of higher-dimension systems show that
the sub-optimality exist (although not significant). A possible
strategy might be to increase the number of synergies. With
more synergies the basis set is more packed, leaving smaller area
to be spanned by two adjacent basis vectors. This strategy has
been reported before in de Rugy (2010) where eight synergies
were used to reconstruct six muscle activities. One immediate
advantage of this reversed dimension reduction is the elimination
of the need for optimization.

4.2. Other Implications of the Approach
The muscle synergy framework presented in this paper has
important implications in different areas. Our approach to
muscle synergy proposes answers to some unresolved issues in
motor control studies, namely the number of synergies and
their dependency on the task. In this paper we have presented
ideas on the requirements of the synergies from a theoretical
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dynamics perspective. However, the reader should note that the
results only show an initial study, and further experimental
and/or theoretical investigations are necessary to make a stronger
argument.

The results are even more interesting from an engineering
perspective. The human musculoskeletal system is challenging
to control due to the redundancy and non-linearities involved.
Our muscle synergy approach introduces a way to simplify the
control of such systems, which can be used in both simulations
and real-life applications. Having a realistic controller that
mimics the CNS behavior is a necessary component in
predictive musculoskeletal simulations. Such a controller can
generate/correct motions in unknown situations (e.g., in the
presence of disturbances or when experimental motion is
not available) without the need for computationally-intensive
optimization solutions. It can also facilitate the design and
control of machines interacting with humans, such as prosthetic
and orthotic devices, exoskeletons, and rehabilitation robots
(Ghannadi et al., 2015), by allowing fast prediction of the
human behavior. Furthermore, the synergy controller can
have direct application to the feedback control of real
musculoskeletal systems via neurostimulation and functional
electrical stimulation, where optimality and computational
efficiency are absolute necessities.

5. Conclusion

In this paper, we presented a model-based mathematical method
to define muscle synergies based on mathematical modeling
and optimal control theory. We showed that muscle synergies
can be effectively used to control a musculoskeletal arm in
real-time. Using this approach, the indeterminate force-sharing
problem in musculoskeletal system dynamics reduces such that
the solution is unique. Our novel definition of the posture-
dependent synergies allowed us to optimally generate torques in
the operational space. This lent itself to both fast and efficient
feedback control for the musculoskeletal systems. Our results
showed that the difference in muscle activities and tracking
performance between the feedback controller and the optimal
results are insignificant, while the computations are∼1000 times
faster with the former method. Further improvements can be
made, however, by introducing a closed-loop control logic that
takes into account predictive and learning properties of the
human motor control system.
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Appendix

To solve the optimization problem, the cost function (Equation
1) can be augmented using a Lagrange multiplier, λ (Kirk, 2004).

Ĵ =
∑

i

a2i + λ

[

∑

i

aihi(θ, θ̇)− T

]

(A1)

The inequality constraints (Equation 3) can be rewritten using
the slack variables si in the form:

ai − s2i = 0 (A2)

where si are assumed to be unbounded. Substituting Equation
(A2) into Equation (A1) yields:

Ĵ =
∑

i

s4i + λ

[

∑

i

s2i hi(θ, θ̇)− T

]

(A3)

∑

i

s2i hi(θ, θ̇) = T (A4)

At a local minimum, the gradient of the cost function should be
zero.

∂ Ĵ

∂si
= 4s3i + 2λsihi(θ, θ̇) = 0 (A5)

One answer to this equation is:

si = 0 ⇒ a∗i = 0 (A6)

If si 6= 0, we can divide (Equation A5) by si to get:

2s2i + λhi(θ, θ̇) = 0 (A7)

which leads to:
s2i = −

λ

2
hi(θ, θ̇) (A8)

By substituting this expression into the constraints (Equation
A4), the Lagrange multiplier can be found:

∑

i

[

−
λ

2
hi(θ, θ̇)

]

hi(θ, θ̇) = T (A9)

λ =
−2T

∑

i h
2
i (θ, θ̇)

(A10)

Therefore, the optimal solution (in sub-maximal contractions)
can be found:

s2i = a∗i =
hi(θ, θ̇)

∑

j h
2
j (θ, θ̇)

T (A11)

Nomenclature

α Muscle pennation angle

Ĵ Augmented cost function
λ Lagrange multiplier in optimization
A Data matrix
C Coefficient matrix
S Synergy matrix
θ Angle in the operational space
a Muscle activation
a∗ Optimal muscle activation level
F Muscle force
fl Muscle force-length relation
fv Muscle force-velocity relation
F0max Maximum isometric muscle force
h Non-linear transformation from muscle activity to

operational space torque
J Cost function in optimization
K{p,i,d} PID parameters

l Number of samples in the NNMF data matrix
m Number of muscles in the models
n Number of synergies in NNMF algorithm
r Muscle moment arm
S Synergy ratio
s Slack variable in optimization
T Torque in the operational space
w Weighting factor in objective function
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