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Purpose: Diabetes is a great risk factor for dementia and mild cognitive impairment

(MCI). This study investigates whether complex network-derived features in resting state

EEG (rsEEG) could be applied as a biomarker to distinguish amnestic mild cognitive

impairment (aMCI) from normal cognitive function in subjects with type 2 diabetes (T2D).

Method: In this study, EEG was recorded in 28 patients with T2D (16 aMCI patients

and 12 controls) during a no-task eyes-closed resting state. Pair-wise synchronization

of rsEEG signals were assessed in six frequency bands (delta, theta, lower alpha, upper

alpha, beta, and gamma) using phase lag index (PLI) and grouped into long distance

(intra- and inter-hemispheric) and short distance interactions. PLI-weighted connectivity

networks were also constructed, and characterized by mean clustering coefficient and

path length. The correlation of these features andMontreal Cognitive Assessment (MoCA)

scores was assessed.

Results: Main findings of this study were as follows: (1) In comparison with controls,

patients with aMCI had a significant decrease of global mean PLI in lower alpha, upper

alpha, and beta bands. Lower functional connection at short and long intra-hemispheric

distance mainly appeared on the left hemisphere. (2) In the lower alpha band, clustering

coefficient was significantly lower in aMCI group, and the path length significantly

increased. (3) Cognitive status measured by MoCA had a significant positive correlation

with cluster coefficient and negative correlation with path length in lower alpha band.

Conclusions: The brain network of aMCI patients displayed a disconnection syndrome

and a loss of small-world architecture. The correlation between cognitive states and

network characteristics suggested that the more in deterioration of the diabetes patients’

cognitive state, the less optimal the network organization become. Hence, the complex

network-derived biomarkers based on EEG could be employed to track cognitive

function of diabetic patients and provide a new diagnosis tool for aMCI.

Keywords: resting state electroencephalography (rsEEG), amnestic mild cognitive impairment (aMCI), diabetes,

phase lag index (PLI), graph analysis

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00133
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2015.00133&domain=pdf&date_stamp=2015-10-29
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:xiaoli@bnu.edu.cn
http://dx.doi.org/10.3389/fncom.2015.00133
http://journal.frontiersin.org/article/10.3389/fncom.2015.00133/abstract
http://loop.frontiersin.org/people/17574/overview
http://loop.frontiersin.org/people/266604/overview
http://loop.frontiersin.org/people/121806/overview


Zeng et al. Network analysis in T2D-aMCI

INTRODUCTION

Diabetes is a common metabolic disorder which can lead
to chronic complications such as cardiovascular disease and
peripheral neuropathy. The worldwide prevalence of diabetes
has increased during the past five decades, with 382 million
people with diabetes in 2013 (International Diabetes Federation,
2013). In diabetes, the Type 2 diabetes (T2D) caused by insulin
resistance accounts for 90–95% of diabetes cases, which makes it
an important public health issue. Several reports have indicated
that T2D is associated with an increase in the risk of dementia
and the proportion of patients who convert from mild cognitive
impairment (MCI) to dementia (Koekkoek et al., 2015). MCI
includes two subtypes: amnestic mild cognitive impairment
(aMCI) and non-amnestic MCI, the former being considered to
be a prodromal stage of Alzheimer’s disease (AD) (Vos et al.,
2013). Previous research showed that MCI progresses to AD at
a rate of approximately 10–15% of patients per year (Wee et al.,
2011). Moreover, results of prospective population-based studies
showed that the proportion of MCI patients who convert to
dementia is 1.5–3 times higher for those with diabetes compared
with those without (Xu et al., 2010; Li et al., 2011). Currently
no cure exists for AD, but administering certain medications in
the early stages may delay the onset of symptoms (Alzheimer’s
Association, 2013). With the increase of the number of elderly
patients with diabetes, it is becoming urgent and critical to
explore methods to screen for the MCI patients with diabetes, so
that the early interventions to these patients can be provided to
reduce the likelihood of the conversion fromMCI to AD.

Traditionally MCI is diagnosed based on clinical observations

and cognitive test. But before clinical symptoms appear, the

disease process is ongoing and damaging the brain. Therefore,
early diagnosis of MCI is demanded. Lots of researches are

engaged in the discovery and validation of potential biomarkers
that allow early diagnosis and objective assessment of MCI.
These biomarkers can be divided into two classes: measures of
key proteins deposition and signs of neuronal injury (Albert
et al., 2011). Biomarkers of proteins deposition include both
positron-emission tomography (PET) evidence of β-amyloid
deposition (Fagan et al., 2006) and cerebrospinal fluid (CSF)
measures of increased total tau or phosphorylated-tau (p-
tau) (Shaw et al., 2009). Biomarkers of neuronal injury reflect
the neurodegeneration due to MCI, including brain atrophy
and hypometabolism, obtained by magnetic resonance imaging
(MRI) and PET (Jagust, 2006; Jack et al., 2008). However, the
sensitivity and specificity of these aforementioned biomarkers are
different for different international databases. Moreover, these
measures have their limitations: PET are costly and expose
patients to radiation; CSF are invasive; and MRI are relatively
expensive for mass screening of the MCI population. Therefore,
a non-invasive and cost-effective tool is urgently needed.

Recent studies have demonstrated that the cerebral EEG
rhythms can reflect the underlying brain activity, and could be
regarded as a potential diagnostic tool for MCI (Jackson and
Snyder, 2008). Compared with other techniques, EEG offers
a relatively inexpensive, noninvasive, potentially portable, and
replicable method for assessing age-related and disease-related

neurophysiologic changes. Studies have repeatedly observed two
major effects of MCI on EEG (Dauwels et al., 2011): slowing
of EEG (more low-frequency power) and reduced complexity.
These changes in EEG data have been used as biomarkers to
diagnose subjects with MCI. However, these features tend to vary
across subjects, therefore have insufficient specificity (Gallego-
Jutglà et al., 2015). One limitation is that these features only
characterize abnormalities in local brain region, whereas the
disorder of MCI is closely correlated with abnormal activity in
multiple brain areas (Misra et al., 2009; Bai et al., 2012). Thus,
a diagnosis method considering the whole brain activities would
be more suitable, e.g., the brain network analysis, which reflects
interactions between different brain regions rather than local
dysfunction. In brain network analysis, the interactions between
each pair of regions are quantified. This structure of interaction is
often termed functional connectivity, which refers to measuring
statistical synchronization between physiological signals (such as
EEG) recorded from different brain regions (David et al., 2004;
Pereda et al., 2005).

In brain network studies, it is very important to consider
whether synchronization between signals recorded at different
sensors can accurately reflect the physiological interactions
between different brain regions (Wen et al., 2015). A very serious
problem unique to EEG is that the active reference electrode
will contribute similar components to EEG signals recorded at
different electrodes and yield spurious synchronization. Xu et al.
have shown how different reference electrode methods, including
vertex reference, average reference, and zero reference, affect
the diagnosis of MCI (Xu et al., 2014). Moreover, nearby EEG
electrodes are likely to pick up activity of common sources, which
give rise to strong synchronization between recorded signals that
reflect simple volume conduction rather than true functional
connectivity (Srinivasan et al., 2007). Two approaches have been
proposed to overcome the aforementioned problems. One is
to estimate synchronization between signals from reconstructed
sources (“source space”) rather than the actually recorded
signals (“signal space”). Though this method has some added
benefits of dealing with interactions between anatomically well-
defined brain regions, no unique way exists to reconstruct
the corresponding sources (Hadjipapas et al., 2005). The other
approach is to extract synchronization between signals which is
not or at least unlikely due to volume conduction. The phase
lag index (PLI), reflecting the consistency with which one signal
is phase leading or lagging with respect to another signal, was
introduced to assess the true interactions in this direction (Stam
et al., 2007). Previous studies have shown that PLI was much
less affected by the influence of volume conduction and active
reference electrodes than traditional measures like coherence or
the imaginary component of coherence (Stam et al., 2007). Based
on the PLI to calculate the functional connection, this work
attempts to investigate the abnormal functional connectivity of
MCI, in view of global and local brain networks.

However, abnormalities of functional connectivity in MCI
per se may not yet explain why the large scale brain networks
are functioning abnormally. Connectivity studies in MCI are
generally very descriptive and lack a more robust framework
to discriminate normal and abnormal networks in the brain.
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In recent years, the graph theory has been introduced to
study topographic organization of large scale brain networks
(Reijneveld et al., 2007; Bullmore and Sporns, 2009). Graph
theory provides complex network models of the brain to
better understand the relation between network structure
and undergoing processes. Particularly, Watts and Strogatz
introduced so-called “small-world” networks, which have a
relatively high amount of “local clustering,” meaning that nodes
are often connected to their neighbors, combined with relatively
short “path lengths,” meaning that from any node it takes just
a few steps to reach any other node in the network (Watts
and Strogatz, 1998). Small-world network considers both the
quality of local information processing and the co-operation of
distant brain regions. There are now accumulating evidences that
both structural and functional brain networks in healthy subjects
display a “small-world” type network organization characterized
by a combination of high local clustering and short path length
(Smit et al., 2008; Bullmore and Sporns, 2012). As for patients,
several recent studies have revealed a loss of “small-worldness” of
brain networks due to neurodegeneration (Stam, 2014). However,
current studies mainly focus on the brain network of dementia
patients, but few have analyzed small-world property in MCI
patients. Furthermore, findings in the MCI patients are quite
contradictory among studies, since some of them report no
significant changes of brain network in MCI whereas others
show decreased or increased “small-worldness.” Specifically, Seo
et al. reported that local clustering of networks was lower in
MCI compared to normal cognitive subjects (Seo et al., 2013),
whereas Vecchio et al. found a significant increment of the
clustering coefficient for MCI group (Vecchio et al., 2014).
Besides, both the above two studies did not observe obvious
difference in path length between two groups, whereas Xu et al.
found that the MCI group had increased path length; using this
network feature allows to distinguish the two groups with 90%
accuracy (Xu et al., 2014). Hence, it is still uncertain that whether
MCI individuals would exhibit a disrupted small-world property
similar to those of dementia patients, and more work are needed
to make clear this problem, especially for the MCI patient with
diabetes.

In the present study, we intend to study in more detail the
brain networks changes in aMCI with T2D. In particular, we
employ resting state EEG (rsEEG) and attempt to address the
following three questions:

(1) Whether the aMCI in T2D have a specific loss of either short
distance or long distance interactions between particular
regions.

(2) Whether brain networks of the aMCI in T2D are
characterized by a loss of small-world architecture.

(3) Is there a relationship between network architecture and
general cognitive state in T2D?

To this end, EEG was recorded during an eyes-closed no-
task state in 28 T2D patients including 16 subjects in aMCI
and 12 subjects in normal cognitive state. The PLI as a
measure of functional connectivity was computed between all
channels of interest for signal filtered in delta, theta, lower
alpha, upper alpha, beta, and gamma bands. The PLI values

were averaged for short distance and long distance (intra- and
interhemispheric) channel pairs to explore abnormality of
functional connectivity. In addition, weighted graphs were built
from functional connectivity to calculate the clustering index
and path length to examine topographic changes of brain
network. Finally, how the dynamic changes in global network
architecture correlated with the generic cognitive status was
analyzed.

MATERIALS AND METHODS

Participants
This study involved 28 T2D patients who satisfied the diagnosis
criteria for diabetes (American Diabetes Association, 2013) in
the Department of Neurology, General Hospital of Second
Artillery Corps of PLA, Beijing, China. These participants were
divided into 2 groups: aMCIs and controls. The following
table (Table 1) reports information about the participants’ age,
diabetes duration, education level, generic cognitive status
estimated by the Mini Mental State Examination (MMSE)
and the Montreal Cognitive Assessment (MoCA) test, and the
number of participants per group.

The study protocol has taken consent from the ethics
committee of Beijing Normal University, and all patients gave
written informed consent that their clinical data might be
used and published for research purposes. The experiment was
conducted in accordance with the Declaration of Rits (1964).

Neuropsychological Examination and
Inclusion Criteria
In this study, besides MMSE and MoCA, the neuropsychological
examination also included other tests aiming to assess the
participant’s generic cognitive status as well as specific cognitive
domains (verbal memory, independent living, etc.). The details
can be found in Bian et al. (2014).

All the selected aMCI patients with diabetes satisfied the
following criteria (Petersen, 2004; Albert et al., 2011): (1)
impaired cognitive function in one or several domains (such as
memory), typically 1–1.5 standard deviation below normative
data; (2) cognitive complaint usually coming from the patients
or their family; (3) essentially preserving most activities of daily
life; (4) not demented.

EEG Recording and Pre-processing
Neurophysiological data were recorded while subjects were
seated in a comfortable arm chair, using a high-density 128-
channel EGI system of Net Amps 300 amplifiers [Electrical
Geodesics Inc. (EGI), Eugene, OR]. The vertex sensor (Cz) was
set as the reference electrode and the sampling rate was 1000Hz.
The impedances of all electrodes were kept below 50 k�, as
recommended by EGI guidelines. During the recording, patients
were instructed to keep relaxed, with their eyes closed, for at least
5min.

For further off-line processing, 59 electrodes were firstly
selected according to the international 10-10 system, and the
division of the brain regions is depicted in Figure 1. Then,

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2015 | Volume 9 | Article 133

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zeng et al. Network analysis in T2D-aMCI

TABLE 1 | Mean age, diabetes duration, cognitive status and the number for the participants of each group enrolled in the present study.

Group Number Age (years) Education level (years) Diabetes duration (years) MMSE MoCA

aMCI 16 (5 males) 69.7 ± 8.4 12.9 ± 1.8 9.3 ± 2.4 27.9 ± 0.5 22.4 ± 0.5

Control 12 (6 males) 73.3 ± 4.6 13.8 ± 3.0 14.0 ± 3.1 28.8 ± 0.2 27.0 ± 0.5

FIGURE 1 | Illustration of the allocation of channel pairs for short and

long distances. Channels are grouped into frontal (red plus sign), central

(blue circle), occipital (purple cross), and temporal (green asterisk) regions for

both hemispheres. The short distance PLI is computed as the average PLI

between all channel pairs within the same region (two such pairs are shown for

the left frontal region). Long distance PLI is computed from channel pairs

where one channel is in one region, and the other channel is in another region.

This is illustrated for right temporo-central long distance PLI and for occipital

interhemispheric long distance PLI.

the recorded EEG was re-referenced using the average of left
and right mastoid sensors, and down-sampled to 250Hz. A
notch filter centered at 50Hz was used to remove the line
noise. Other artifact components were automatically rejected
by combining ensemble empirical mode decomposition and
independent component analysis (Zeng et al., in revision).
After that, visual inspection was performed to further eliminate
data segments contaminated by noise. Finally, for each subject,
epochs of 3min were segmented for further analysis. The
aforementioned pre-processing procedure was performed using
the MATLAB Signal Processing Toolbox and EEGLAB (Delorme
and Makeig, 2004).

PLI Calculation
Functional connectivity between different brain regions was
computed with the PLI (Stam et al., 2007). The PLI is a measure
of the asymmetry of the distribution of phase differences between
two signals. It reflects the consistency with which one signal is
phase leading or lagging to another signal. In short, if the phase

differences between two time series are △φ (tk)(k = 1 . . .N), PLI
can be computed by

PLI =
∣

∣

〈

sign [△φ (tk)]
〉∣

∣

where 〈·〉 is the mean value operator. The PLI ranges between
0 and 1. A PLI of zero indicates either no coupling or coupling
with a phase difference centered around 0 mod π . And a PLI of 1
indicates perfect phase locking at a value of △φ different from 0
mod π . The stronger the nonzero phase locking is, the larger PLI
will be.

PLI was computed for the following frequency bands: delta
(1–4Hz), theta (4–8Hz), lower alpha (8–10Hz), upper alpha
(10–13Hz), beta (13–30Hz), and gamma (30–45Hz). For each
frequency band, the result of PLI for all pair-wise combinations
of channels is anN×N synchronizationmatrix,N = 59, in which
each entry PLIi,j contains the value of the PLI for the channels i
and j.

Besides a global mean PLI calculation, further averaging
was done to obtain long distance intra- and interhemispheric
and short distance local measures. For this analysis, EEG
channels were grouped into four regions (frontal, temporal,
central, and occipital) for each hemisphere. Long distances
(12 intra-hemispheric: fronto-temporal, fronto-central, fronto-
occipital, temporo-central, occipito-temporal, occipito-central;
4 interhemispheric: frontal, central, occipital, and temporal)
involved synchronizations between two different regions (within
one hemisphere or homolog regions of two hemispheres), and
short distances involved synchronizations within one region.
Midline channels were not used. The allocations of channel pairs
for short and long distances are illustrated in Figure 1.

Graph Analysis
In this work, graph analysis was adopted to explore the difference
between the two groups in the brain network. The nodes in the
graph are represented by channels and the edges are defined as
the synchronization between two EEG signals recorded at the
corresponding channels. In this study, the aforementioned PLI
values were assigned to corresponding edges to reflect strength
between the two nodes. For each subject in each frequency band,
we defined a network of 59 nodes and the corresponding edge
weights mapping from PLI matrix. Weighted graph was directly
used to analyze the brain network to avoid choosing an arbitrary
threshold for binary graph analysis.

Graphs can be characterized by many measures. Two
fundamental measures are the clustering coefficient and path
length, both of which have been widely used to analyze the
brain function network. In short, the clustering coefficient for a
node generally represents the proportion of its neighboring nodes
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that are connected among each other. The weighted clustering
coefficient of vertex i is defined as

Ci =

∑

k 6=i

∑

l 6= i,l 6= k wikwilwkl
∑

k 6= i

∑

l 6= i,l 6= k wikwil

where w is the edge weight between two nodes. And the mean
clustering coefficient of the whole network is defined as:

C =
1

N

N
∑

i= 1

Ci

The path length for weighted graph was calculated according to
the approach of Latora and Marchiori (2001). The length of an
edge is defined as the inverse of the weight, i.e., Lij = 1/wij if wij

6= 0, and Lij =∞ if wij = 0. The shortest path between two nodes
is the path with the shortest length between the two nodes. The
average weighted path length of the entire graph is estimated as:

L =
1

1
N(N−1)

∑N
i= 1

∑N
j 6= i (1/Lij)

Statistical Analysis
In this study, ANOVA was used to analysis the difference in the
subject characteristics. And group differences in PLI distribution
were tested with two-tailed t-tests for independent samples (not
assuming equal variance). As graph measures showed a non-
Gaussian distribution, group differences were tested with Mann–
Whitney U-tests for independent samples. Associations between
general cognitive states and network-derived measures were
assessed with Pearson’s linear correlations. A significance level of
p < 0.05 was used.

RESULTS

Subject Characteristics
The two groups were matched in age, diabetes duration and
education level, but not in gender. Nevertheless, no effect of
gender distribution in the two groups on PLI and network-
derived measures was found. There were significant differences
in scores of MoCA between aMCI and controls (p < 0.001).
The scores of MMSE were lower in aMCI than controls, while
these differences were not statistically significant. Hence, we only
focused on MoCA in the following study.

PLI Analysis
PLI was computed for all pair-wise combinations of channels in
six frequency bands respectively. Group differences in mean PLI
for each frequency band between the aMCI and controls were
tested with two-tailed t-tests for independent samples.

The results of group differences in global mean PLI are shown
in Figure 2. For convenience, the lower alpha and upper alpha
are labeled alpha1 and alpha2 in the figure, respectively. The
mean PLI was significantly lower in the aMCI group in the low
alpha band (p = 0.031), high alpha band (p = 0.028) and beta

FIGURE 2 | Mean PLI averaged over all pairs of EEG channels for aMCI

and controls in six frequency bands. The control group and aMCI group

are represented by red and white boxes respectively. Error bars are standard

deviations. Significant differences between aMCI and controls with two-tailed

t-test (P < 0.05) are presented by blue asterisks.

band (p = 0.043). There were no significant differences in other
frequency bands.

The region differences between the two groups in the
alpha1, alpha2, and beta band were further investigated and are
illustrated in Figures 3A–C respectively. For the alpha1 band,
aMCI group had significant lower PLI in left fronto-temporal
(p = 0.015), fronto-central (p = 0.017), occipito-temporal (p =

0.006), occipito-central (p = 0.005), and right fronto-central
(p = 0.039). Mean PLI in local left frontal (p = 0.022), temporal
(p = 0.025), occipital (p = 0.021), and right central (p = 0.028)
were also decreased in the aMCI group. For the alpha2 band,
aMCI group showed a PLI decrease in local left frontal (p =

0.017), temporal (p = 0.018), and central (0.023). All the region
differences in intra-hemispheric long distance concentrated on
the left hemisphere: fronto-temporal (p = 0.029), fronto-central
(p = 0.024), temporo-central (p = 0.018), and occipito-temporal
(p = 0.024). Besides, mean PLI in interhemispheric temporal
(p = 0.023) and central (p = 0.038) were also decreased in
the aMCI group. For the beta band, aMCI group had significant
lower PLI in local right frontal (p = 0.043), interhemispheric
temporal (p = 0.025), and central (p = 0.028).

Graph Analysis
Clustering coefficient and path length of brain function network
were calculated for both aMCI and control groups in each
frequency band. The non-parametric Mann–Whitney U-test was
used to test the group differences in network characteristics.

Boxplots of clustering coefficient and path length for the
two groups in each frequency are shown in Figures 4A,B,
respectively. The results revealed that clustering coefficient was
significantly lower in aMCI group compared to controls in the
lower alpha band (U = 117, p = 0.025), but not in the other
bands. The path length of the aMCI group increased in the low
alpha band (U = 87, p = 0.04), while no differences between the
two groups in other bands were found.
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FIGURE 3 | Schematic illustration of significant differences in region mean PLI for short distance (indicated by filled squares) and long distance

(indicated by arrows) in the alpha1, alpha2, and beta bands. And the region differences between the two groups in the three frequency bands are shown in (A),

(B), and (C) respectively.

FIGURE 4 | Boxplots of clustering coefficient (A) and path length (B) for control (red box) and aMCI (white box) groups in each frequency band.

Boxplots show median value, interquartile range, extremes, and outliers (black plus). Significant differences between aMCI and controls with Mann–Whitney U-test

(P < 0.05) are presented by blue asterisks.

Correlation Between Cognitive Status and
Network Characteristics
In order to test if there is correlation between cognitive status and
the network characteristics, Pearson’s linear correlations were
computed for all subjects (aMCI and controls) put together in one
group. Figure 5 illustrates these correlations through scatter plots
of the MoCA data distributions against the clustering coefficient
and path length values respectively. The results showed a
significant positive correlation between MoCA and clustering
coefficient (r = 0.48, p = 0.018) (shown in Figure 5A),
and a significant negative correlation between MoCA and path
length at the low alpha band (r = −0.44, p = 0.034) (shown
in Figure 5B). Based on the significant correlation of network

architecture and the cognitive status, this finding may suggest
that the degree of network performance can reflect the deficiency
in generic cognitive processing.

DISCUSSION

T2Dmay increase the risk of cognitive impairment and accelerate
the progress from MCI to dementia. We attempted to explore
the changes in brain functional network to distinguish aMCI
from controls in patients having T2D. We found that resting-
state functional connectivity of EEG is decreased in aMCI
patients in the lower alpha, upper alpha, and beta bands.
This finding supports the concept of aMCI as a disconnection

Frontiers in Computational Neuroscience | www.frontiersin.org 6 October 2015 | Volume 9 | Article 133

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zeng et al. Network analysis in T2D-aMCI

FIGURE 5 | Visualization of the linear correlation between network characteristics and MoCA score. The positive correlation of clustering coefficient with

MoCA in the lower alpha band is shown in (A) (r = 0.48, p = 0.018), and the negative correlation of path length with MoCA in the low alpha band is shown in (B)

(r = −0.44, p = 0.034). aMCI and controls group were combined for this analysis.

syndrome. Furthermore, changes in functional connectivity in
aMCI patients did not involve the whole brain regions to
the same extent, which suggested a heterogeneous disruption
of functional network structure. This idea was confirmed by
graph analysis of the organization of brain network, which
revealed lower clustering coefficient and higher path length in
aMCI at the lower alpha band. The changes suggest a loss of
“small-worldness” of brain networks in aMCI than in control
subjects. In addition, we also found a statistically significant
correlation between network-derived measures and cognitive
status as measured with MoCA, which suggested that network
characteristics can reflect the process of cognitive deterioration
in patients with T2D.

The resting-state EEG was used in this work to analyze the
brain network in the absence of task performance or sensory
stimulation. These measurements can identify abnormalities in
MCI, whereas the most widely used evoked potential is not
well suited (Fox and Greicius, 2010). In task-based evoked
potential studies, only time-locked neural responses to events
of interest were studied, and all other spontaneous activity are
considered background noise. So task-dependent changes in
brain network are difficult to interpret the functional differences
in individuals with MCI at rest (Fox et al., 2006). Furthermore,
lots of studies have suggested that the brain system operates
with intrinsic resting-state integration and external sensory
information only interacts with, rather than determines, the
operation of brain system (Fox and Raichle, 2007; Raichle
and Snyder, 2007). In addition, there are also several practical
advantages of using rsEEG to study abnormal brain function
in neural disorders. Resting-state approaches don’t require
subjects to make responses for some event, which is particularly
promising for studying more severely impaired and/or younger
patients who may not be able to perform tasks accurately
because of cognitive, physical, or developmental challenges.
EEG of resting-state is also a promising tool to monitor the

evolution of the disease and the effect of treatment (Zeng et al.,
2015).

Despite lots of advantages in the understanding of functional
interactions among brain regions, EEG still faces the problem of
volume conduction, which may give rise to spurious interactions.
In the present study, we adopt PLI to describe the interaction and
group the electrode pairs in short and long distances. While PLI
estimated in this way will be influenced by volume conduction, it
is less likely that volume conduction can explain group difference
in PLI between MCI and controls. Furthermore, several of
abnormal connections involve in long distance, which are less
likely to be due to volume conduction. Although Peraza et al.
has demonstrated that the PLI would overestimate the small-
worldness due to volume conduction, they also showed that brain
network based on the PLI was closer to the idea network relative
to the network based on the coherence and phase synchrony
(Peraza et al., 2012). Hence, PLI is still a good choice to apply for
brain network inference from EEG recordings, at least to a large
degree. The choice of the type of graph to analyze brain network
also can lead to bias. Generally, there are two types of undirected
graphs: weighted graph and binary graph. For the latter, some
threshold should be selected to transform the synchronization
matrix into its adjacency matrix, the characteristics of the binary
graph is therefore crucially depends on the selected threshold
(Zanin et al., 2012). To avoid artificial arbitrariness, the present
work directly adopts the weighted graph to analyze the brain
network to get comparable results.

The pattern of global functional connectivity changes in
the current study shows similarities as well as differences
with previous EEG and MEG studies. A lower level of global
synchronization in MCI was presented in alpha and beta bands,
which has been reported by early studies (Pijnenburg et al., 2004;
Koenig et al., 2005; López et al., 2014; Wen et al., 2014). However,
many other studies with MCI patient also demonstrated different
abnormalities of functional connectivity. Specifically, Stam et al.
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found that the synchronization measured by synchronization
likelihood was similar in controls’ EEG and those of MCI patients
(Stam et al., 2003), whereas Gomez et al. showed that functional
connectivity measured by coherence was lower in the MCI group
than control group at all frequency bands (Gómez et al., 2009).
And Lopez reported that compared with controls, MCIs showed
lower phase locking values in alpha, beta, and gamma bands in
resting state while higher phase locking values in delta, theta, and
gamma bands during cognitive tasks (López et al., 2014). The
differences are probably due to the different condition in EEG
recording (task or resting conditions) or the method to calculate
functional connection. Nevertheless, our results are generally
consistent with most studies on loss of average synchrony in
rest condition of MCI patient. This decrease in synchrony is
often attributed to a functional disconnection of the neocortex.
Therefore, this study suggests that the decreased mean functional
connection can be as a sensitive index to distinguish aMCI from
subjects with normal cognitive function.

To reveal the abnormal functional connection further, the
present study also investigated the relative contribution to the
impaired functional connectivity in MCI from short distance
and long distance interactions in lower alpha, upper alpha, and
beta band. Lower short and long intra-hemispheric functional
connections in both lower alpha and upper alpha band mainly
distributed at the left hemisphere, especially in the temporo-
fronto-central cortices. Similar results were also reported in
previous studies (Stam et al., 2006, 2009). These findings were
consistent with the current neurological knowledge of the trend
of AD progression, that early changes are seen in left hemisphere
followed by right hemisphere areas (Sankari et al., 2011).
Moreover, both the upper alpha and beta bands showed a loss
of long distance interhemispheric functional connectivity, where
the former showed in frontal and temporal regions, and the latter
showed in temporal and occipital regions. Though combining
MRI and electroencephalography, it has been reported that lower
interhemispheric functional connection in MCI was correlated
with atrophy of the corpus callosum (Pogarell et al., 2005). Our
results further support the concept to some extent. Besides,
the current work revealed that left temporal region was most
involved in the abnormal functional connection. Other studies in
MCI and AD have also stressed the importance of left temporal
region and suggested that left temporal disturbance have been
associated with a higher chance of conversion to MCI (Maestú
et al., 2005, 2006).

Aided by the advanced graph theoretical approaches, we
investigated changes in functional network organization of MCI
by clustering coefficient and path length, which were two
different perspectives of information segregation and integration.
The result of present study showed that clustering coefficient
was decreased and path length was increased in the lower alpha
band. This suggested that MCI were associated with disrupted
segregation and integration in brain networks. Furthermore,
according to the definition of small-world network, it represented
an optimal organization in terms of local specialization (large
clustering) and global integration (small path length). Hence, a
lower cluster coefficient with longer path length meant a less

optimal network organization and a loss of small-world network
characteristics in MCI. Such kind of the network deterioration
in MCI also has been reported by others using EEG (Frantzidis
et al., 2014), MEG (Buldú et al., 2011), and functional MRI
(Yao et al., 2010). Considering the random rewiring model in
Watts and Strogatz (1998), the functional network in MCI was
characterized by a shift from organized small-world networks
to random network. The trend to random network in MCI
may be a final common pathway for different types of brain
damage (such as multiple sclerosis, traumatic brain injury, and
epilepsy), resulting from loss of neurons and connections as well
a randomoutgrowth of new connections (Stam, 2014). Therefore,
the graph techniques could be a promising approach to study the
underlying mechanisms in MCI.

In addition, this study found that cognitive status measured
by MoCA has significantly positive correlation with cluster
coefficient and negative correlation with path length in lower
alpha band. That is, the more deterioration of cognitive states
the patients had, the less optimal the network organization was.
This finding was in agreement with a previous finding of a
positive correlation between small-worldness and MoCA scores
in a group of MCI and AD patients (Frantzidis et al., 2014). A
longitudinal EEG study also found that the progression of AD
is characterized by a reduction of efficiency and a loss of small-
worldness of the pathological brain (Morabito et al., 2015). These
correlations confirmed the feasibility and value of advanced
graph theory approaches in EEG to study aMCI in diabetes, and
provide quantitative predictions of changes in brain network as
disease progresses.

This study showed that the network analysis of rsEEG may
provide an efficient method to monitor the cortical dysfunction
associated with the cognitive decline of diabetic patients. The
network-derived measures may eventually play a role in early
detecting aMCI or in guiding diagnosis of aMCI in diabetes.
Hence, early intervention can be carried out to slow the
development pace of aMCI to AD. However, these results are
still limited. Larger prospective studies are necessary to verify the
findings in this study.
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