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Over the past 40 years, Neurobiology and Computational Neuroscience have proved that deeper
understanding of visual processes in humans and non-human primates can lead to important
advancements in computational perception theories and systems. One of the main difficulties that
arises when designing automatic vision systems is developing a mechanism that can recognize—or
simply find—an object when faced with all the possible variations that may occur in a natural scene,
and with the ease of the primate visual system. The area of the brain in primates that is dedicated
to analyzing visual information is the visual cortex. The visual cortex performs a wide variety of
complex tasks by means of seemingly simple operations. These operations are applied to several
layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract
intermediate processing stages.

In this research topic we propose to bring together current efforts in Neurophysiology and
Computer Vision in order to better understand (1) How the visual cortex encodes an object from
a starting point where neurons respond to lines, bars or edges to the representation of an object at
the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and
robust to occlusions and clutter; and (2) How the design of automatic vision systems benefits
from that knowledge to get closer to human accuracy, efficiency and robustness to variations.
In fact, the primate visual system has influenced computer vision systems for decades now since
Hubel and Wiesel (1968) simple and complex cells inspired the Neocognitron (Fukushima, 1980).
Since then, studies about the primate and human visual systems led the way to many more works
on biologically-inspired computational vision, such as Tsotsos et al. (1995); Olshausen and Field
(1996); Booth and Rolls (1998); Riesenhuber and Poggio (1999); Rodríguez-Sánchez and Tsotsos
(2011), to name a few.

The answers to these issues bring hypotheses that are partially addressed in this research topic,
raising additional new questions:

1. What are the mechanisms involved in these visual architectures? What are the limitations of
feedforward connections? When is feedback and top-down priming necessary? The classical
way of seeing feedback connections is for the enhancement of neural responses through top-
down attentive processes (Moran and Desimone, 1985; Rodríguez-Sánchez et al., 2006; Perry
et al., 2015). But lately, other studies support a role of feedback connections related to cell
selectivity through recurrent networks (Neumann and Sepp, 1999; Angelucci and Bressloff,
2006).

2. The ventral stream areas (V1, V2, V4, inferotemporal cortex) have usually been considered
to be the ones involved in object recogntion and the subject of several existing models
(Serre et al., 2006; Rodríguez-Sánchez and Tsotsos, 2012). But, also recently, there are
new findings that relate the dorsal stream with that same task (Konen and Kastner, 2008;
Perry and Fallah, 2012). What are the differences between how objects are processed in
the ventral and the dorsal streams? Which areas are involved in recognition and which in
localization?
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3. And finally, how much is learned and how much is genetically
implemented (Rodríguez-Sánchez and Piater, 2014)? Even
more, what is the relation between learning, sparse coding,
selectivity and diversity (Olshausen and Field, 1996; Xiong
et al., 2015) and how different learning strategies compare?

We present a total of 19 papers related to those questions.
The following five papers deal with the questions related to
visual architectures and their mechanisms. Ghodrati et al. (2014)
studied whether recent relative successes in object recognition
on various image datasets based on sparse representations
applied in a feedforward fashion represented a breakthrough in
invariant object recognition. In their study they showed, using
a carefully designed parametrically controlled image database
consisting of several object categories, that these approaches fail
when the complexity of image variations is high and that their
performance is still poor compared to humans. This suggests
that learning sparse informative visual features may be one
of the necessary components but definitely not a complete
solution for a human-like object recognition system. A classical
feedforward filtering approach is also challenged in the paper
by Herzog and Clarke (2014), where the authors provided
ample evidence, stemming from experiments from crowding
research, to support their arguments that the computations
are not purely local and feedforward, but rather global and
iterative. On the same topic, Tal and Bar (2014) explored the
role of top-down mechanisms which bias the processing of
the incoming visual information and facilitate fast and robust
recognition. This work specifically addresses the question of what
happens to initial predictions that eventually get rejected in a
competitive selection process. The work by Marfil et al. (2014)
brings into focus another important aspect of biological visual
sytems, namely attention. The authors studied a bidirectional
relationship between segmentation and attention processes. They
presented a bottom-up foveal attention model that demonstrates
how the attention process influences the selection of the next
position of the fovea and how segmentation, in turn, guides the
extraction of units of attention. In Han and Vasconcelos (2014)
the authors also researched the role of attention models, but this
time in connection to object recognition. Using their recognition
model, hierarchical discriminant saliency network (HDSN), they
clearly demonstrated the benefits of integrating attention and
recognition.

We provide an interesting discussion on the role of ventral
and dorsal streams with a total of 10 articles. Kubilius et al.
(2014) discusses the importance of surface representation and
reviews recent work on mid-level visual areas in the ventral
stream. We include here two models of shape related to those
intermediate visual areas. The first approach is a recurrent
network that achieves figure-ground segregation by assigning
border ownership through the interaction between feedforward
and feedback inputs (Tschechne and Neumann, 2014). The
second approach is a trainable set of shape detectors that can
be applied as a filter bank to recognize letters and keywords as
well finding objects in complex scenes (Azzopardi and Petkov,
2014). The question that arises regarding computational models
is of course, how faithful they are? This is what Ramakrishnan

et al. (2015) answers by comparing the fMRI responses from
20 subjects to two different types of computer vision models:
the classical bag of words and the biologically-inspired HMAX.
HMAX is also the subject of study in Zeman et al. (2014), here
the authors use that model to compare the robustness of complex
cells to simple cells in the Müller-Lyer illusion. The final stage in
the object recognition pathway is the inferotemporal cortex (IT),
Leeds et al. (2014) present an fMRI study that tries to answers
the problem of how starting from simple edge-like features in
V1 we obtain neurons at the top of the hierarchy that respond
to complex features as parts, textures or shapes. Using feed-
forward object detection and classificationmodeling, Khosla et al.
(2014) developed a neuromorphic system that also efficiently
produces automated video object recognition. However, the
visual system is not limited to only detecting objects, but can
also detect the spatial relationships between objects and even
between parts of the same object. The dorsal stream areas are
thus also important for object representation with a focus on
action via effectors such as the eyes or the hand. Theys et al.
(2014) reviews how 3D shape for grasping is processed along the
dorsal stream, focusing on the representations in the anterior
intraparietal area (AIP) and ventral premotor cortex (PMv).
Rezai et al. (2014) advances this by modeling the curvature
and gradient input from the caudal intraparietal area (CIP)
to visual neurons in AIP, using superquadric fits—used in
robotics for grasp planning—or Isomap dimension reductions
of object surface distances. They found that both models fit
responses from primate AIP neurons. However, Isomaps better
approximated the feedforward input from CIP making it the
more promising model of how the dorsal stream produces shape
representations for grasping. Yet the features used for grasping
are only a subset of an object’s features. While the integration of
features along the ventral stream to form object representations
is well-known, Perry and Fallah (2014) review recent findings
supporting dorsal stream object representations and propose
a framework for the integration of features along the dorsal
stream.

Finally, four papers address the problem of learning and
sparse coding. Rinkus (2014) shows that a hierarchical sparse
distributed code network provides the foundation for the storage
and retrieval of associative memory on top of building up an
object representation. The end point of object processing is
recognition, which the human visual system is very efficient at
and many computational models are based upon. Webb and
Rolls (2014) investigated how recognition of the identity of
individuals and their poses can be separated. They showed that
a model of the ventral visual system using temporal continuity,
VisNet, can through learning develop pose-specific and identity-
specific representations that are invariant to the other factor. In
their biologically inspired study, Kermani Kolankeh et al. (2015)
researched different computational principles (sparse coding,
biased competition, Hebbian learning) capable of developing
receptive fields comparable to those of V1 simple-cells and
discovered that methods which employ competitive mechanisms
achieve higher levels of robustness against loss of information
which may be important to achieve better performance on
classification tasks. While these studies have focused on using
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biologically-inspired visual processing in computational models,
Bertalmío (2014) worked in reverse by taking an image
processing technique used for local histogram equalization
and applying it to a neural activity model. The resultant
model predicts spectrum whitening, contrast enhancement and
lightness induction, all behavioral aspects of visual processing.
Time will tell if neuronal studies bear out this process.

We are bringing together two seemingly different disciplines:
Neuroscience and Computer Vision. We show in this research
topic that each one can benefit from the other. The latter can
aid Neuroscience for testing hypotheses regarding the visual
cortex in a non-invasive way, or otherwise when we reach
technical limitations, e.g., how the information flows along the
visual architectures (see Rodríguez-Sánchez, 2010 for a recent
example). On the other hand, Computer Vision can benefit from
Neuroscience in order to develop better, more robust, efficient

and general systems than the ones present to date (Krüger et al.,
2013).

Due to the complexity of vision (Tsotsos, 1987),
objects/locations are considered to compete for the visual
system’s resources. The studies presented here show that—
among other aspects—feedforward hierarchies are insufficient,
supporting the need for top-down priming or attention. The
interaction between feedforward and feedback inputs have an
impact in neural encoding as shown in the models presented
in this research topic. Not only competition, sparsity is another
important mechanism. The aim is achieving efficient codes that
represent and store object classes efficiently into memory since
not every possible combination of features/parameters is feasible
to be stored. Finally, a number of studies stress on the importance
of the dorsal stream in shape and identity-object representation
in order to interact with specific objects, e.g., grasping.
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