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In human reach-to-grasp movement, visual occlusion of a target object leads to a larger

peak grip aperture compared to conditions where online vision is available. However,

no previous computational and neural network models for reach-to-grasp movement

explain the mechanism of this effect. We simulated the effect of online vision on the

reach-to-grasp movement by proposing a computational control model based on the

hypothesis that the grip aperture is controlled to compensate for both motor variability

and sensory uncertainty. In this model, the aperture is formed to achieve a target aperture

size that is sufficiently large to accommodate the actual target; it also includes a margin

to ensure proper grasping despite sensory and motor variability. To this end, the model

considers: (i) the variability of the grip aperture, which is predicted by the Kalman filter,

and (ii) the uncertainty of the object size, which is affected by visual noise. Using this

model, we simulated experiments in which the effect of the duration of visual occlusion

was investigated. The simulation replicated the experimental result wherein the peak grip

aperture increased when the target object was occluded, especially in the early phase of

the movement. Both predicted motor variability and sensory uncertainty play important

roles in the online visuomotor process responsible for grip aperture control.

Keywords: motor control, reach-to-grasp movement, online vision, computational model, Kalman filter

INTRODUCTION

One of the noted behavioral features of primates is their ability to use their hands to interact
with objects in various situations. Motor outputs that control the hands are generated based on
environmental information collected through sensory inputs. The central nervous system (CNS)
computes a suitable transformation of these sensory inputs to motor outputs that allows motor
performance required in daily life. One of these performances is the reach-to-grasp movement, in
which the primate extends the arm toward an object placed in front of it, and then grasps the object
with its fingers.

Jeannerod (1981, 1984) has investigated behavioral properties associated with these prehension
movements. In his experiments, human participants were instructed to perform natural reach-
to-grasp movements toward visually presented target objects of several sizes placed at several
distances. He found some basic features: the velocity profile of the hand exhibits one peak in the first
half of the movement duration, while the grip aperture demonstrates one peak in the second half.
The peak grip aperture (PGA) is scaled to the size of the target object (e.g., Marteniuk et al., 1990).
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Appropriate transformation from the visual perception of the
target object into the generation of the PGA is required for
successful prehension movement.

How the CNS computes this transformation from sensory
input of the visual object size to motor output in the form of a
PGA is not yet clear. Previous studies have reported that the PGA
is larger when vision is not available during the movement (e.g.,
Wing et al., 1986; Jakobson and Goodale, 1991; Fukui and Inui,
2006) or when the movement speed is particularly rapid (Wing
et al., 1986). One interpretation of these observations is that the
grip aperture is controlled to prevent inappropriate collisions
of the fingers with the target and that the PGA becomes larger
when visual uncertainty and/or motor variability are increased
because of visual occlusion and/or faster movement (Wing et al.,
1986). Actually, if the target object is presented in an eccentric
view and its actual position is uncertain, the PGA will increase
linearly with the eccentricity of the view (Schlicht and Schrater,
2007), which indicates that visual uncertainty is influential
in the mechanism for grip aperture control. Elucidating the
underlying mechanism for this grip aperture control would be
possible with the use of appropriate modeling studies. Although
previous models have described the reach-to-grasp movement
(Hoff and Arbib, 1993; Haggard and Wing, 1995; Zaal et al.,
1998; Smeets and Brenner, 1999; Ulloa and Bullock, 2003;
Simmons and Demiris, 2006), no model has yet satisfactorily
explained the effect of visual uncertainty on the generation of the
PGA.

Traditionally, one of the major problems in modeling motor
control is determining one trajectory of movement in the
presence of motor redundancy. A prevailing idea is that the
CNS solves this problem by minimizing costs to generate these
movement trajectories, and several costs have been proposed
(e.g., Flash and Hogan, 1985; Uno et al., 1989; Harris and
Wolpert, 1998; Todorov and Jordan, 2002). One index of the
cost minimizations that successfully explains human reaching
trajectory is movement smoothness (Flash andHogan, 1985; Uno
et al., 1989). However, why the CNS adopts such costs is not
clear. Harris and Wolpert (1998) focused on the importance of
the cost of the final variance, because it is clearly related to the
achievement of the task. If the final body state is less variable,
the movement is more likely to be successful. Motor control
also needs to optimize the possibility of task achievement in the
presence of motor variability (Miyamoto et al., 2004; Todorov,
2004; Trommershäuser et al., 2005). Thus, recent computational
models of motor control have emphasized the importance of both
sensory and motor variability (e.g., van Beers et al., 2002, 2004;
Guigon et al., 2008).

In a reach-to-grasp movement, the compensation for motor
variability would result in adjustment of the PGA. A minimal
variance model proposed by Simmons and Demiris (2006)
indeed explains the emergence of PGA in reach-to-grasp
movement. Specifically, their model reported that a higher
movement speed in a reach-to-grasp movement creates a
larger motor variability, and the grip aperture increases in a
compensatory manner to prevent undesirable collisions of the
hand with the target. However, since visual occlusion of the
target and/or of the hand would affect sensory uncertainty, not

motor variability, the manner how sensory feedback contributes
to variability-based motor control should be revealed.

To clarify this manner, Todorov and Jordan (2002) proposed
a computational model for motor control based on stochastic
control theory. In their model, called optimal feedback control,
a copy of the motor command and the noisy sensory feedback
are used for internal estimation of the current state of the body.
The optimal motor command that minimizes the task cost is then
computed from this state estimation. The body state is estimated
based on both motor and sensory variability, and the motor
command is generated by taking into account the uncertainty of
the state estimation. The concept underlying this computational
model could explain the effect of online vision during reach-
to-grasp movement, as it gives sensory feedback the role of
compensating formotor variability and improving the estimation
of the current body state. Specifically, when visual feedback is
absent, the motor variability would directly cause uncertainty
in the estimated body state due to the loss of the compensation
by sensory feedback. Our hypothesis is that a larger PGA would
appear as a result of compensating for the increased uncertainty
of state estimation.

In the present paper, we propose a stochastic control model
for grasping that can simulate the effects of online vision.
Although, Todorov and Jordan (2002) verified their own model
by simulating arm reaching (pointing) movement, application
of their model directly to reach-to-grasp movement is difficult
because the movement is too complicated to be described by the
task cost that is available in theirmodel. Instead, we avoid optimal
control and consider “compensation for sensory and motor
variability” for calculating motor command, thereby preserving
the concept of stochastic control.

An argument could be made that the effect of visual occlusion
during grasping might be explained without invoking an online
control mechanism that includes motor and sensory variability;
i.e., some strategic effect against removing vision (e.g., the visual
feedback schedule) might be causing a larger PGA (Jakobson and
Goodale, 1991). However, Fukui and Inui (2006) investigated
the temporal and spatial effects of visual occlusion on the grip
configuration when several occlusion conditions were randomly
presented (see also Whitwell et al., 2008) and found that
removing the target vision in the early phase of the movement
enlarged the PGA, which indicated that the PGAwas modified by
the availability of online vision, not only by the motor strategy.
Here, we verify that the effect of visual occlusion on the PGA
is due to an online control mechanism that includes motor and
sensory variability by simulating the experiments of Fukui and
Inui (2006) using the following model.

MATERIALS AND METHODS

Overview of the Aperture Control Model
Reach-to-grasp movement is traditionally thought to have two
control components: a transportation (reaching) component
and an aperture (manipulation) component (Jeannerod, 1981).
Although the kinematics of trajectories of each finger are
different, which may result from detailed control of each
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finger (Smeets and Brenner, 1999), the grip aperture size
that represents the spatial relationship of these fingers shows
significant correlation with the object size (Marteniuk et al.,
1990).

Schlicht and Schrater (2007) suggested, based on the principal
components analysis, that only one principal component, which
can be represented by the aperture size, would explain the
difference in the trajectory of the fingers during reach-to-
grasp movements where the target is placed in different visual
eccentricities. Therefore, we assume that modeling grip aperture
between thumb and index finger, and not the kinematics of each
finger, is sufficient for revealing the grip control mechanism
influenced by online vision (see also Vilaplana and Coronado,
2006).

An outline of the model is shown in Figure 1. The output
motor command that controls grip aperture is transmitted to the
end effector (hand) with delay and noise, and this changes the
grip aperture. At the same time, the efference copy of the motor
command is transmitted to the State Estimator, with no delay,
and the body state (grip aperture) is estimated (or predicted)
by the forward model. The estimated aperture is compared with
the sensory feedback derived from vision and proprioception of
the actual grip aperture, and the estimation error is then used
to correct the body state estimation. The next motor command
is generated based on the estimated (predicted) body state and

the uncertainty of the estimation. The size and uncertainty of

the target object that is observed by vision are then used to

calculate the motor command. Further details are described

below.

Aperture Size to Compensate for
Sensorimotor Variability
In the model setting, the hand travels from the start position to
the object position along the y-axis, as indicated in Figure 2A.
This hand transportation is notmodeled here. The transportation
component (the profile of hand position along the y-axis) is
realized by the data from the experiment by Fukui and Inui
(2006). The finger aperture opens along the x-axis because the
target object is a simple cylinder and the grip orientation has little
effect on the aperture size. When the transportation component
properly controls the hand position so that the center point
between the thumb and finger matches the center of the target
object, the problem becomes how the aperture size is controlled
as the hand approaches the object.

To avoid an undesirable collision during a reach-to-grasp
movement, the grip aperture has to include a margin of safety
that accounts for uncertainty of the hand and the object. For
example, consider the situation shown in Figure 2B to represent
the beginning of the finger closure phase of the movement. If
the position on the x-axis and the diameter of the object are
denoted by xo, so respectively, the position of the right edge of
the object is xo + so/2. Similarly, the position of the finger at
the right side of the object (i.e., the index finger) is xh + a/2, if
the hand position (the center point between the thumb and the
finger) and the aperture size are denoted by xh and a, respectively.
To avoid collision of the finger with the object, the finger position
has to be to the right of the object edge, i.e., xo + so/2 <

xh + a/2. We assume that xo − xh = 0 because the hand
position should be controlled to match the object position by

FIGURE 1 | Outline of the model. The output motor command that controls grip aperture is transmitted with delay and noise. At the same time, an efference copy of

the motor command is transmitted to the State Estimator, and the body state (grip aperture) is estimated (or predicted) by the forward model. The sensory prediction is

computed from the estimated aperture, and is compared with the sensory feedback (vision and proprioception) of the actual grip aperture. The Kalman filter corrects

the estimated body state based on the sensory prediction error. The next motor command is generated based on the estimated (predicted) body state and the

variability (variance) of estimation. The size and variability (variance) of the target object that are observed by vision with noise and delay are then used to calculate the

motor command. Although the transport component was assumed to contribute to the aperture control, the result of parameter fitting showed that it was not effective.
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FIGURE 2 | Hand and target object. (A) Hand transportation follows the

y-axis, and grip opening follows the x-axis. (B) For successful grasping, the

grip aperture a must be sufficiently larger than object size so, considering the

variability of grip aperture σ 2
a , hand position σ 2

h
, and target object σ 2

o .

the transportation component. However, the motor variability
and sensory uncertainty of hand position relative to the object
position still exists, and here, the standard deviation (SD) of
the variability (uncertainty) is denoted by σh. The variability
(uncertainty) of the aperture size and the object size (the SDs of
them are denoted by σa and σo) also take effect. The situation
before successful grasping has to satisfy a − so >0 under the
condition where the variability of a− so is characterized by the
variance σ 2 = σ 2

a + σ 2
h
+ σ 2

o , if Gaussian distribution and
the independence of these variabilities is assumed. The same
situation takes place at the left side of the object. Here, the
probability Φ (a, so, σ ) that the target object is inside the grip
aperture is formulated by:

Φ (a, so, σ ) = 1√
2πσ 2

∫ ∞

0
exp

−(a′ − (a− so))
2

2σ 2
da′ (1)

This is the cumulative distribution function that describes the
probability that the grip aperture a is larger than target object so
in the presence of Gaussian noise.

In order to execute a grasping movement when uncertainty is
involved, the CNS has to take the risk of collision into account. If
we consider a particular probability φ, which the CNS adopts as
a success ratio, the grip aperture to achieve is then calculated by
a∗ = Φ−1 (φ, so, σ ). Note that φ is the probability that the CNS
predicts before executing the movement with the uncertainty
and variability (i.e., σ 2) that the CNS estimates, and that φ does
not represent the actual success rate of the grasping. Here, we
call the aperture a∗ the target aperture. Once the target aperture
is determined, the controller generates a motor command that
moves the current grip aperture toward the target aperture.

Among infinite possibilities of motor commands that make
the current grip aperture approach the target aperture, one motor
command should be determined to generate an actualmovement.
In human arm control, the movement trajectory is determined by
minimizing a certain criterion (Flash andHogan, 1985; Uno et al.,
1989; Harris and Wolpert, 1998). Smoothness of movement is an
important factor in determining the trajectory; the trajectory of

point-to-point movement starting and ending with zero velocity
and zero acceleration is well explained by the minimum jerk
model (Flash and Hogan, 1985). However, the start point of the
trajectory formulation required in the present model is not the
movement start point but the current point during movement,
and the initial velocity and acceleration of the trajectory are
not zero. Minimum acceleration, which is another criterion
for kinematic smoothness of movement, also well explains the
reaching trajectory if boundary conditions (i.e., the initial and
final velocity and acceleration) are specified (Ben-Itzhak and
Karniel, 2008). Here, we adopted the minimum acceleration
criterion for generating a motor command (Note that the model
only generates the next motor command from the current grip
aperture, not the whole trajectory).

To achieve successful grasping, the thumb and fingers have to
attain a suitable contact with the surface of the object. At the same
time, they have to avoid undesirable collision with the object.
The relative timing of these requirements is different: first, for
avoiding collision, and then, for contacting the object. Winges
et al. (2003) investigated finger formation for different shaped
objects during reach-to-grasp movement under several visual
conditions, and they concluded that visual occlusion prolonged
the final low-speed phase of reaching when the precise finger
formation occurred. Our model is focused on the mechanism
for generating peak grip aperture, not for contacting the object;
therefore, we did not implement the mechanism for closing
fingers upon suitably touching the object surface. Details are
mentioned in the section that covers the simulation (Section
Simulation).

Formulation of Aperture Size Control
The movement of grip aperture is modeled by a state-space
representation:

xt+∆t = Fxt + Dut + Gwt (2)

F =
[
1 ∆t
0 1

]
D =

[
0
∆t

]
G =

[
0
1

]

Here, xt = [at, ȧt]
T , where at and ȧt is grip aperture and its

velocity at time t, respectively, and [2]T denotes transposition
of a vector or matrix. Motor command ut is acceleration of grip
aperture and wt is the motor noise generated from N(0,Qt),
while ∆t is a discrete time step in simulation. The controller
generates motor commands to achieve the target aperture a∗ at
the movement end time T. As a requirement in the experiment,
the movement duration is predefined to be 1 second (Fukui
and Inui, 2006). In order to simulate a smooth movement that
achieves target aperture a∗ and target aperture velocity ȧ∗ = 0
at the movement end, we adopted the minimum acceleration
criterion. The velocity at time τ (t ≤ τ ≤ T) in the minimum
acceleration profile is described by:

ȧτ = ȧt + b1 (τ − t) + b2(τ − t)2 (3)

b1 = 6(a∗ − at)

(T − t)2
− 4ȧt

T − t
(4)

b2 = −6 (a∗ − at)

(T − t)3
− 3ȧt

(T − t)2
(5)
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(See Appendix A). What the controller determines here is not the
whole trajectory, but the instant acceleration at time t. Based on
Equation (3), the aperture velocity at time t + ∆t is:

ȧt+∆t = ȧt + b1∆t + b2∆t2 (6)

Since ȧt+∆t = ȧt + ut∆t comes from Equation (2), the motor
command at time t in the minimum acceleration criterion is:

ut = b1 + b2∆t (7)

Although, the motor command is calculated from the current
and target aperture, the CNS does not know the true state of
the current body. The information about body state has to be
obtained by the sensory system. Here, grip aperture is observed
by vision and proprioception:

yt = Hxt + vt (8)

H =
[
1 0
1 0

]

For simplicity, we assumed that only the grip aperture (not
the aperture velocity) is used as input information. Here, the
first element of yt is for vision and the second one is for
proprioception, where vt is observation noise generated from
N (0,Rt). The Kalman filter (Appendix B) estimates the body
state from sensory observation. If the estimated body state is

x̂t =
[
ât,̂̇at

]T
then at and ȧt in Equations (4) and (5) are replaced

by ât and̂̇at , respectively:

b̂1 =
6
(
a∗ − ât

)

(T − t)2
− 4 ˆ̇at

T − t
(9)

b̂2 = −
6
(
a∗ − ât

)

(T − t)3
− 3 ˆ̇at

(T − t)2
(10)

These equations generate the motor command based on the
estimated body state.

The actual brain-body system undergoes transmission delays
in the motor command and the sensory feedback pathway.When
motor delay and sensory delay are dm and ds, respectively,
Equations (2) and (8) are modified to:

xt+∆t = Fxt + Dut−dm + Gwt (11)

yt = Hxt−ds + vt (12)

The motor command generated at time t has to be based on the
body state (estimation) at time t + dm. Here, Equations (9) and
(10) are modified to:

b̂1 =
6
(
a∗ − ât+dm

)
(
T −

(
t + dm

))2 − 4 ˆ̇at+dm

T −
(
t + dm

) (13)

b̂2 = −
6
(
a∗ − ât+dm

)
(
T −

(
t + dm

))3 − 3 ˆ̇at+dm(
T −

(
t + dm

))2 (14)

These equations imply that the “current” body representation
in the brain precedes the actual body state. This function is

necessary for predictive remapping (Colby and Duhamel, 1996;
Melcher, 2007), where neural representations of planned saccade
movements are modified to compensate for future changes of
eye position. Similarly, the grip aperture also has to be predicted
before the motor command reaches the effector during reach-to-
grasp control.

Prediction of Uncertainty
As mentioned in Section Aperture Size to Compensate for
Sensorimotor Variability, the prediction error variance at the end
of the movement is necessary for determining the target aperture.
The variance of grip aperture σ 2

a is obtained by prediction
of the Kalman filter (Kalman, 1960; see Appendix B). The
Kalman filter predicts the future body state following the state-
space representation, Equation (11), as well as the variance of
prediction error. Although, in the Kalman filter, the variance
is typically used to determine filter gain for correction of an
estimated body state based on sensory feedback, the proposed
model also uses the calculated estimation variability for aperture
control.

The prediction of the SD of hand position σh is assumed to
be proportional to the distance of residual hand transportation.
That is:

σh = α(h∗ − ht), (15)

where h∗ is the distance between the initial hand position and the
target object, ht is the distance between the initial hand position
and the hand position at time t, and α is the proportionality
coefficient. This assumption is based on the idea that increases
in distance to the target position give rise to more uncertainty
in the prediction of final hand position. This agrees with the
fact that travel distance and the target width are proportional in
Fitts’ law (Fitts, 1954). If target width is interpreted as “tolerable
size of variability of the final hand position,” then Equation (15)
will be derived. As the hand approaches the target position, the
prediction of the SD decreases because the residual distance to be
traveled decreases.

In a reach-to-grasp movement, the effect of the aperture
component on the transportation component is small (Paulignan
et al., 1991), especially before the movement end point.
Consequently, the use of a fixed transportation component is
reasonable for the simulation of the generation of peak grip
aperture. Here, we used the wrist position profile (Figure 3A)
that is obtained by temporally normalizing and averaging the
experimental data of Fukui and Inui (2006).

Finally, because the target object is only observed visually,
the variability is determined by visual noise. The variance of
uncertainty of the target object size σ 2

o is obtained from the vision
element of the covariance matrix of sensory noise Rt (see Section
Simulation).

Simulation
Using the proposed model, we simulated a visual occlusion
experiment by Fukui and Inui (2006). In the simulation,
movement end timeT and a discrete time step∆twere set to 1000
and 10ms, respectively. Both visual and motor delays were set to
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FIGURE 3 | Profiles of variables in the model. Variables obtained from a simulation with target object of 4 cm in Full Vision (FV) and 150S (visual occlusion from

150ms after movement onset) conditions are shown. Black solid and dashed lines denote FV and 150S conditions, respectively. Gray vertical lines denote onset of

visual occlusion in 150S condition. (A) Hand distance traveled from the start position. (B) Predicted SD of grip aperture σa. (C) Target aperture a*. (D) Grip aperture.

(E) SD of object size σo.

100ms (Huettel et al., 2014). Because the movement onset in the
experiment was defined by wrist release from a start position, the
grip aperture and the aperture velocity at the movement onset
were not zero. Therefore, in the simulation we set the initial grip
aperture to be an average grip aperture at the movement onset
in all trials recorded in the experiment. Additionally, the initial
motor command (acceleration) in the simulation was set to be a
value that achieved the average velocity at the movement onset
in the experiment. The initial motor command in the simulation
was generated taking into account the dm (motor delay) period
preceding movement onset.

For the simulation of visual occlusion during movement,
the variance of visual feedback noise was assumed to be larger
than usual when vision was unavailable. On the other hand,
proprioceptive noise was assumed to be constant. If the variance
of visual noise during occlusion (no vision) and during non-
occlusion (full vision) are denoted by σ 2

NV and σ 2
FV , respectively,

and the variance of proprioceptive noise is denoted by σ 2
P , the

covariance matrix of sensory noise is:

Rt =
[

σ 2
NV 0

0 σ 2
P

]
(during occlusion)

Rt =
[

σ 2
FV 0

0 σ 2
P

]
(during non-occlusion) (16)

No correlation is assumed between visual noise and
proprioceptive noise. Viewed from an engineering perspective,
visual occlusion should have been simulated by simply setting the
Kalman gain to zero. This implementation means that the system

estimates the target state only from Equation (2), but we did
not adopt this implementation in the current study. Westwood
and Goodale (2003) have demonstrated that the grip aperture
during visually occluded grasping was affected by a size-contrast
illusion, while the grip aperture in normal vision was not. We
assume that this may reflect switching of the visual processing
pathways from the dorsal “how” stream to the ventral “what”
stream (Goodale and Milner, 1992). Therefore, the two kinds
of noise assumed in the present model Equation (16) represent
these two different types of visual processing.

As described in Equation (2), motor noise is assumed to be
a single dimension and affects the system in the same domain as
themotor command. This implies that themotor noise originates
from motor command. However, the variance of motor noise is
assumed to be constant; that is, Qt = σ 2

M .
Here, the proposed model has six parameters: the variance of

motor noise σ 2
M , the variance of visual noise during occlusion

and non-occlusion σ 2
NV , σ 2

FV , the variance of proprioceptive
noise σ 2

P , the proportionality coefficients α between distance and
the variance of hand position, and the probability φ that the
object has to be inside the aperture. For successful grasping, the
probability φ should be high. However, if φ is too high, the noise
variances have to be very small in order to achieve the appropriate
grip aperture, and small variances make it difficult to differentiate
the visual conditions. Therefore, φ was fixed a priori at 0.9 based
on the empirical inspection that people could fail prehension
performance once out of 10 trials. The other parameters were
determined by fitting the model outputs to the experimental
data.
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A probability φ of 0.9 might be rather small for successful
grasping. However, the proposed model was not designed to
explain precise control of the final phase of the movement,
where the successful achievement of grasping is realized by the
mechanism for adjusting the aperture size to the object size.
Rather, this model aims to demonstrate how the generation of
the PGA is influenced by online vision during the movement.
We assume that the probability φ, which determines the PGA,
does not have to be strictly high during the movement. In order
to examine the effect of φ on the aperture profile, the simulation
with various values for φ (= [0.8, 0.85, 0.9, 0.95, 0.99]) was also
conducted.

Parameter Fitting
Five parameters, σM , σP, σFV , σNV and α, were fixed by
fitting the grip aperture profile obtained from the simulation
to that in the experiment by Fukui and Inui (2006). In
the experiment, a visual occlusion experiment was conducted
while the reach-to-grasp movement was in process with two
experimental paradigms: a shutting paradigm (SP) and a re-
opening paradigm (RP). In the SP, vision was available during
target presentation and reaction time phases, and occlusion
started immediately after movement onset (NV), or 150ms
(150S), 350ms (350S), 500ms (500S), or 700ms (700S) after
movement onset; or vision is never occluded during movement
(FV). On the other hand, in RP, occlusion once started at
movement onset, and vision was recovered immediately after
movement onset (FV), or 150ms (150R), 350ms (350R), 500ms
(500R), or 700ms (700R) after movement onset; or vision
was never recovered (NV). Both paradigms had conditions in
which vision during the movement was constantly available (FV)
or constantly unavailable (NV). Model parameters were fitted
against the aperture profile from these constant conditions. For
the simulation and comparison of simulated aperture profiles to
the ones obtained from the experiment, the movement time of
each trial of experimental data was normalized to 1 s, and the
grip aperture and wrist position were resampled at 100Hz by
interpolating the experimental data. Note that the participants in
the experiment were instructed to keep the movement duration
of the trials at approximately 1000ms. Then, the temporally
normalized aperture profiles of all subjects and trials were
averaged for each condition.

Fitting was performed by minimizing the squared sum
of errors at each time point between the aperture profile
of the experiment and the simulations for two constant
vision conditions (i.e., FV and NV conditions). Minimization
was achieved by the Nelder-Mead simplex method (function
fminsearch of MATLAB optimization toolbox). The fitting result
is shown in Table 1.

TABLE 1 | Results of parameter fitting.

σM (cm/ms2) σP (cm) σFV (cm) σNV (cm) α

0.3824 0.6043 0.0450 0.3187 0.0000

Note that the degrees of variability are standard deviation, not variance.

RESULTS

As a result of fitting, parameter α was converged to zero.
This means that we do not have to assume the relationship
between the transport and aperture component in the variability
domain. In other words, the aperture component considers the
graspability of the target object only with respect to the variability
(uncertainty) of the grip aperture and the object size (i.e., σa
and σo). This result is in line with the visuomotor channel
hypothesis (Jeannerod, 1981, 1984, discussed below). The grip
aperture profiles of the experiment and the simulation in the FV
and NV conditions after parameter fitting are shown in Figure 4.
The whole aperture profile is well-fitted to the experimental
data.

The temporal development of the variables in the simulation
of grasping toward a 4 cm target object in FV and 150S conditions
is shown in Figure 3. As the hand approached the target object
(Figure 3A), the predicted SD of the grip aperture decreased as
the movement continued (Figure 3B) because the time for future
prediction (i.e., the time left until the movement ends) decreased.
Consequently, the target aperture decreased (Figure 3C) because
the uncertainty of the final posture and the “safety margin”
decreased. The profile of the grip aperture (Figure 3D) was
generated by smooth following of the target aperture, exhibiting
a peak at around 600ms after movement onset. After the vision
was occluded (Figure 3; the gray vertical line denotes 150-ms
shutting), the visual noise increased (Figure 3E, dashed line)
compared to the values obtained in FV conditions after sensory
delay (i.e., 100ms), and the predicted uncertainty of the final grip
aperture (Figure 3B, dashed line), the target aperture (Figure 3C,
dashed line) and the grip aperture (Figure 3D, dashed line)
increased compared to the values obtained in FV condition.

The output aperture profiles of the model’s simulation in all
visual conditions, with the parameters described in Table 1, are
shown in Figure 5. For all conditions in both paradigms, the
peak grip aperture appeared around 550–650ms, as it did in
the experimental results. Despite the lack of a mechanism for
closing fingers upon touching the object, the model first opened
the fingers larger than the object size and then closed them.
This is because the predicted variability at the final phase of the
movement decreased as the movement progressed. This decrease
in the predicted variability arose primarily from the decrease in
the duration to the end of the movement. Since, the Kalman filter
calculates future aperture variability by repeatedly applying the
incremental forward model (Appendix B), the later prediction
points (i.e., prediction in earlier phase of the movement) will be
more variable.

Peak grip apertures in both the simulation and the experiment
are shown in Figure 6. In the simulation, the peak grip apertures
in 350S, 500S, 700S, and FV (shutting paradigm) conditions were
remarkably similar value, as well as in 350R, 500R, 700R, NV
(re-opening paradigm). The peak grip apertures observed in the
experiment in these conditions did not show statistical difference,
indicating that visual availability after 350ms does not affect the
peak grip aperture. The simulation replicated the experimental
result that showed that vision in the early phase of the movement
is important for grasping. Note that the parameters in the model
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FIGURE 4 | Grip aperture for parameter fitting. Profile of grip aperture from the experiment (Fukui and Inui, 2006; re-opening paradigm: blue lines; shutting

paradigm: red lines) and the simulation (black) for 4 cm (top panels) and 6 cm (bottom panels) target objects in Full Vision (FV; left panels) and No Vision (NV; right

panels) conditions.

were determined by fitting to the aperture profile of the NV
and FV conditions. Other conditions were not considered in
the fitting. Therefore, no temporal information about the change
in visual availability was contained in the data used for fitting.
Even then, the simulation still reproduced the effect of early
phase visual availability on the PGA. This occurred because the
predicted variability mostly decreased in 350ms in the model,
and consequently, the visual conditions became insensitive to the
aperture control.

In order to verify the effect of online vision on the aperture
profile, we investigated whether the simulated aperture velocity
profiles between 150S (150R) and 350S (350R) conditions diverge
as shown in the experiment of Fukui and Inui (2006). In the
experiment, the difference between the aperture velocities for
the 150S (150R) and 350S (350R) conditions was statistically
significant after 400–475ms following movement onset. The
aperture velocity profile of the model’s output in 150S, 150R,
350S, and 350R conditions for 4 and 6 cm target objects is
shown in Figure 7. The time points when the aperture velocities
diverged between 150S (150R) and 350S (350R) conditions were
around 400–450ms. Specifically, the motor response to the
onset (recover) of visual occlusion at 150ms in 150S (150R)
conditions was expected to start at 350 (i.e., 150 + 200) ms
after movement onset. Considering that the response becomes
noticeable only after the divergence is large enough, the result
that the divergence time is similar in the simulation and

experiment (i.e., 400–450ms) indicates that the sensorimotor
delay used in the simulation (=200ms) is reasonable in this
prehension task.

To verify the robustness of the model to the variability
of sensorimotor delay, we performed the simulations with
different sensorimotor delays (100 and 300ms).We found similar
effects of (non-)available duration of online vision on the PGA.
Specifically, the PGA in 150S and 350S conditions increased
with less sensorimotor delay (100ms), and the PGA in 150R
and 350R conditions increased with more sensorimotor delay
(300ms; Figure 8). The time of divergence in aperture velocity
was dependent on sensorimotor delay (Figure 9). Among these
three conditions, the simulation in the 200-ms delay condition
was best fitted to the experimental result in terms of temporal
divergence, and this 200-ms delay would be consistent with
neural response latency suggested by Huettel et al. (2014).

These additional simulations indicated that this emerging
effect of online vision on the PGA was not due to sensorimotor
delay but to the control mechanisms of grip aperture
with the predicted variability assumed in the present
model.

The grasping probability parameter φ had a strong effect
on the peak grip aperture. According to the simulation
results in which various values were set to φ (= [0.8, 0.85,
0.9, 0.95, 0.99]) without changing other parameters, the grip
aperture was larger when the probability requirement was larger
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FIGURE 5 | Grip aperture profiles for simulation of visual occlusion. Upper left: target object size is 4 cm in the shutting paradigm (SP), Upper right: 4 cm in

the re-opening paradigm (RP), Lower left: 6 cm in SP, and Lower right: 4 cm in RP. In FV conditions, vision was constantly available during the movement, while in

NV conditions, vision was constantly unavailable. In 150S, 350S, 500S, and 700S conditions, visual occlusion started 150, 350, 500, and 700ms after movement

onset, respectively. In 150R, 350R, 500R, and 700R conditions, vision was first unavailable and then recovered 150, 350, 500, and 700ms after movement onset,

respectively. For each panel, aperture profiles within gray rounded rectangles are magnified for precise view.

(Figure 10). This is consistent with the intuition that a larger
safety margin is preserved when humans grasp things more
carefully.

Furthermore, we performed the simulations with minimum
jerk instead of minimum acceleration because the minimum jerk
was generally used as a criterion of movement smoothness in
previous works. We found a slower decrease of the grip aperture
in the final phase of the movement and an earlier time to PGA
than observed in the experiment.

DISCUSSION

Sensory and Motor Variability in Models for
Reach-to-grasp Movement
We proposed a model for reach-to-grasp movement that
controlled grip aperture to compensate for predicted sensory
uncertainty and motor variability. This is the first model that
includes a control principle to explain how the grip aperture is
arranged to grasp an object based on sensory uncertainty and
motor variability. The formation of grip aperture was modeled
in several previous studies. Hoff and Arbib (1993) divided the
aperture formation into preshaping and finger closure phases. In
the preshaping phase, aperture is opened toward the peak grip
aperture that scaled with object size. They provide no explanation

for how the peak grip aperture is actually determined. Smeets
and Brenner (1999) modeled grasping as pointing of two fingers
to the opposite side of the object, with the trajectory formed
by minimum jerk principle. The overshoot of the grip aperture
to the object size was generated by the constraint that the
fingers had to approach the object orthogonally to the surface of
the object. No explanation was given for determination of this
“approaching parameter.” Ulloa and Bullock (2003) proposed a
dynamic system model that included an equation to describe
the influence of the transportation component on the aperture
component. Thesemodels did not capture the function of sensory
and motor variability in reach-to-grasp movement.

The fitting parameter α in the present model resulted in
zero. This means that the prediction of wrist position variability
is not necessary to determine the grip aperture in reach-to-
grasp movements. However, it does not mean that there is no
connection between the transport and aperture components;
instead, a relationship between them in the time domain
is implemented in the present model. Specifically, the grip
configuration progresses by predicting future state variability at
the movement end, which was pre-determined following the
experimental instruction of movement time (i.e., 1000ms). The
movement time in the experiment was defined by the duration
from the time when the wrist was released from the table
to the time when the wrist started to move the target object
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FIGURE 6 | Peak grip aperture in the simulation and the experiment. Upper left: experimental result in shutting paradigm, Upper right: experimental result

re-opening paradigm, Lower left: simulation result in shutting paradigm, and Lower right: simulation result in re-opening paradigm. Experimental data is from Fukui

and Inui (2006). Error bars indicate the standard errors of the values between participants.

FIGURE 7 | Simulated velocity profile of grip aperture for conditions of 150S, 350S, 150R, and 350R. Divergence between 150S (150R) and 350S (350R)

appeared at approximately 400–450ms after movement onset, as found in the experiment.

approximately 30 cm towards the body. In other words, the
grip configuration was partially regulated by the movement
time, which is defined by the transport component. This type
of temporal relationship between the two components has
been modeled previously (Hoff and Arbib, 1993). Despite the
assumption that the connection of these components was taken
into account in the variability domain in the present model
(i.e., the function of parameter α), the parameter that represents

this connection resulted in zero, suggesting the visuomotor
channel hypothesis (Jeannerod, 1981, 1984), which assumes an
independence of each component in visuomotor transformation.
Although the visuomotor hypothesis does not incorporate the
framework of variability-based motor control, the present model
suggests that this independence of each component could be
applicable to the level of variability-based motor control. The
assumption of the temporal coordination of these visuomotor
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FIGURE 8 | Peak grip aperture in simulations with various sensorimotor delays. Top: 100ms sensorimotor delay. Middle: 200ms sensorimotor delay.

Bottom: 300ms sensorimotor delay. Left: shutting paradigm. Right: re-opening paradigm. Note that the figures in the middle panels are identical to those shown in

Figure 6.

channels (Hoff and Arbib, 1993) is also implemented in the
present model.

One possibility for the result that α became zero after fitting
could be the inappropriate assumption of the proportionality
between the residual distance and the predicted variability
of the hand position (Equation 15). However, the fact that
the grip aperture profile was successfully reproduced without
assuming the predicted variability of the hand position indicates
that the variability-based model of reach-to-grasp movement

without assuming a transport component has the capacity to
parsimoniously explain the effect of online vision on the PGA
shown by Fukui and Inui (2006). Nevertheless, incorporating a
predicted variability of the hand position (which might not be
describable by a simple function of the residual distance) into
the model will contribute to a better understanding of reach-
to-grasping movements. Further investigations are required to
identify the relationship between the aperture and transport
components in the variability domain.
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As mentioned in the introduction, Simmons and Demiris
(2006) have shown the importance of variability in the control of
grip aperture. Theymodeled aperture control as a movement that
goes through via-points for each finger. They found that when

FIGURE 9 | Simulated velocity profile of the grip aperture for conditions

of 150S, 350S, 150R and 350R, with 100, 200 and 300ms sensorimotor

delays. The target object is 4 cm. Top: 100ms sensorimotor delay. Middle:

200ms sensorimotor delay. Bottom: 300ms sensorimotor delay. Note that

the figure in the middle panel is identical to that shown in Figure 7.

motor variability was dependent on the amplitude of a motor
command, the via-points that resulted in the smallest variance
at the end point of the movement were chosen. However, their
model only focused on motor variability. To explain the effect of
visual feedback in grasping, the function of sensory uncertainty
also has to be modeled. Our model includes the Kalman filter
for predicting future variability of the aperture, so that sensory
uncertainty also plays a role in the control.

The present model suggests a new computational view
expanding the conventional Bayesian sensorimotor framework:
the online prediction of motor variability at the task end is used
for feedback control. Previous studies have demonstrated that
motor variability and sensory uncertainty are integrated on the
basis of the Bayesian framework (or the Kalman filter) in order
to enhance the task performance in the presence of sensory and
motor noise during motor planning (Harris and Wolpert, 1998;
van Beers et al., 2004; Trommershäuser et al., 2005), sensorimotor
learning (Körding and Wolpert, 2004) and online control (Izawa
and Shadmehr, 2008). In the present model, the target aperture
is determined using the predicted variability of grip aperture
at the movement end. This means that the online feedback
controller changes the “immediate goal (target)” necessary for
achieving the task depending on both the Bayesian estimation
of the current state of the body and the environment and the
Bayesian prediction of a future state. This feature of the present
model explains how the effect of online vision during prehension
varies according to the phase of the movement. In the early
phase of the movement (0–350ms), where the prediction of
a far future (> 650ms) is required, the predicted task end
state is uncertain and the sensory feedback is important to
reduce this uncertainty. We consider that this online variability
prediction plays an important role in performing a grasping
movement.

In the present model, motor noise is assumed to be a constant
during the movement rather than signal-dependent noise (Harris
and Wolpert, 1998). The controller used the predicted variability
to determine a target aperture (a∗), and it was impossible to
predict the future variability of the grip aperture with signal-
dependent noise, because the noise affects the target aperture,

FIGURE 10 | Aperture profiles for various grasping probability φ. Simulation result with φ = [0.8, 0.85, 0.9, 0.95, 0.99]. Left panel, 4 cm; Right panel, 6 cm.
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the motor commands used to achieve this target aperture, and,
consequently, the control noise itself. A cost function is necessary
to fix the motor command in the presence of signal-dependent
noise. The parameter φ, which was set to 0.9 in the present
study, might be determined with such a cost function and signal-
dependent noise in future studies.

Neural Computation of Variability
We calculated the future variability of the aperture and updated
the variability due to sensory feedback by implementing the
Kalman filter in our model. During the estimation of the visual
image, forward and inverse calculations similar to the Kalman
filter appear to be conducted during the visual process (Kawato
et al., 1993). In a reaching movement, the states of the body and
environment are estimated in a manner similar to the Kalman
filter, in off-line adaptation (Izawa et al., 2008) as well as in
online processing (Izawa and Shadmehr, 2008). The Bayesian
inference necessary for the Kalman filter can be computed by
the neural population that fires in a probabilistic manner (Ma
et al., 2006), and a neural implementation of the Kalman filter
has been suggested (Denève et al., 2007). However, the way that
the Kalman gain is computed still remains to be resolved.

The neural substrates related to the calculation necessary for
the Kalman filter have been speculated (Ogawa et al., 2007).
During performance of a tracing or tracking movement using a
computer mouse with an artificial delay introduced occasionally,
the right posterior parietal cortex was activated in relation to the
function that detects the error between the target and the mouse
cursor. The right temporo-parietal junction was involved in state
estimation of self-movement during visually guided movement.
Unfortunately, these studies on neural computation related

to the Kalman filter only investigated reaching movements,
not grasping. However, motor control of the body is clearly
related to the sensory and motor variability, and a reach-to-
grasp movement also has to be explained in this manner.
The present study demonstrated that a computational model
based on mechanisms of variability prediction with the Kalman
filter explains the online effect of vision during reach-to-grasp
movement.

CONCLUSIONS

We have proposed a computational model for a reach-to-grasp
movement, where the state of the hand is estimated and predicted
by Kalman filters, and a motor command is generated that
establishes a target grip aperture that is sufficiently large, in
the stochastic manner, in relation to the target object size. The
simulations of themodel reproduced the effect of visual occlusion
on the PGA during grasping. Online control of the movement
would therefore require: (i) internal prediction of future states of
the body and its variability, and (ii) motor commands based on
the prediction and task constraints. The model was constructed
within the framework of optimal feedback control in the sense of
predictive stochastic control under sensory andmotor variability,
although the control has not yet been fully optimized.
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APPENDIX A

Trajectory in Minimum Acceleration
Principle
Considering the trajectory from a current state xt at current time t
to a target state xT at movement end time T, the cost to minimize
is described by the following:

C = 1

2

∫ T

t

(
d2xt′

dt′2

)2

dt′ (A1)

In the similar manner as discussed by Flash and Hogan (1985)

for the minimum jerk principle, the solution is given by a third
order polynomial:

xτ = a0 + a1 (τ − t) + a2(τ − t)2 + a3(τ − t)3 (A2)

where τ denotes the arbitral time duringmovement (t ≤ τ ≤ T).

The solution of (A2) can be obtained by applying boundary
conditions, which specify the position xt and the velocity ẋt at
time t:

a0 = xt a1 = ẋt

a2 = 3(xT − xt)

(T − t)2
− ẋT + 2ẋt

(T − t)

a3 = −2(xT − xt)

(T − t)3
− ẋT + ẋt

(T − t)2
(A3)

Taking the derivative of (A2),

xτ = a1 + 2a2(τ − t)+ 3a3(τ − t)2 (A4)

The velocity profile in the minimum acceleration
principle, Equations (4) and (5), is obtained from (A3)
and (A4).

APPENDIX B

The Kalman Filter with Time Delay
The system dynamics are described by Equations (11)
and (12). The estimation of the state at time t1 based
on the observation until time t2 is denoted by xt1|t2 ,
and the covariance of the estimation error is denoted
by Pt1|t2 . Because of sensory delay, the observation at
time t is used to correct the estimation of state at time
t − ds:

K = Pt−ds|t−1H
T
[
HPt−ds|t−1H

T + Rt

]−1
(B1)

x̂t−ds|t = x̂t−ds|t−1 + K(yt −Hx̂t−ds|t−1) (B2)

Pt−ds|t = Pt−ds|t−1 − KHPt−ds|t−1 (B3)

Here, [2]T denotes a transposition of the vector or
matrix, while [2]−1 denotes an inverse matrix. The
estimation of the state at t is calculated by corrected
estimation x̂t−ds|t and a motor command that has already
been output, by applying the following in order of
i = −ds, . . . ,−1:

x̂t+i+1|t = Fx̂t+i|t + Dut+i−dm (B4)

Pt+i+1|t = FPt+i|tF
T + GQt+i−dmG

T (B5)

The motor command generated at time t − 1 arrives at the end
effector at time t+ dm− 1 because of the motor delay. Therefore,
the state estimation x̂t+dm|t at time t + dm can be calculated
at time t by applying (B4) and (B5) for i = 0, . . . , dm − 1. As
mentioned in Section Formulation of Aperture Size Control, this
estimation is necessary for generation of the motor command ut .
Equation (B5) is also used to predict future variability at the end
of movement. As variability is predicted farther into the future,
the predicted variability increases because repetitive application
of Equation (B5) accumulates the motor variability Qt .
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