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Theoretical and computational models of the cerebellum typically focus on the role of

parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize

the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A

number of recent experimental results suggest the role of MLIs is more important than

previous models put forth. We investigate learning at PF—MLI synapses and propose

a mathematical model to describe plasticity at this synapse. We perform computer

simulations with this form of learning using a spiking neuron model of the MLI and show

that it reproduces six in vitro experimental results in addition to simulating four novel

protocols. Further, we show how this plasticity model can predict the results of other

experimental protocols that are not simulated. Finally, we hypothesize what the biological

mechanisms are for changes in synaptic efficacy that embody the phenomenological

model proposed here.
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INTRODUCTION

The parallel fiber (PF)—Purkinje cell (PKJ) excitatory synapse has historically been considered
the locus of learning and memory in the cerebellar cortex, driven by climbing fiber (CF) inputs
(Grossberg, 1969; Marr, 1969; Albus, 1971; Ito et al., 2014). While the number of PF-PKJ synapses
formed and capacity for information storage is massive (Brunel et al., 2004; Ito, 2006), excitatory
inputs to PKJs alone do not account for decreases in PKJ activity observed during behavior
(Miyashita and Nagao, 1984; Jirenhed et al., 2007) since PKJs fire spontaneously in absence of
excitatory inputs (Häusser and Clark, 1997; Cerminara and Rawson, 2004). The molecular layer
interneurons (MLI)—stellate and basket cells—also receive PF inputs and provide feedforward
inhibitory inputs to the PKJs in addition to the recurrent inhibitory inputs they form with other
MLIs (Eccles et al., 1967; Palay and Chan-Palay, 1974). Learned changes to PF-MLI and MLI-PKJ
synapses are postulated to increase the information capacity of the MLI-PKJ network and richness
of PKJ output dynamics (Albus, 1971; Dean et al., 2010), however relatively little is known about
plasticity at these synapses.

There is mounting experimental evidence that MLIs play an important role in cerebellar
function. Genetically modified mice lacking PKJ gamma-aminobutyric acid A (GABAA) receptors
exhibit significant motor learning deficits (Wulff et al., 2009), suggesting a significant functional
role for MLI feedforward inhibition in motor learning. Further, using optogenetics to selectively
modulate the firing rates of MLIs via photostimulation elicits movement and controls movement
kinematics in awake mice (Heiney et al., 2014). Thus, orchestrated MLI activity is functionally
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capable of controlling the gain and timing of movement
components. Understanding the learned changes in MLI
feedforward inhibition onto PKJs is crucial to understanding the
learned output of the cerebellar cortex.

Previous in vivo studies showing CF driven changes to
the PF-MLI receptive fields (RF) led to the hypothesis that
concomitant PF and CF activation strengthens PF-MLI synapses
and PF stimulation alone weakens them (Jörntell and Ekerot,
2002, 2003, 2011). Thus, this form of learning is said to be
complementary and synergistic to PF-PKJ learning (Gao et al.,
2012), but the mechanisms governing these receptive field
changes are not understood. There is, however, a diverse body of
in vitro experimental evidence where the mechanisms governing
plasticity have been directly investigated and these results suggest
that bidirectional changes in synaptic efficacy can occur in
absence of CF activity (Liu and Cull-Candy, 2000; Rancillac and
Crépel, 2004; Smith and Otis, 2005; Sun and June Liu, 2007; Kelly
et al., 2009).

In this study, we propose a mathematical model of learning at
PF-MLI synapses that is consistent with in vitro experimental
findings. We choose to model plasticity at a single synapse
based on the in vitro evidence since there is a larger and
more diverse body of data that informs the model of the
mechanisms involved. The model is developed with the in vivo
evidence in mind and possible extensions to the model are
proposed that could bridge the gap between synaptic and
receptive field changes. It is worth cautioning that in vitro
results may not hold under in vivo conditions and the model
should be considered carefully until validated in vivo. We
perform computer simulations using this model of plasticity and
spiking neuron models to reproduce six in vitro experimental
results and simulate four novel protocols. Finally, we hypothesize
what the biological mechanisms underlying this model are and
interpret the experimental results in terms of the model and
mechanisms.

METHODS

Neuron Model
The MLI neuron model is similar to the neuron model we
used in our previous simulations (Lennon et al., 2014) except
that it excludes inhibitory synaptic conductances and includes
excitatory synaptic conductances described below. Briefly, the
MLI is modeled as a conductance-based leaky integrate-and-
fire neuron model (Gerstner and Kistler, 2002) with α-Amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-
Methyl-D-aspartic acid (NMDA) conductances and an intrinsic
depolarizing current which is drawn from a gamma distribution,
Ispont(t) ∼ Ŵ(κ, β) (in units nA), that causes the neuron
to fire spontaneously. When the membrane potential of the
neuron reaches Vthreshold, the neuron emits a spike and an
after-hyperpolarization conductance, gahp(t), is activated. gahp(t)
is modeled according to Equation (2), where tspiked is the
time the neuron last spiked and τahp is the conductance
time constant. Actual parameters used are summarized in
Table 1.

TABLE 1 | Summary of simulation parameters.

MLI neuron parameters Value

Vthreshold (mV) -53.0

C (pF) 14.6

ḡleak (nS) 1.6

Eleak (mV) -68.0

ḡAMPA (nS) 3.0

Eexc (mV) 0.0

τfast (ms) 0.8

τslow (ms) 18.0

αfast 0.8

αslow 0.2

ḡNMDA (nS) 1.0

τrise (ms) 3.0

τdecay (ms) 40.0

τn (ms) 10.0

ḡAHP (nS) 50.0

EAHP (mV) -82.0

τAHP (msec) 2.5

κ 3.966333

β 0.006653

MLI biophysical parameters (Midtgaard, 1992; Häusser and Clark, 1997; Carter and

Regehr, 2002; Lachamp et al., 2009) AMPA receptor parameters (Carter and Regehr,

2002; Satake et al., 2012); NMDA receptor parameters (Gabbiani et al., 1994); τn derived

by hand to match (Carter and Regehr, 2002); κ, β from (Lennon et al., 2014).

C
dV

dt
= −gleak(V(t)− Eleak)− gahp(t)(V(t)− Eahp)− (gAMPA(t)

+ gNMDA(t))(V(t)− Eexc)+ Ispont(t) (1)

gahp(t − tspiked) = exp

(
−(t − tspiked)

τahp

)
(2)

Granule cells were not modeled directly and instead we simulated
the arrival of PF spikes to PF-MLI synapses according to Poisson
statistics with variable rate λ (t) which is controlled during
simulations.

Synaptic Conductances
Model PF-MLI synapses contain both AMPA and NMDA
receptor conductances. Total AMPA synaptic conductances are
computed according to Equation (3), where ḡsyn is the maximal
synaptic conductance, wi is the synaptic weight, α(t) is the
synaptic conductance kinetics function, and δi(t) is a Dirac delta
function for the ith synapse onto the target neuron, indicating
whether the pre-synaptic neuron has spiked at time t. We use
the terms “synaptic weight,” “synaptic efficacy,” and “synaptic
strength” interchangeably. PF-MLI AMPAR conductance rise
times are modeled as instantaneous increases whereas decay
times aremodeled as double exponentials to approximately fit the
prolonged conductances at these synapses (Carter and Regehr,
2000; Equation 4).

gAMPA(t) = ḡAMPA

∑

i

wi

∫ t

−∞

αAMPA(t − s)δi(s)ds (3)
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TABLE 2 | Learning rule parameters.

Neuron trace and weight

update parameters

MLI PF

τψ (ms) 60.0 10.0

νψ (ms) 15.0 2.0

fmax(Hz) 150 300

η 0.001

w0 0.2

αAMPA (t) = αfastexp

(
−

t

τfast

)
+ αslowexp

(
−

t

τslow

)
(4)

PF-MLI synaptic weights are modeled with a fixed minimum
value, w0 ∈ (0, 1), and a variable component, ŵi ∈ [0, 1] that
changes according to the weight update equation described in
the next section. Table 2 shows actual value of w0 used. Equation
(5) ensures the effective synaptic weight, wi, lies within the range
[w0, 1].

wi = w0 + (1− w0)ŵi (5)

Voltage sensitive NMDAR conductances are modeled in
accordance with Equations (6)–(8) which roughly capture the
neurotransmitter availability in the synaptic cleft and the opening
and closing kinetics of NMDA receptors, respectively. Where
ρ = (3.57mM)−1, [Mg2+]o = 1.2mM is the extracellular
magnesium concentration, and σ = (−0.062mV)−1

(McCormick et al., 1993; Gabbiani et al., 1994). The logarithm of
n (t) in Equation (7) is used for numerical stability.

n (t) =

∫ t

−∞

exp

(
−
t − s

τn

)
δ (s) ds (6)

dR

dt
=

log (n (t)+ 1) (1− R)

τrise
− R/τdecay (7)

gNMDA (t) = g
NMDA

R(1+ ρ[Mg2+]oe
σV)

−1
(8)

Neuron Traces
A trace of the neuron spiking activity is calculated every time
step of the simulation and used to compute a smooth measure
of the instantaneous neuron firing rate that is normalized using a
neuron specific maximum firing rate, fmax (Table 2). If the actual
firing rate of the neuron exceeded fmax, the trace is truncated
to fmax. This results in a unitless measure of the neuron firing
activity bounded by zero and one, i.e., xi (t) ∈ [0, 1]. Throughout
the paper we refer to this as the neuron “activity trace” or “firing
trace.” In several figures we plot the non-normalized “firing rate
trace” (in units Hz) as well.

ψ(t) : =
e
−t
τψ − e

−t
νψ

τψ − νψ
(9)

xi (t) =
1

fmax

∫ t

−∞

ψ (t − s) δi (s) ds (10)

Synapse Learning Rule
Synapses are updated according to the gated steepest descent
learning rule (Chen, 2007). The weight update is correlative
based on the activity of the pre-synaptic neuron, PFi (t), and
the difference between the post-synaptic activity, MLIj (t), and
a measure of the synaptic strength, wi,j · η is the learning rate
parameter, and γ is a free parameter that is adjusted during
certain experiments, but is otherwise set to one. A biological
interpretation of the learning rule can be found in the Discussion.

dŵi,j

dt
= ηPFi (t) [MLIj (t)− γ ŵi,j] (11)

Software and Data Analysis
Simulations were performed in Python using BRIAN simulator—
a spiking neural network framework (Goodman and Brette,
2009). All simulations are performed with a time step of
0.25ms using Euler’s method for integration of differential
equations to ensure numerical stability. Data was analyzed
and plotted using BRIAN Simulator, SciPy, Numpy, Matplotlib,
Seaborn, and homemade software written in Python. Action
potentials are drawn in plots by inserting a value of 0mV in
recordings of neuron model membrane potentials immediately
after the model neuron reaches threshold. The source code
for all experiments will be made freely available online upon
publication.

RESULTS

Model of Synaptic Plasticity
Plasticity at the PF-MLI synapses involves several mechanisms
that produce both pre- and post-synaptic changes (Liu and
Cull-Candy, 2000; Rancillac and Crépel, 2004; Smith and Otis,
2005; Soler-Llavina and Sabatini, 2006; Sun and June Liu, 2007;
Bender et al., 2009; Kelly et al., 2009). Here, we present a
phenomenological model of PF-MLI plasticity that is a function
of PF and MLI activity and a measure of the synaptic efficacy, w.
While we mainly focus on evidence for post-synaptic plasticity, it
is expected that this model also accounts for pre-synaptic changes
in synaptic efficacy in physiologically realistic conditions. Post-
synaptic plasticity involves changes in the AMPA receptor
phenotype composition (Liu and Cull-Candy, 2000, 2002; Liu
and Savtchouk, 2012). Both LTP and LTD are observed and
dependent on post-synaptic calcium signaling (Liu and Cull-
Candy, 2000; Rancillac and Crépel, 2004; Smith and Otis,
2005).

We hypothesize that activity-dependent post-synaptic Ca2+

transients induce changes in post-synaptic plasticity. These
transients can induce both LTD and LTP, dependent on a
dynamic cytosolic Ca2+ threshold. We roughly capture the
effects of activity dependent calcium transients as unit-less
traces of the pre- (PF (t)) and post-synaptic activities (MLI (t)),
and the dynamic threshold as a variable synaptic strength, w,
multiplied by a variable scaling factor γ . For the purpose of these
simulations, γ= 1 unless otherwise stated. η serves as a learning
rate and is typically small, η = 0.001. This learning rule is also
known as gated steepest descent (Chen, 2007) and is similar to
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the BCM learning rule (Bienenstock et al., 1982) and mechanistic
models of calcium-dependent synaptic plasticity (Shouval et al.,
2002).

dw

dt
= ηPF (t) [MLI (t)− γw] (12)

Due to w serving as a dynamic threshold for plasticity, this
learning rule exhibits LTP when PF(t) > 0 and MLI(t) > γw,
and LTDwhen PF(t) > 0 andMLI(t) < γw and is self-stabilizing
so that synaptic weights do not “blow up.” The effect of this
learning rule can be seen asw “chasing” the value ofMLI(t), when
the pre-synaptic activity is non-zero, i.e., PF(t) > 0, and the pre-
synaptic activity serves as a dynamic learning rate. The learning
rule is Hebbian in the sense that it is the sum of a correlative term,
PF(t)MLI(t), and a weight decay term, −γPF(t)w, which can
be seen by multiplying the pre-synaptic activity term through.
The model of synaptic efficacy implemented for the simulations
described next has a fixed component to simulate a minimal
synaptic efficacy and a variable component that is governed by
Equation (12).

Simulation of In vitro Experiments
In this section, we present the results of computer simulations
implementing this learning rule at PF-MLI synapses. The
simulations consist of a single MLI spontaneously firing at about
30Hz (simulating isolation from all inhibitory synaptic currents)
with either a single PF or a bundle of 8 PFs forming synapses
onto the MLI. Input spikes from PFs are modeled according to
Poisson statistics with a variable rate which is controlled during
the simulation. PF spikes produce both AMPA and NMDA
conductances (described in Methods) in the MLI. In simulations
I–IV, we simulate novel protocols to demonstrate the variety of
synaptic weight changes depending on pre- and post-synaptic
activities. In these simulations the simulated MLI receives only
one PF input. In simulations V–X, we attempt to replicate
the plasticity inducing protocols from a number of in vitro
experiments and show that the simulations reproduce similar
changes in synaptic efficacy. Table 3 summarizes the simulation
protocols and results.

Simulation I: High-Frequency PF Bursts Induce LTP in

Spontaneously Firing MLIs
Simulation I investigates the effects of PF burst stimulation
on the firing rate of a spontaneously firing isolated MLI and
the consequent changes to synaptic efficacy. The simulation
begins with a 5 s baseline period where the MLI and PF
fire spontaneously at their baseline rates of 30 and 0.33Hz
respectively (Figure 1). After 5 s, the PF is then stimulated to
fire approximately 100Hz bursts (according to Poisson statistics)
for 100ms every 1 s. Each 1 s period starting after the baseline
period constitutes one trial and 60 trials are simulated for a total
simulation time of 65 s. The simulation is repeated independently
10 times (n = 10); Figure 1 shows the first 10 s of an example of
one simulation. A recording of the MLI voltage is shown in the
top panel (red) and a non-normalized firing rate trace is shown in
the middle panel below (red). This firing rate trace is divided by
a maximum firing rate parameter to normalize its value between
[0,1] yielding MLI(t) which is used in the weight update equation
(described in Methods). A non-normalized trace of the PF firing
rate is shown in the bottom panel (blue). The value of the synaptic
strength, w, starts near its equilibrium value (where ŵ ≈ MLI(t)
when PF stimulation is low but non-zero) and is plotted in the
bottom panel (green). PF bursts increase the MLI firing rate
above its baseline value. As the synaptic strength increases, we
would expect a corresponding increase in the peakMLI firing rate
during PF activation across trials. This is not always reflected in
the first 10 s of the example simulation (e.g., Figure 1) since the
PF burst is modeled as a Poisson spike train where the number
and frequency of spikes varies slightly by trial.

During periods where PF activity is non-zero and where the
normalized MLI firing activity (not shown) is greater than the
variable weight component, ŵ, the synapse strengthens. The PF
activity serves two functions: first to increase the MLI firing
rate, and second to gate plasticity. The trajectory of the synaptic
weight across trials and averaged over independent simulations
is shown in Figure 2. One important feature of this learning
rule is that the synaptic weight asymptotes instead of “blowing
up” and is thus stable compared to a purely Hebbian rule. The
asymptote is the result of the synaptic weight catching up to the
MLI activity—as it gets closer, the change in synaptic efficacy is
smaller.

TABLE 3 | Summary of simulations.

Simulation Simulation protocol Result Figure(s)

I Single PF bursts at 100Hz, isolated MLI fires spontaneously at baseline. n = 10 LTP 1, 2

II Single PF fires continuously at 10Hz with a depolarizing current injected into an isolated MLI. n = 10 LTP 2, S1

III Single PF fires continuously at 10Hz with a hyperpolarizing current injected into an isolated MLI. n = 10 LTD 2, S2

IV Single PF fires continuously at 2Hz, isolated MLI fires spontaneously at baseline. n = 10 — 2, S3

V A bundle of 8 PFs fires at 50Hz while the target MLI is voltage clamped to −60mV. LTD 3, 5

VI A bundle of 8 PFs fires 100Hz bursts while the target MLI is current clamped to −80mV. LTP 4, 5

VII A bundle of 8 PFs fires at 1Hz while the target MLI is current clamped to −80mV. LTD 5, S4

VIII A bundle of 8 PFs fires at 2Hz while the target MLI is injected with a depolarizing current. LTP 5, S5

IX A bundle of 8 PFs fires at 1Hz while the MLI fires spontaneously and the weight update parameter γ is increased to γ = 1.5. LTD 5,S6

X A bundle of 8 PFs fires at 1Hz while the MLI fires spontaneously and the weight update parameter γ is decreased to γ = 0.5. LTP 5, S7
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FIGURE 1 | Simulation I: PF-driven long term potentiation. An example of one simulation run with an isolated MLI firing spontaneously (red traces; top panel:

membrane potential; middle panel: firing rate trace) which receives one PF input (blue trace = the activity trace of a granule cell (GR) providing PF input). Only the first

10 s of the simulation are shown. The value of the synaptic strength, w, is shown in green in the lower panel and begins near its equilibrium value. During the first 5 s

both PF and MLI firing at baseline at about 0.33 and 30Hz, respectively. After 5 s, the PF fires 100Hz bursts for 100ms every 1 s. Starting at 5 s, each 1 s interval is

considered a trial. The increased PF firing causes the MLI to increase its firing rate; at the same time, the synaptic weight, w, increases to compensate for the

difference between the normalized MLI firing rate and the current value of w.

Simulation II: Continuous 10Hz PF Firing with Paired

MLI Hyperpolarizing Current Injection Induces LTD
Simulation II investigates the effects of a continuous 10Hz
stimulation of the PF with a paired hyperpolarizing current
injected into the MLI to reduce its firing rate to approximately
10Hz. The simulation begins with a 2.5 s baseline period
where both PF and MLI fire spontaneously. Starting at 2.5 s, a
hyperpolarizing current is injected into the MLI to reduce its
firing rate to 10Hz. Beginning at 5 s, the PF is continuously
stimulated to fire at approximately 10Hz (according to
Poisson statistics) for the remainder of the simulation, 60 s
(Supplementary Figure 1, analogous to Figure 1). Thus, the
total simulation time is 65 s and we again refer to the 1 s
periods beginning at 5 s as trials. During this period, where non-
zero PF activity gates plasticity, the synaptic weight decreases
since the MLI activity is below the synaptic weight value
(Figure 2).

Simulation III: Continuous 10Hz PF Firing with Paired

MLI Depolarizing Current Injection Induces LTP
Simulation III is identical to Simulation II except that a
depolarizing current is injected into the MLI. Beginning at 2.5 s

theMLI is injected with a constant depolarizing current sufficient
to increase theMLI firing rate to approximately 40Hz. Beginning
at 5 s, the PF is continuously stimulated to fire at approximately
10Hz (according to Poisson statistics) for the remainder of the
simulation, 60 s (Supplementary Figure 2). Because the PF firing
rate is non-zero and the MLI firing rate increases above baseline,
the synaptic weight increases (Figure 2).

Simulation IV: Low-Frequency PF Stimulation with

Spontaneous MLI Firing Results in Unremarkable

Changes in Synaptic Efficacy
Simulation IV investigates the effect of a constant low
frequency stimulation of the PF (2Hz) while the MLI fires
spontaneously at its baseline rate of 30Hz. Similar to simulation
I, a 5 s baseline period is simulated where the PF and
MLI fire at 0.33Hz and 30Hz, respectively. After 5 s, for
another 60 s, the PF fires at 2Hz (according to Poisson
statistics). Since this PF firing rate does not sufficiently
change the MLI firing rate and the weight value begins near
equilibrium for baseline PF and MLI rates, the synaptic weight
value does not change remarkably (Figure 2, Supplementary
Figure 3).
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FIGURE 2 | Summary of Simulations I–IV. The left panel shows the mean (solid lines) and range (shaded regions) percent change of synapse weight from starting

values at the end of each trial across all simulated neurons (n = 10) for a particular simulation. For simulation I where the PF is stimulated to fire 100Hz bursts for

100ms every 1 s (i.e., 1 s trials), the synapse weights reach an equilibrium value of about 20% greater than starting values. The right panel shows the final mean (bar

height) and range (black error bar) of weight values normalized to their starting values for each simulation.

Simulation V: PF Bundle Stimulation at 50Hz with

Paired MLI Voltage Clamp Induces LTD
Simulation V emulates the experimental conditions from Liu and
Cull-Candy (2000) used to induce PF-MLI LTD. The simulation
models a single isolated MLI with eight PF inputs to emulate the
effect of stimulating a bundle of PFs with an electrode in vitro.
The simulation begins with a 2.5 s baseline period where the PFs
and MLI fire at baseline rates of 0.33Hz and 30Hz, respectively
(Figure 3). At 2.5 s, the MLI is then voltage clamped to −60mV.
At 5 s, the PFs are stimulated to individually fire at approximately
50Hz (according to Poisson statistics) which continues for 60 s.
As before, each 1 s interval starting at 5 s is considered a trial
to allow comparison among simulations. Concomitant with the
activation of PFs, the synaptic weights decrease since the MLI
firing activity is effectively zero, below the value of the synapse
weight. Figure 3 depicts these changes, where figure conventions
are the same as before except that the weight trace is the mean
weight of all PF synapses impinging on the MLI and only one
example PF trace is shown. The trajectory of the mean and range
of synaptic weights onto this MLI is summarized in Figure 5.
The synaptic weight asymptotically decreases to the minimum
weight value, w0. The synaptic weight decrease in the simulation
is consistent with the observed decrease in synaptic efficacy by
Liu and Cull-Candy (2000).

Simulation VI: PF Bundle Burst Stimulation with

Paired MLI Current Clamp Induces LTP
Simulation VI models the experimental protocol used by Smith
and Otis (2005) to induce PF-driven LTP at PF-MLI synapses.
A single isolated, spontaneously firing MLI receiving eight PF
inputs is simulated. The simulation begins with the MLI and
PFs firing at their baseline rates of 30 and 0.33Hz, respectively
(Figure 4). After 2.5 s, a constant current is injected into the MLI
to hold it near −80mV. Beginning at 5 s, each PF is stimulated
to fire at 100Hz (according to Poisson statistics) for 100ms
every 1 s and continues for 60 s. Despite being injected with a
hyperpolarizing current, the cumulative PF input is sufficient to
cause the MLI to depolarize and fire action potentials, raising the

MLI activity trace from near zero to above the original weight
equilibrium values when both PF and MLI fire spontaneously.
Thus, the synaptic weights increase during these periods of PF
activity and results in a cumulative LTP (Figure 5). Although not
apparent in Figure 4, the peak firing rates of MLIs increase along
with synaptic weight increases (Supplementary Figure 8).

Simulation VII: PF Bundle Low-Frequency Stimulation

with Paired MLI Current Clamp Induces LTD
Simulation VII models a different experimental protocol used
by Smith and Otis (2005) which was shown to induce PF-MLI
LTD. The simulation protocol is identical to the one described
for simulation VI except that each PF is stimulated to produce
2Hz firing continuously (Supplementary Figure 4) beginning at
5 s. The low frequency spike inputs from all 8 simulated PFs
is insufficient to regularly depolarize the MLI. Thus, the MLI
activity trace remains zero while the PF activity trace is briefly
greater than zero for short periods of time. The cumulative effect
is a decrease in the mean PF-MLI synaptic strength, i.e., LTD
(Figure 5).

Simulation VIII: PF Bundle Low-Frequency

Stimulation with Paired MLI Depolarizing Current

Injection Induces LTP
Simulation VIII models one of the experimental protocols
used by Rancillac and Crépel (2004) which results in PF-MLI
LTP. The protocol consists of an induction period of low-
frequency (0.33Hz) stimulation of the PF bundle for 8min while
simultaneously holding the MLI in voltage clamp at −60mV.
After the induction period, the PFs are stimulated to fire at 2Hz
while the MLI is depolarized to 0mV for 60 s. We hypothesized

that during this induction period the synaptic efficacy would
decrease from its previous equilibrium value since the PF is
somewhat active and the MLI is in voltage clamp. To investigate

this in the simulation, we begin the simulation with the MLI in
voltage clamp at−60mV and the synaptic weight at a lower value

than previous experiments. The MLI is held in voltage clamp for
the first 5 s of the simulation while the PFs fire spontaneously
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FIGURE 3 | Simulation V: Voltage clamping MLI induces PF-MLI LTD. An isolated MLI fires spontaneously for the first 2.5 s of the simulation and is then voltage

clamped to −60mV for the remainder of the simulation. Starting at 5 s, each PF in the bundle fires at 50Hz. Figure conventions are the same as Figure 1 except that

the mean synaptic weight value across all PF synapses converging onto this MLI is shown (green) and only one sample PF trace is shown (blue). Between 2.5 and 5 s,

the synaptic weights do not change significantly since the PFs are firing at a low 0.33Hz. However, once the PFs begin firing at 50Hz, the synaptic weight decreases

rapidly since the normalized value of MLI firing is effectively 0 and below the synaptic weight value. This simulation attempts to reproduce the experimental results of

Liu and Cull-Candy (2000).

around 0.33Hz (Supplementary Figure 5). After 5 s, the MLI is

injected with current to fire at 50Hz. Since holding the simulated
MLI at 0mV would not result in spiking and thus a zero value

for the activity trace, we chose to inject current to depolarize the

neuron to fire at 50Hz and produce a non-zero activity trace as
a surrogate. The result of the simulated protocol is that the MLI

activity trace value is greater than the synaptic weight and thus a
strengthening of the synapse occurs (Figure 5). This is consistent

with the result of Rancillac and Crépel (2004).

Simulations IX and X: Simulating Changes in “Basal

Tone” Induces Bidirectional Changes in Synaptic

Efficacy
Metabotropic 1 glutamate receptors (mGluR1) and gamma-
aminobutyric acid B receptors (GABABR) found in MLIs are
tonically active and their level of activity sets the “basal tone” for
PF-MLI EPSC amplitude in vitro (Kelly et al., 2009). Simulations
IX and X reproduce the effects of modulating the activity of
these metabotropic receptors in vitro using chemical agonists
and antagonists by modifying γ in the synaptic weight update
rule. By increasing γ , the MLI activity level needed to surpass
the γw threshold for LTP is increased. Thus, if w begins near

its equilibrium value for baseline PF and MLI activity and γ
is increased, w will decrease to reach a new equilibrium. In
Simulation IX, 8 PFs connected to a MLI all fire spontaneously at
baseline rates of 0.33Hz and 30Hz, respectively, and the synaptic
weights begin near their equilibrium values (Supplementary
Figure 6). Starting a 5 s, and continuing for 10min, γ is raised
from γ = 1.0 to γ = 1.5. The result is a gradual decay in
the synaptic weight (Figure 5) which is consistent with observed
LTD when applying mGluR1 and GABABR agonists in vitro
(Kelly et al., 2009). Conversely, in Simulation X, by decreasing γ
from γ = 1.0 to γ = 0.5w increases to reach a new equilibrium,
reproducing the effects of applying chemical antagonists of
applying mGluR1 and GABABR antagonists in vitro (Kelly et al.,
2009) (Supplementary Figure 7).

DISCUSSION

In this study, we present a mathematical model of plasticity
at PF-MLI synapses that describes bidirectional changes in
synaptic efficacy as observed in vitro. The current model
depends only on the pre- and post-synaptic neuronal activity
and a dynamic threshold partly determined by a measure of
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FIGURE 4 | Simulation VI: Current clamping MLI with PF bursting results in LTP. An isolated MLI fires spontaneously for the first 2.5 s of the simulation and is

then injected with a constant current to keep the membrane potential near −80mV for the remainder of the simulation. Starting at 5 s, each PF in the bundle fires

100Hz bursts for 100ms every 1 s. Figure conventions are the same as Figure 3. Synchronous PF burst firing is sufficient to depolarize the MLI and cause it to fire.

During periods where the PFs are active, the MLI firing rate trace rises above the value of the synaptic weight and thus results in an increase in the synaptic weight,

i.e., LTP. This simulation attempts to reproduce the experimental results of Smith and Otis (2005).

synaptic efficacy. The dynamic threshold enables bidirectional
changes in efficacy and is inherently self-stabilizing. We show
via computer simulations that the model reproduces similar
changes in synaptic efficacy as observed in a variety experimental
results. In addition, we simulate novel protocols which serve as
predictions to be validated by future experimental investigation.

Biological Mechanisms of the Model
The model presented in this study is a phenomenological
description of plasticity that is a function of PF and MLI spiking
activity and a measure of synaptic efficacy. This model serves as
a high-level surrogate for describing plasticity until the detailed
biological mechanisms are modeled directly. In this section, we
speculate on what the underlying mechanisms are which give rise
to this phenomenological description.

Plasticity at the PF-MLI synapses involves several mechanisms
that produce both pre- and post-synaptic changes (Liu and Cull-
Candy, 2000; Rancillac and Crépel, 2004; Bender et al., 2009).
While we mainly focus on evidence for post-synaptic plasticity, it
is expected that this model also accounts for pre-synaptic changes
in synaptic efficacy in physiologically realistic conditions. Post-
synaptic PF-MLI plasticity involves changes in the AMPA

receptor (AMPAR) phenotype composition (Liu and Cull-
Candy, 2000). Stellate-type MLIs, and presumably basket-type
MLIs, express glutamate receptor 2 (GluR2) lacking calcium-
permeable AMPARs (CP-AMPARS) and GluR2-containing
calcium-impermeable AMPARs (CI-AMPAR) and have been
shown to make an activity dependent switch from CP- to CI-
AMPARs (Liu and Cull-Candy, 2000, 2002; Kelly et al., 2009).
CP-AMPARs admit more charge at negative potentials (Liu
and Cull-Candy, 2000) so a switch from CP- to CI-AMPARs
results in a functional decrease in the strength of this synapse.
Thus, the mixture of CP/CI-AMPARs at the post-synaptic
density determines the excitatory post-synaptic potential (EPSC)
amplitude, or “basal tone,” of the synapse. Additionally, the level
of tonic activation of mGluR1 and GABAB receptors influence
the basal tone of the synapse (Kelly et al., 2009). Both activity
dependent LTP and LTD at this synapse are observed and are
post-synaptic calcium signaling dependent (Liu and Cull-Candy,
2000; Rancillac and Crépel, 2004; Smith and Otis, 2005; Sun and
June Liu, 2007).

We hypothesize that activity-dependent post-synaptic Ca2+

transients initiate changes in synaptic efficacy. These transients
could induce both LTD and LTP dependent on a dynamic
cytosolic Ca2+ threshold which could be reflected in the level
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FIGURE 5 | Summary of Simulations V–X. Top panel depicts the mean

(solid lines) and range (shaded) percent weight change of synaptic weights

converging onto the MLI at the end of each trial for simulations V–VIII. Middle

panel shows the mean (solid lines) and range (shaded) percent weight change

of synaptic weights converging onto the MLI at the end of each minute of

simulation time for simulations IX and X. The bottom panel compares the final

mean normalized synaptic weights at the end of the simulation for each

simulation (bar height) and range of values (black error bars).

of intracellular calcium stores. In the model proposed here, the
dynamic threshold is captured by γw, where w captures the
strength of the synapse in terms of CP- and CI-AMPAR makeup,
and γ captures the effects of basal activity levels of metabotropic
receptors involved in AMPAR phenotype composition. CP-
AMPARs are one source of calcium influx. Indeed, the change in

AMPAR phenotype composition could provide one mechanism
for governing bidirectional changes in plasticity. The upper
limit on synaptic efficacy could be governed by the dependence
on sufficient amounts of calcium influx simply to maintain
the phenotype composition of the synapse since stronger
synapses may require increasingly greater post-synaptic calcium
concentrations simply to maintain or increase the strength of the
synapse during periods of PF activation. This limit may be further
enhanced by partial block of calcium influx through CP-AMPARs
during physiologic activation due to intracellular polyamines
(Bats et al., 2013). The lower limit on synaptic efficacy could be
governed by the dependence of the CP- to CI-AMPAR switch on
calcium influx through CP-AMPARs (Liu and Cull-Candy, 2000,
2005; Gardner et al., 2005).

NMDARs are another source of calcium influx for signaling
changes in plasticity which are MLI activity dependent. Indeed,
blocking NMDARs prevents LTP and even uncovers some LTD
during PF stimulation in vitro (Rancillac and Crépel, 2004; Smith
and Otis, 2005). MLI NMDARs are located extrasynaptically
(Clark and Cull-Candy, 2002) and can be activated by a single
PF firing at a sufficiently high frequency (Nahir and Jahr, 2013).
Since PFs fire high-frequency bursts in physiologically realistic
conditions (Chadderton et al., 2004; van Beugen et al., 2013), PFs
likely activity NMDARs in vivo when firing bursts. Furthermore,
climbing fibers (CFs) activate MLIs exclusively via glutamate
spillover (Szapiro and Barbour, 2007) and CF mediated EPSCs
have a significant NMDAR-mediated component (Coddington
et al., 2013). Thus, CFs may play a special role in gating calcium
influx and biasing plasticity toward LTP in vivo. This is consistent
with adaptive filter models of cerebellar learning which require
correlated PF and CF firing to induce LTP at these synapses
(Dean et al., 2010).

The proposed model is also a function of PF and MLI activity
which is a normalized, unit-less trace of the spiking activity of
these neurons. Calcium signals could be the commonmechanism
of conveying this activity. MLI somatic calcium concentrations
change slowly as a function of the firing rate of these neurons
(Franconville et al., 2011) and dendritic calcium concentrations
are regulated by somatic spikes (Myoga et al., 2009). Thus, the
firing rate of MLIs could produce a global time-varying calcium
concentration in the dendrites of MLIs. Similarly, PF traces could
be implemented using calcium signals since physiological PF
firing results in prolonged glutamate conductances, and thus
calcium influx, at MLI synapses (Carter and Regehr, 2000).
Furthermore, changes in PF-MLI synapses are input-specific due
to localized synaptic Ca2+ signaling in MLI dendrites (Soler-
Llavina and Sabatini, 2006). Thus, a synapse specific trace of PF
activity may use a sustained level of glutamate at the synapse and
local calcium concentrations in the post-synaptic membrane.

Limitations of the Model
The model is limited to describing plasticity at the level
of pre- and post-synaptic activities and is thus unable to
simulate certain physiological conditions from past experimental
protocols. In particular, calcium currents from AMPARs and
NMDARs are not directly accounted for in this model and their
influence is based on their collective ability to depolarize the
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MLI. This makes simulating chemical NMDA channel block
and voltage-dependent calcium conductances, such as holding
the MLI in voltage clamp at 0mV, (as in Simulation VIII)
impossible. In addition, the effect of modulating metabotropic
receptor activities and their downstream effects cannot be
modeled directly. The model is also unrealistic in that changes
in synaptic efficacy happen instantaneously whereas changes
in vitro and in vivo continue to take place for several minutes
after stimulation (Rancillac and Crépel, 2004; Smith and Otis,
2005).

Related Models of Plasticity
BCM theory (Bienenstock et al., 1982) is a model of plasticity
used to describe activity dependent synaptic changes in the
visual cortex which also employs a dynamic threshold to induce
bidirectional changes in synaptic efficacy. Using the BCM model
in lieu of the gated steepest descent model would not reproduce
all of the experimental results described here. This can be seen
using Simulation V as an example. Using a trace of MLI spiking
for the post-synaptic activity in the BCM weight update equation
would result in no weight change when theMLI is held in current
clamp since this trace is effectively zero and all other terms of the
weight update equation are multiplied by this term.

A number of other models of cerebellar learning have either
explicitly or implicitly modeled learning at PF-MLI synapses, but
most of these models were proposed before any experimental
evidence describing plasticity at this synapse existed. Kenyon
(1997) proposed a model where changes in PF-PKJ synapses are
consolidated into long-term memories at PF-MLI synapses, but
the weight update equation used doesn’t appear to be consistent
with experimental evidence. Albus (1971) also predicted learned
changes to PF-MLI synapses but suggested that CF inputs act to
weaken PF-MLI synapses, similar to PF-PKJ synapses. Adaptive
filter models of cerebellar learning have been proposed that use
positive and negative values for adaptive weights which implicitly
defines plasticity at MLI synapses that is complementary and
synergistic to PF-PKJ learning (Dean et al., 2010).

Finally, a modified gated steepest descent learning rule has
also been used to model plasticity at the synapses formed by
mossy fibers onto neurons in the deep cerebellar nuclei/vestibular
(Yamazaki et al., 2015, Supplementary Information, Equation 9).
Simulations using this model reproduce post-training memory
consolidation in learned gain changes of the optokinetic
response.

Extending the Model
Concomitant PF and climbing fiber (CF) activation leads to
a drastic increase in the PF-MLI receptive field (RF) and
subsequent PF stimulation alone leads to a decrease in the PF-
MLI RF (Jörntell and Ekerot, 2002, 2003, 2011). The increased RF
could be due to activation of electrically silent synapses, however
the mechanisms governing this process are not understood.
Assuming this in vitro model holds under in vivo conditions,
one way to augment the current model is to include a separate
equation for plasticity at electrically silent synapses that requires
concomitant activation of PF and CF input in order for a synapse
to become electrically active. In simulations, this would result in

an increase in the number of synapses that depolarize the target
MLI and an effective increase in the RF size.

CFs may also influence plasticity at active synapses in two
ways: indirectly, by increasing MLI firing rates thus favoring
LTP, and directly, by modulating the threshold for plasticity
through γ—capturing the effects of glutamate spillover and
changes in post-synaptic calcium concentration due to activation
of NMDARs and CP-AMPARs. Note that this would be a separate
mechanism thanmodulatingmetabotropic receptors tomodulate
γ . This could be implemented where γ is a function of the
activity of CFs or the spillover of glutamate from CF inputs
to the MLI. When CFs are inactive (active) or the volume of
glutamate spillover is low (high), γ would be high (low). This
mechanism would bias PF-MLI synapses with concomitant PF
and CF activation toward potentiation by lowering the threshold
in favor of LTP. Subsequently, if the PF were active without
concomitant CF activation, the synapse might weaken since γ
and thus γw is higher than before. This could be one mechanism
for observing decreases in PF receptive field sizes with PF
stimulation subsequent to a PF+CF protocol which results in PF
receptive field increases (Jörntell and Ekerot, 2002). Homeostatic
plasticity (Turrigiano, 2012) such as synaptic scaling may be
another mechanism that reduces receptive field sizes over time
or causes electrically active synapses to become inactive. Taken
together, we predict that the extended model would reproduce
the RF changes observed in the in vivo experiments performed
by Jorntell and Ekerot.

The model can also be extended to model calcium
concentrations directly. Similar models based on BCM theory
(Bienenstock et al., 1982) have been extended to model plasticity
as a function of calcium concentrations which include influences
from both AMPARs, NMDARs and action potentials (Shouval
et al., 2002; Yeung et al., 2004). Indeed, the form of the equations
governing plasticity as a function of calcium concentrations in
these models is similar to the model presented here. The model
presented in Shouval et al. (2002) could be modified in the
following ways to capture synaptic plasticity at PF-MLI synapses.
The calcium influx would be a function of the proportion of
CP-AMPARs which changes with the synaptic strength as well
as a function of spillover glutamate from high frequency PF
bursts and CF volumergic transmission separately. In addition,
the glutamate binding dynamics from PFs would be modeled
which results in prolonged calcium influx. “Assumption 3” of
Shouval et al. (2002) is similar to the slowly changing calcium
concentrations in MLIs due to spiking activity (Myoga et al.,
2009; Franconville et al., 2011). The model would have to be
further augmented to capture the effect ofmetabotropic receptors
on plasticity. A simulation of the described model should reflect
predictions made by our model, but with more physiological
detail and will allow for more direct simulation of NMDA
channel block and voltage-dependent calcium currents under
voltage-clamp conditions.

Implications of the Model
Historically, network models of the cerebellum have focused on
PF-PKJ synapses as the locus of learning and memory in the
cerebellar cortex. However, effective cerebellar learning is likely
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the result of distributed plasticity across synapse types in the
cerebellum (Gao et al., 2012; Mapelli et al., 2015). MLI synapses
have been previously suggested as one such location (Jörntell
et al., 2010; D’Angelo, 2014).

The learning rule for PF-MLI synapses presented here takes
the form of Grossberg’s outstar learning rule (Grossberg, 1968).
In accordance with this learning rule, granule cells (GRs) will
“sample” the responses of their MLI targets and adjust their
synaptic weights to “track” the normalized MLI activity values
when PF synapses are active. If a distributed pattern of activity
across the MLI population is repeatedly present concomitant
with a GR encoded pattern of some stimulus, the PFs will adapt
their weights so that the GR activity pattern alone will reproduce
the MLI activity pattern. Thus, it may be the role of the CF
inputs to the MLIs to act as a supervised learning signal and to
initialize the distributed pattern of activity across the MLIs and
to bias synaptic changes toward strengthening. Subsequently, the
PF-MLI response will be learned and reproduced associatively.

The role of MLI-MLI plasticity may be to normalize
and contrast enhance the MLI population response and to
induce competition among MLIs in the distributed pattern of
activity across the local MLI population. Furthermore, MLI-PKJ
plasticity would enable learning combinations of MLI activity
patterns to produce appropriate PKJ responses. Finally, PF-PKJ
plasticity may act synergistically with changes in feedforward
inhibition from MLIs, although the two inputs could have
different time courses for affecting PKJ responses. Extending the
model to account for the interplay between CFs and PF-MLI
plasticity may be necessary before network simulations of the
cerebellum using this model of plasticity would be illuminating.

Interpretation of Experimental Results
A number of in vitro experimental protocols used to induce
plasticity at PF-MLI synapses can be described in terms of the
model presented in this study which also correctly predicts
the experimental results. We present this interpretation and
speculate on some of the biological mechanisms responsible for
plasticity in each case. Table 4 summarizes selected experiments
and their interpretations in terms of this model.

Early on, it was shown that high frequency stimulation of PFs
while holding the MLI in voltage clamp at −60mV induces a
switch from CP- to CI-AMPARs (Liu and Cull-Candy, 2000),
i.e., LTD. This result is predicted by the model since holding the
MLI in voltage clamp decreases its activity relative to baseline
(↓ MLI(t)), and stimulating PFs increases their activity relative
to baseline (↑ PF(t)); i.e., 1w ∝↑ PF(t)

[
↓ MLI(t)− γw

]
< 0

where MLI(t) < γw. Chelating post-synaptic Ca2+ prevented
the switch in AMPAR phenotype and resulted in no change in
synaptic efficacy, supporting the idea that the mechanism of
plasticity is calcium signaling dependent. Similarly, a separate
study showed that a 30Hz PF stimulation with the MLI held in
voltage clamp leads to pre-synaptic LTD that is also dependent
on post-synaptic Ca2+ influx (Soler-Llavina and Sabatini, 2006),
suggesting a complementary form of LTD. While this is a
different mechanism, it is consistent with the model prediction
by the same reasoning.

In somewhat more realistic physiological conditions, high
frequency PF burst stimulation was shown to induce LTP in vitro
(Smith and Otis, 2005). This was demonstrated in two ways. In
the first method, MLIs were held in current clamp at −80mV
while PFs were stimulated to fire brief high frequency bursts
at 100Hz. The bath contained picrotoxin to block inhibitory
currents into the MLI. Following the plasticity protocol, LTP
was measured directly by observing an increase in MLI spike
firing in response to PF input compared to control conditions.
In the second method, synaptic changes were induced indirectly
by stimulating the PFs according to the same protocol but in a
bath without picrotoxin and then recording responses from PKJs.
After the protocol, PKJs initially had a higher firing rate due to
PF-PKJ LTP, followed by a period of spike depression caused
by inhibition, presumably from increased MLI feedforward
inhibition. Additional experimental evidence suggests increased
depression appears to be due to PF-MLI potentiation and not
from MLI-PKJ potentiation. The model predicts LTP in these
experiments by 1w ∝↑ PF(t)

[
↑ MLI(t)− γw

]
> 0 with

MLI(t) > γw since the membrane potential of the MLI is able to
fluctuate during PF stimulation in contrast to the protocol used
in Liu and Cull-Candy (2000) where it is voltage clamped. Using
the same LTP-inducing protocol in the presence of NMDAR
antagonists, LTP is abolished and some LTD is uncovered (Smith
and Otis, 2005). NMDARs are located extrasynaptically and
can be activated by a high frequency train of PF stimulation
(Carter and Regehr, 2000; Clark and Cull-Candy, 2002). This
suggests the 100Hz stimulation caused spillover activation of
NMDARs and that this is important for LTP, presumably due
to Ca2+ influx since chelating post-synaptic Ca2+ also blocked
LTP (Smith and Otis, 2005). Using a low frequency stimulation
protocol consisting of PF stimulation at 1Hz for 5min, PF-MLI
LTD is observed both directly and indirectly (Smith and Otis,
2005). In the indirect case when the MLI is held in current
clamp, the stimulus may be insufficient to perturb the MLI
membrane potential significantly or to activate extrasynaptic
NMDARs, thus the current clamp acts similar to voltage clamp
as in previous experiments. The model also predicts LTD, i.e.,
1w ∝↑ PF(t)

[
↓ MLI(t)− γw

]
< 0.

Sun and June Liu (2007) investigated the role of NMDARs
in the CP- to CI-AMPAR switch. To induce this change, MLIs
were held in voltage clamp at−60mV while chemically blocking
AMPARs; PFs were stimulated to produce high frequency
bursts that activated NMDARs and were paired with fast, 1ms,
MLI depolarizations to 0mV to release NMDAR Mg2+ block.
A Ca2+ dependent CP- to CI-AMPAR switch was observed,
suggesting that Ca2+ entry through NMDARs provide an
additional pathway to induce plasticity at the synapse. While
Ca2+ enters through NMDARs during the brief depolarization,
it is insufficient to signal LTP since the normal spiking activity
of the MLI, and thus cytosolic calcium concentration, is reduced
by voltage clamp. The model would reflect this as 1w ∝↑

PF(t)
[
↓ MLI(t)− γw

]
< 0 where MLI(t) < γw.

Rancillac and Crépel (2004) found that holding the MLI
in voltage clamp at −60mV and stimulating PFs at 2Hz
resulted in a mix of LTP and LTD at the PF-MLI synapse.
One explanation for the mix of LTP/LTD may be the result
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TABLE 4 | Summary of experimental results.

Simulation References Experimental protocol Result Interpretation

V Liu and

Cull-Candy, 2000

In vitro, MLI voltage clamped at −60mV. 300

PF stimuli delivered @ 50Hz. Bicuculline,

picrotoxin, D-APV5.

LTD Holding the MLI in voltage clamp prevents its

spontaneous activity and prevents inward Ca2+ currents

(↓MLI). PF stimulation at 50Hz increases PF activity

above baseline (↑PF).

1w = ↑PF(↓MLI-w) < 0

VI Smith and Otis,

2005

In vitro, MLI current clamped at −80mV. PFs

stimulated (3–10 PFs) with 10 pulses at 100Hz

every 3 s for 5min. Picrotoxin in bath.

LTP Sufficient PF stimulation (↑PF) increases MLI activity

(↑MLI) since current clamp allows the membrane

potential to fluctuate.

1w = ↑PF(↑MLI-w) > 0

VII Smith and Otis,

2005

In vitro, MLI current clamped at −80mV. PFs

stimulated (3–10 PFs) with at 1Hz for 5min.

Picrotoxin in bath.

LTD Low frequency PF stimulation is a slight increase in PF

activity (↑PF) but insufficient to increase MLI activity

which is held in current clamp (↓MLI)

1w = ↑PF(↓MLI-w) < 0

Similar to IV Rancillac and

Crépel, 2004

In vitro, MLI voltage clamp at −60mV.

Bicuculline in bath. Induction protocol of PF

stimulation at 0.33Hz for 8min, then PF

stimulated at 2Hz for 60 s.

LTP/-/LTD The induction protocol initially shifts ↓w to a new value

w* since ↓MLI. The plasticity protocol then increases PF

activity (↑PF).

1w = ↑PF(MLI-w*) ≈ 0

VIII Rancillac and

Crépel, 2004

In vitro, MLI voltage clamp at −60mV.

Bicuculline in bath. Induction protocol of PF

stimulation at 0.33Hz for 8min, then PF

stimulated at 2Hz for 60 s with a paired MLI

depolarization at 0mV

LTP/- The induction protocol initially shifts ↓w to a new value

w* since ↓MLI. The plasticity protocol then increases PF

activity (↑PF) and admits more Ca2+ possibly via

NMDARs and VGCCs (↑MLI).

1w = ↑PF(↑MLI-w*) > 0

— Sun and June Liu,

2007

In vitro, MLI held at −70mV during stimulation

followed by brief depolarization to 0mV. GYKI

in path (AMPAR blocker). PF 4 stimuli @ 50Hz,

100 sweeps.

LTD High frequency PF bursts (↑PF) paired with brief MLI

depolarization, leads to spillover activation of NMDARs

and limited Ca2+ influx via NMDARs. Since CP-AMPARs

are blocked and MLI spontaneous activity is prevented

via voltage clamp, the overall Ca2+ transient is below

threshold (↓MLI).

1w = ↑PF(↓MLI-w) < 0

IX Kelly et al., 2009 In vitro, MLI voltage clamped at −60mV.

D-APV5, bicuculline in bath. Either DHPG

(mGluR1 agonist) or baclofen (GABABR

agonist) added.

LTD Increasing mGluR Group I activity (↑mGluR) can be

interpreted as increasing PF activity (↑PF). Additionally,

↑mGluR may directly increase the intracellular Ca2+

threshold required for plasticity (↑w). Increasing

GABABR (↑GABABR) enhances mGluR activity, and a

similar result holds.

1w = ↑PF(MLI-↑w) < 0

X Kelly et al., 2009 In vitro, MLI voltage clamped at −60mV.

D-APV5, bicuculline in bath. Either LY367385

(mGluR1 antagonist) or CGP62349 (GABABR

antagonist) added.

LTP Decreasing mGluR activity adjusts the “basal tone” by

shifting the intracellular Ca2+ threshold for plasticity

(↓w). Ambient glutamate allows some Ca2+ to still flow

into the MLI. Since GABABR enhances mGluR activity,

↓GABABR causes ↓mGluR, thus ↓w.

1w = PF(MLI-↓w) > 0

of the induction protocol used which held the MLI in voltage
clamp at −60mV while stimulating the PFs at 0.33Hz for
several minutes; this could decrease the synaptic strength and/or
the dynamic threshold down during this period. During the
experiment, the MLI activity is compared to the threshold for
synaptic plasticity—for some synapses, the low activation could
be sufficient to surpass the threshold (MLI(t) > γw) and
not for others (MLI(t) < γw). Thus, on average 1w ∝↑

PF(t)
[
MLI(t)− γw

]
≈ 0. In contrast, when repeating this

stimulation and pairing it with MLI depolarization at 0mVmore

cells underwent LTP, indicating that post-synaptic activity plays
a role in plasticity, i.e., 1w ∝↑ PF(t)

[
↑ MLI(t)− γw

]
>

0. This form of LTP was independent of cAMP but required
NO production. In another experiment stimulating PFs at 8Hz
while holding the MLI in voltage clamp induced a mix of
LTP or no change in tested synapses, but part of the LTP was
cAMP dependent (Rancillac and Crépel, 2004). This last result
in consistent with (Bender et al., 2009) which showed pre-
synaptic LTP dependent on cAMP through a similar induction
protocol. These results reveal the complexity of synaptic plasticity
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at the PF-MLI synapse consisting of both pre- and post-
synaptic mechanisms induced under artificial physiological
conditions.

Kelly et al. (2009) found that activation of both mGluRs
and CP-AMPARs is necessary and sufficient to drive the CP-
to CI-AMPAR subunit switch and that activation of GABABR
enhances mGluR activity. Adding mGluR1 agonists to the in
vitro preparation results in LTD at the synapse. A similar effect
is seen when adding GABABR agonists to the bath. Assuming
metabotropic receptors act to directly modulate the post-synaptic
cytosolic calcium threshold used for bidirectional changes
in plasticity, the effects of up-regulating these metabotropic
receptor activities can be seen as increasing γ in the model, i.e.,
1w ∝ PF(t)

[
MLI(t)− ↑ γw

]
< 0. Similarly, adding mGluR1

and GABABR antagonists results in LTP which can be interpreted
as ↓ γ .

CONCLUSION

In summary, we have shown that a simple mathematical
model of plasticity at PF-MLI synapses captures most reported
phenomena of plasticity at this synapse. We carried out several
numerical simulations of this plasticity rule implemented at PF-
MLI synapses using a previously published leaky integrate-and-
fire model of MLIs. We showed that this model reproduces
the experimental results of several plasticity inducing protocols
reported in the literature. Additionally, we simulated several
novel protocols that have not been published to serve as
predictions for the model. Finally, we speculated on the

biophysical mechanisms governing plasticity at this synapse and
the implications of this form of plasticity on the network function
of the cerebellar cortex.
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