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The mammalian retina seems far smarter than scientists have believed so far. Inspired by
the visual processing mechanisms in the retina, from the layer of photoreceptors to the
layer of retinal ganglion cells (RGCs), we propose a computational model for haze removal
from a single input image, which is an important issue in the field of image enhancement.
In particular, the bipolar cells serve to roughly remove the low-frequency of haze, and
the amacrine cells modulate the output of cone bipolar cells to compensate the loss
of details by increasing the image contrast. Then the RGCs with disinhibitory receptive
field surround refine the local haze removal as well as the image detail enhancement.
Results on a variety of real-world and synthetic hazy images show that the proposed
model yields results comparative to or even better than the state-of-the-art methods,
having the advantage of simultaneous dehazing and enhancing of single hazy image
with simple and straightforward implementation.

Keywords: haze removal, retina inspired model, retinal ganglion cell, non-classical receptive field, disinhibitory
effect

INTRODUCTION

The necessary processing of visual information already begins in the eye, the very first stage of
the visual system. Increasing evidence suggests that the mammalian retina seems far smarter than
scientists have believed so far (Gollisch and Meister, 2010; Lee et al., 2010; Masland, 2012). The
retina is a neural circuit composed of at least 50 clearly distinct cell types (Joselevitch, 2008).
These cells form various retinal subsystems that serve a diverse set of specific tasks, e.g., light
adaptation and image sharpening. Together, these retinal neurons and their coding strategies enable
the visual system to perform well by adapting to the complicated environments, e.g., with changing
air conditions.

From the point of view of engineering, many computer vision applications expect clear input
images with high-contrast details. However, this situation is not always true in practical scenarios.
Due to the presence of aerosols such as dust, mist and water droplets in the atmosphere, the
reflected light from the object surface has already been scattered before it reaches the camera. As
shown in Figure 1, this light-scattering phenomenon consequently results in the contrast reduction
and color fading, which eventually cause the definition decrease in the captured images. This image
degradation annoys not only computer vision applications but also consumers and commercial
photographs, and therefore, image dehazing and visibility enhancing have become more and more
important in this digital age.

Haze removal is a challenging task because the haze condition is always unknown. Most existing
methods use additional information to solve this ill-posed problem. For example, Schaul et al.
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FIGURE 1 | Hazy images (top) and the images after haze removal by
the proposed method (bottom).

combine the hazy image with its near-infrared version (Schaul
et al., 2009). Depth-based methods assume that the depth
information of the image is available or is accessible by the three-
dimensional (3D) geometrical model of the scene and then use
it to enhance the image (Tan and Oakley, 2000; Narasimhan
and Nayar, 2003b; Hautière et al., 2007; Kopf et al., 2008).
Although these methods can enhance the visibility of hazy
images, they cannot be applied when such additional information
is unavailable. There are also some methods that use two or
more images of a same scene to estimate the haze (Nayar
and Narasimhan, 1999; Narasimhan and Nayar, 2000, 2003a;
Schechner et al., 2001; Shwartz et al., 2006; Namer et al., 2009;
Treibitz and Schechner, 2009). In general, these methods can
remove haze well but require multiple images. For a single
image, haze removal methods based on some priors have been
developed. For example, Tan (2008) assumes that a haze-free
image should have higher contrast than the input hazy image,
based on which the haze is removed by maximizing the local
contrast of the input hazy image. Tarel et al. develop a real-
time haze removal method (Tarel and Hautiere, 2009), also
based on the information of local contrast, by assuming that the
atmospheric veil is smooth at most of the time and taking the
percentage between the local standard deviation and the local
mean of the whiteness as the air light. Fattal (2008) assumes
that the transmission and the surface shading in a single input
image are locally uncorrelated, and then eliminates the scattered
light by estimating the optical transmission in hazy scenes. Kratz
and Nishino (2009) try to estimate both the scene albedo and
depth, which contain valuable structural information of haze.
Ancuti et al. (2011) assume that the distance between the observer
and the scene objects is highly correlated with the contrast
degradation and color fading, and then detect haze quickly
by a comparison of the hue values in the input image and
its “semi-inversed” version. Dark channel prior based methods

(He et al., 2009, 2011) assume that the pixels in the dark
channel of haze-free images are close to zero, while in hazy
images these pixels obtain higher intensity from the airlight,
and therefore utilizing these pixels can accurately estimate the
haze transmission. Many recent progresses improve the dark
channel based methods by replacing matting with other filters
(Yu et al., 2010; Gibson et al., 2012) or adding new constraints
(Tarel et al., 2012; Caraffa and Tarel, 2013; Meng et al., 2013).
More recently, Tang et al. (2014) propose a learning framework
to combine different haze-relevant features and provide flexibility
for different specific situations.

Although there are remarkable progresses in single image
haze removal, the problem is that most of these methods
require additional information or prior assumptions. However,
in different real-world images, the information may miss, or
the assumptions may fail, and then the methods based on them
would perform worse than expected. For example, when the
scene objects are similar to the atmospheric light, the dark
channel of the scene radiance has bright values near such objects,
which means that the dark channel prior is invalid, and as a result
the haze layer will be overestimated (He et al., 2011).

Along another line, attempts that follow the information
processing mechanisms of the human visual system (HVS)
seems to be a promising route to address this problem, inspired
by the amazing ability of HVS to achieve stable perception
under varying natural light environments (Foster, 2011). Models
inspired by HVS have succeeded in many fields, such as
face recognition (Vu and Caplier, 2009), boundary detection
(Yang et al., 2013, 2015), key point descriptor (Alahi et al.,
2012), color constancy (Spitzer and Semo, 2002; Spitzer and
Barkan, 2005; Gao et al., 2013, 2015), multi-resolution image-
fusion (Ghassemian, 2001) and image enhancement (Land
and McCann, 1971; Land, 1986; Jobson et al., 1997; Rahman
et al., 2004), with robust performance under varying conditions.
Representatively, the models based on the famous Retinex theory,
which approximates the spectral properties of object surfaces
by the ratio of the reflected light in this area to others (Land
and McCann, 1971; Land, 1986; Jobson et al., 1997; Rahman
et al., 2004), can enhance hazy images with (Xie et al., 2010; Nair
et al., 2014) or without priors (Woodell et al., 2005; Rajput and
Rahman, 2008; Zhou and Zhou, 2013). Taken inspiration mainly
from the color perception behavior of human in psychophysical
experiments, Retinex theory has not yet clarified whether the
formation of lightness images and their comparison occur in the
retina, the cortex, or the both (Foster, 2011).

Different from the Retinex based models, our proposed model
enhances hazy images by simulating the underlying mechanisms
at the specific level of retina. In particular, the proposed model
includes the processing inspired by the physiological findings
that the receptive field (RF) surround of retinal ganglion cell
(RGC) consists of many inhibitory subunits (or subfields), and
the inhibitory interactions among them lead to a disinhibitory
effect, which means an adaptive reduction of the surround
inhibition to the RF center (Li and He, 1987; Li et al., 1991,
1992; Li and Li, 1994; Qiu and Li, 1995; Li, 1996). In addition,
the information processing along the ON and OFF pathways is
combined. This proposed model directly enhances the input hazy
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image, without requiring to first estimate a transmission map
as did in most dehazing models. The novelty of the proposed
model lies in its ability of simultaneous haze removing and detail
enhancing of single image due to the specific mechanisms of
different retinal sub-layers. The contribution of this work is not
only an efficient way to enhance hazy images for computer vision
applications, but also a computational description about the
possible retinal mechanisms of image enhancement in biological
vision.

MODEL

General Description
The proposed method follows the color processing mechanisms
in the retina (Figure 2). The single hazy image is the input and
the enhanced image is the output.

Retinal information processing begins with the sampling of
rod and cone photoreceptors. The red (R), green (G), and blue (B)
components of the input color image are responded respectively
by long-, medium-, and short-wavelength cone photoreceptors
(i.e., L, M, and S cones) of retina, while the brightness of the
dim regions in the input color image is sensitively responded by
rod photoreceptors (Masland, 2012). The photoreceptor activities
are adjusted and transmitted to the RGCs via several retinal
sub-layers like horizontal cells, bipolar cells and amacrine cells.
In particular, the cone signals are then transmitted by ON-
and OFF-type cone bipolar cells, whereas the rod signals are
transmitted only by the ON-type rod bipolars, supported by
the current biological evidence that unlike the cones, the rod
system in the cat, monkey, and human has only ON-type rod
bipolars (Schiller, 2010). In the ganglion-cell layer, the output
layer of the retina, color signals are processed by the RGCs with
single-opponent receptive field (RF), which receives opponent

FIGURE 2 | The structure of the proposed retina-based model. The R, G, B, and brightness components of the input color image are respectively sent into the
corresponding photoreceptors. Then the outputs of cone photoreceptors are transmitted via cone bipolar cells, the RF of which is a difference of Gaussian function, to
the RGCs, the RF of which consists of a small excitatory center and a relatively large inhibitory surround (also named the non-classical receptive field, nCRF). The
surround is composed of many inhibitory subunits, which first inhibit each other, and then inhibit the center. The outputs of rod bipolar cells modulate the outputs of
cone bipolars. From top to bottom, the image patches listed on left side are respectively the input image, the output of the bipolar cells, the bipolar output modulated
by AII amacrine cells, and the final output the ganglion cells. Note that in primates, the densities of M and L cones are typically higher than S cone density by 20-fold
(Euler et al., 2014), so the signals sent into the cone type-non-selective diffuse bipolar cells are mainly R and G components, and here we omit the B component sent
into the diffuse bipolars for clarity and simplicity. w is a weight controlling the relative contributions of the ON and OFF pathways, and we set w = fL (x, y) in this work
(see details in the text).
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stimuli in its excitatory center and inhibitory surround from
two (or more) different cones (Conway et al., 2010). The RF
surround of a RGC is physiologically supposed to comprise
many inhibitory subunits, each of which is first inhibited by
its neighboring subunits (i.e., disinhibit), and then inhibits the
neuronal response elicited by the RF center.

Visual Processing in Bipolar Cells
After the light absorption by photoreceptors, bipolar cells
transmit the neuronal activities to RGCs. Continuous glutamate
release from photoreceptors is suppressed by the light. Thus,
bipolar cells that express sign-conserving ionotropic glutamate
receptors are depolarized in the dark while bipolar cells that
express sign-inverting metabotropic glutamate receptor are
depolarized in the light. Differed in terms of response polarity,
there are two major classes of bipolar cells: ON bipolar cells,
which response to light on-set, and OFF bipolar cells, which
response to light off-set (Schiller, 2010). Beside the RF center, an
inhibitory surround of bipolar cells has been identified more than
40 years (Werblin and Dowling, 1969b). The RF of most bipolar
cells consists of two regions: a smaller excitatory center and a
lager inhibitory annular surround (Werblin and Dowling, 1969a;
Kaneko and Tachibana, 1983), which is commonly described
by the “difference of Gaussian” (DOG) model (Rodieck and
Stone, 1965; Enroth-Cugell and Robson, 1966). The neurons with
such RF type can transmit high-acuity and chromatic opponent
signals. Although the cellular mechanisms and neural circuitry
are not totally clear, many evidences support that horizontal cells
mainly contribute to this surround antagonism (Thoreson and
Mangel, 2012).

Based on the dendritic morphology, primate cone bipolar
cell types have been divided into three groups: diffuse bipolar
cells, S-cone-selective bipolar cells, and midget bipolar cells. Diffuse
bipolar cells non-selectively contact between four and fifteen
neighboring cones of various types. Because in primates, the
combine density of M- and L-cones is typically higher than S-
cone density by 20-fold, the signals of diffuse bipolar cells tend
to be chromatically biased toward yellow (Euler et al., 2014).
For better understanding, we also call these diffuse bipolar cells
the yellow-sensitive bipolar cells in this paper. Combined with
S-cone-selective bipolar cells, diffuse bipolar cells contribute to
blue-yellow color vision. Near the fovea, a midget bipolar cell
receives direct input from just one cone and in turn transfers the
signal to one midget ganglion cell. The midget bipolar cells carry
chromatic signals and are considered to be the basis for red-green
color vision (Euler et al., 2014). The majority of cones in central
retina connect with at least one ON bipolar cell and one OFF
bipolar cell, which in turn connect respectively with ON and OFF
retinal ganglion cells (Schiller, 2010).

There are two pathways in which cone bipolar cells carry
chromatic information to RGCs. First, the cone type unselective
pathway, in which a midget bipolar cell randomly contacts a
single cone and feed into a single midget RGC, carries red-
green information. Second, blue-yellow information is carried by
the cone type selective pathway. In this way, the fact that blue-
ON-yellow-OFF RGCs differentially pool signals from S-cone-
selective ON and diffuse OFF bipolar cells is well-known, but

where blue-OFF-yellow-ON RGCs inherit the blue-OFF signal
from is still controversial. Some former researches report that
the blue-OFF signal is from S-cone-selective ON bipolar cells via
a sign-inverting small field amacrine cell (Chen and Li, 2012),
while recent anatomical and physiological evidences support that
it is from S-cone-selective OFF bipolar cells directly (Mills et al.,
2014).

Given an input image fc(x, y), c ∈ {R, G, B} normalized within
[0, 1] by dividing each channel with the maximum intensity
across three channels, the three components are respectively
sampled by three cone types of cones, and the luminance
component fL(x, y) described by Equation (1) is sampled by the
rods

fL(x, y) = (fR(x, y) + fG(x, y) + fB(x, y))/3. (1)

Then, the signals sampled by the photoreceptors are further sent
into the bipolar cells. For clarity, we use fY (x, y) to represent the
combined signals of R, G, and B sent into the diffuse yellow (Y)-
sensitive bipolar cells. By ignoring the quite less input from B
channel based on the physiological evidence (Euler et al., 2014),
fY (x, y) can be simply computed as

fY (x, y) = (fR(x, y) + fG(x, y))/2. (2)

As indicated in Figure 2, the color components sampled by
cone photoreceptors are further processed by the R, G, B, and
Y-sensitive bipolar cells of both ON and OFF types, and in
contrast, the luminance component sampled by rods is processed
by the rod bipolar cells of only ON type (Schiller, 2010). In
a general form, we denote the outputs of ON bipolar cells as
BPc(x, y), c ∈ {R, G, B, Y, L} and the outputs of OFF bipolar cells
as BP′

c(x, y), c ∈ {R, G, B, Y}, which are computed as

BPc(x, y) = fc(x, y) ⊗ (
g(x, y; σcen) − k · g(x, y; σsur)

)
(3)

BP′
c(x, y) = fc′(x, y) ⊗ (

g(x, y; σcen) − k · g(x, y; σsur)
)

(4)

where ⊗ is a convolution operator. fc′(x, y) = 1 − fc(x, y)
is the input sent into the OFF bipolar cells. k represents the
sensitivity of the inhibitory annular surround, σcen and σsur
are respectively the standard deviations of Gaussian shaped RF
center and its surround, which are experimentally set to be 0.5
and 1.0, respectively in this work. g(x, y; σ) is a two-dimensional
(2D) Gaussian function written as

g(x, y; σ ) = 1
2πσ 2 exp

(−(x2 + y2)/(2σ 2)
)

. (5)

The ON-type rod bipolar cells send their outputs BPL (x, y) to
the specific AII type of amacrine cells (Schiller, 2010). The AII
amacrine cells modulate the activities of ON cone bipolar cells
via sign-conserving gap junctions and OFF cone bipolar cells via
inhibitory synapses (Lee et al., 2010). By this way, rod bipolar cells
finally excite the ON RGCs and inhibit the OFF RGCs indirectly.
Based on this biological fact, the modulated responses of ON and
OFF bipolar cells, MBPc(x, y) and MBP′

c(x, y), are respectively
given by

MBPc(x, y) = BPc(x, y) · (ε + BPL(x, y)
)

(6)
MBP′

c(x, y) = BP′
c(x, y)

/ (
ε + BPL(x, y)

)
(7)
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where ε is a constant, which is set to be 0.5 to avoid being divided
by zero and also to keep the multiplier and divisor to be around
1.0 for easy control in the later use. Note that BPc(x, y) and
BP′

c(x, y) have been rectified by setting the negative values to
zero and then normalized respectively to [0, 1] by dividing each
channel with the maximum intensity across three channels.

It is clear that from Equations (6) and (7), with the modulation
of AII amacrine cells that respond to the luminance component
of scene (i.e., BPL(x, y)), the outputs of most cone ON bipolar
cells (i.e., BPc(x, y), c ∈ {R, G, B, Y}) will be amplified in the
brighter regions eliciting higher BPL (x, y), and in contrast, the
outputs of most cone OFF bipolar cells (i.e., BP′

c(x, y), c ∈
{R, G, B, Y}) will be enhanced in the darker regions eliciting
lower BPL(x, y). This will be further demonstrated in the section
of Experiments.

Disinhibition in RGCs
Retinal ganglion cells (RGCs) receive multiple cone signals
transmitted via bipolar cells (and other cells) and compare them
with the color-opponent mechanism. Like bipolar cells, the RF
of most RGCs also consists of a smaller excitatory center and
a larger inhibitory annular surround, and chromatically single-
opponent RGCs receive inputs of different cone types within
these two different RF regions (Conway et al., 2010). Although
the RF center of a RGC, whose diameter is larger than a single
cone because of physiological optics, a point spread function
of the eye exceeds the size of a single cone in the fovea,
is created by direct inputs from a single bipolar cell which
contacts an individual cone, the synaptic pathways that create the
opponent RF surround remain controversial (Lee et al., 2010).
There are two main hypothesizes, i.e., unselective-connection

and selective-connection. The unselective-connection hypothesis
predicts that mixed cone inputs from non-selective horizontal
cells to the surround lead to the opponency. In this hypothesis,
color opponency is a product of interaction created by the
horizontal cells and arises by subtracting individual cone forming
center with all cones feeding in surround. This hypothesis is
supported by some recently researches in the peripheral retina
(Field et al., 2010; Crook et al., 2011). However, there are more
direct physiological evidences supporting the hypothesis that the
opponent surround is the result of cone specific or partially
selective connection with bipolar cells (Martin et al., 2001; Reid
and Shapley, 2002; Buzás et al., 2006; Sun et al., 2006; Lee et al.,
2012). In this work we consider three types of single-opponent
ON RGCs with selective connections: L/M, M/L, S/(L+M), which
means that the firing rate of a RGC increases with the activation
of one cone type (e.g., L or R) and decreases with the activation of
a different cone type (e.g., M or G). In the following, we will use R,
G, and B for short to denote respectively the above three single-
opponent channels. In addition, physiological experiments have
observed a secondary gentle rise in the neuronal response of some
RGCs when the stimulus was further extended far beyond the
RF center, which indicates a disinhibitory effect contributed by
the extensive surround (Li and He, 1987; Li et al., 1991, 1992;
Li and Li, 1994). The RF surround with disinhibitory effect (also
called the non-classical receptive field, nCRF) was presumed to
comprise many inhibitory subunits, which first inhibit each other,
and then inhibit the RF center (Qiu and Li, 1995; Li, 1996).

In the propose model, Uc(x, y; σu), c ∈ {R, G, B, Y}
denotes the response of a subunit centered at (x, y) in the RF
surround after being inhibited by other subunits. We compute
it according to

FIGURE 3 | Response of the bipolar cells. From left to right, the sensitivity of surround [i.e., the parameter k in Equations (2) and (3)] is set to be 0.5, 0.6, and 0.7.
The top and bottom rows are the images before and after being modulated by the brightness-driven AII amacrine cells.
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Uc(x, y; σu) = MAX[0, MBPc(x, y) − Au · MBPc(x, y)
⊗g(x, y; σu)] (8)

where Au represents the sensitivity of subunits. MAX is a max
operator to keep the neuronal response non-negative.

Then, let Sc(x, y; σs), c ∈ {R, G, B, Y} denote the total
responses of all the inhibited subunits in the surround. We
compute them as

Sc(x, y; σs) = Uc(x, y; σu) ⊗ g(x, y; σs). (9)

Then, the final response of a ON ganglion cell, GCc(x, y), c ∈
{R, G, B}, is the response elicited by the excitatory RF center in
one channel (e.g., R) subtracted by the total surround inhibition
from its opponent channel (e.g., G), which is written as

GCR(x, y; σcen) = Acen · MAX[0, MBPR(x, y) ⊗ g(x, y; σcen)
−As · SG(x, y; σs)]

GCG(x, y; σcen) = Acen · MAX[0, MBPG(x, y) ⊗ g(x, y; σcen)
−As · SR(x, y; σs)] (10)

GCB(x, y; σcen) = Acen · MAX[0, MBPB(x, y) ⊗ g(x, y; σcen)
−As · SY (x, y; σs)]

where Acen represents the sensitivity of the excitatory RF center
and As is the sensitivity of inhibitory RF surround of ganglion
cell.

In Equations (8)–(10), σu, σs, and σcen are the standard
deviations of the 2D Gaussian functions describing the subunit,
RF surround and RF center, respectively, and they are set to be
one third of the radius of 2D Gaussian shaped regions. In this

FIGURE 4 | Responsive curves as a function of stimulus size (in radius)
for different subunit sensitivities. The sizes of RF center, RF surround and
subunits are 3, 10, 3 pixels, respectively. The sensitivity of RF surround [i.e., As
in Equation (9)] is 3.0, and the subunit sensitivity Au in Equation (8) is set to be
0.8, 0.6, 0.4, 0.2, and 0.0. Relative response represents the final response in
channel R (i.e., GCR (x, y)) of a red-ON-green-OFF ganglion cell computed by
Equation (10) with Acen = 1.0 certain Au when the RF center and its surround
are covered by the red and green patches of equi-luminance.

work, we experimentally set the radius of subunit, RF surround
and center as 1, 3, and 1 pixel, respectively. A partial evidence in
support of this setting is the neurophysiological finding that the
size of RF surround is normally 2–5 times larger (in diameter)
than that of RF center (Li and He, 1987; Li et al., 1991, 1992; Li
and Li, 1994).

Similarly, with MBP′
c(x, y) as the modulated output from

a OFF bipolar cell, the response of a OFF ganglion cell,
GC′

c(x, y), c ∈ {R, G, B}, can be easily computed based on
Equations (8)–(10).

Biologically, the ON and OFF cells in the retina form almost
separated pathways (Schiller, 2010), the signals along which are
integrated in the visual cortexes via lateral connections. Modeling
such integration is beyond the scope of this work. Here we
simply compute the retinal outputs of ON and OFF pathways,
respectively, as

OutON(x, y) = 1
3
∑

c∈{R,G,B} GCc(x, y)
OutOFF(x, y) = 1

3
∑

c∈{R,G,B} GC′
c(x, y).

(11)

Then the final output of the proposed model is computed by
combining the outputs of ON and OFF pathways according to

Out(x, y) = w · OutON(x, y) + (1 − w) · (1 − OutOFF(x, y)
)

(12)

where w is a weight controlling the relative contributions of
the ON and OFF pathways. As mentioned above, the ON

FIGURE 5 | An example illustrating the effect of various degrees of
dispersion of foreground light on the response of a retinal ganglion
cell. (A) The stimuli with a size of 5 by 5 pixels, which contains a red block of 3
by 3 pixels covering the full RF center and a patterned bright foreground
across both the RF center and its surround. The bright patterns have the same
total light flux but different dispersive angles, from 0 to 180◦, as indicated on
the top of the panels. (B) Response vs. dispersion curves of a ganglion cell.
The red curve is with surround inhibition but without subunit disinhibition. The
blue curve is for the case that both the subunit disinhibition and surround
inhibition work. The sizes of RF center, RF surround and subunits are 3*3, 7*7,
3*3 pixels, respectively, with Acen = 1.0 and Au = 0.5As. R channel response
denotes GCR (x, y) computed by Equation (10) for a red-ON ganglion cell to
certain stimulus patch listed in (A).
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channel emphasizes the perception of bright regions, and the
OFF system emphasizes the perception of dark regions. Such
notion will be further validated by our experiment (see the
following section). This inspires us to set w = fL(x, y). Such
setting indicates that the signals from the ON and OFF ganglion
cells are adaptively combined based on the local brightness
at (x, y).

EXPERIMENTS

In this section, we first show the responsive properties of the
model ganglion cells and the model bipolar cells involved in
the proposed system to demonstrate how they contribute to
the haze removal. We also illustrate the different roles of the
ON and OFF pathways in enhancing hazy images. Then we
conduct the qualitative comparison on real hazy images as
well as quantitative comparison on synthetic images with other
representative algorithms.

Responsive Properties of the Bipolar Cells
The RF of bipolar cell is described by a DOG model [see
Equations (3) and (4)]. Due that the DOG-shaped RF is a typical
band-pass filter, which may partially attenuate the low frequency
components (e.g., the dispersively distributed haze) of the hazy
image when the two Gaussian functions are unbalanced. In
addition, there is no doubt that the high-frequency details of
the image will be also degraded to certain extent. As shown
in Figure 3, from left to right, the higher the sensitivity of the
inhibitory annular surround [i.e., the parameter k in Equations
(2) and (3)] is, the greater the bipolar cells remove the haze, but
more details loss. The difference between the top and bottom
images in Figure 3 shows that the modulation from the rod
bipolar cells via AII amacrine cells can compensate the loss
of details by increasing the image contrast, but degrade the
saturation.

Responsive Properties of the Ganglion
Cells
Considering that the RF center and its surround of a red-ON-
green-OFF ganglion cell are covered by the red and green patches
of equi-luminance, we measured a group of area-response curves
(Figure 4) by computing the response of this model ganglion cell
with varying subunit sensitivities (Au) while keeping the other
parameters fixed. It is clear that for Au > 0, when the stimulus
is extended larger than the RF center, the neuronal response
is reduced due to the involved surround inhibition, and then
gradually enhanced due to the increasing disinhibition effect
deduced by the inhibitory interaction among more surround
subunits. This observation is quite consistent with that obtained
from electrophysiological studies in the cat retinal ganglion
cells (Li and He, 1987; Li et al., 1992; Li and Qiu, 1994). This
figure clearly shows that higher Au values result in stronger
disinhibition effects, and hence weaker surround inhibitions and
higher neuronal responses.

To illustrate how ganglion cells enhance the hazy images, we
designed a series of stimulus patches (Figure 5A), each of which
contains a red block (simulating an object surface) covering the
full RF center and a patterned white foreground across both
the RF center and its black surround. When all parameters
are fixed and the white foreground is spatially distributed with
systematically increasing dispersion (quantified by a “dispersive
angle,” Li and He, 1987; Li et al., 1992; Li and Qiu, 1994) while
keeping the total light flux identical, the response of a red-ON
ganglion cell to the composited stimuli is consistently increased
with the increasing dispersive angle of the white foreground (the
blue curve in Figure 5B), because more subunits in the surround
are activated and hence stronger disinhibition (and then weaker
surround inhibition) is introduced. Note that this increase is not
observed when no disinhibition is involved (i.e., Au = 0), because
the surround inhibition is always equal due to the identical total
light flux (with any degree of dispersion) in the surround.

FIGURE 6 | Illustration of the different roles of ON and OFF pathways in haze removal. The first image of the top row is the original hazy image. The images
from the second to fourth columns of the top and bottom rows are respectively the outputs of ON and OFF ganglion cells with various subunit sensitivity values (Au).
The first image of the bottom row is the image after haze removal by the full model proposed in this work, i.e., by linearly combining the output of the ON ganglion cells
with Au = 0.7 and the output of the OFF ganglion cells with Au = 0.5.
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Considering that the white foreground also covers the red
block in the RF center, more dispersive the white foreground
is, more likely it looks that the foreground is the haze (e.g., the
last panel of Figure 5A). In this situation, the hazy appearance
of the red block (most likely to be a local object surface) is
relatively weakened by the increasing of the R channel response,
i.e., the red block becomes redder than the original block
covered with gray foreground. This example provides a biological
explanation about how the disinhibition among subunits in the
RF surround contributes to the hazy image enhancement at the
retinal ganglion layer.

Different Roles of ON and OFF Channels
As mentioned above, ON and OFF neurons are excited by
the increment and decrement of light intensity in the visual
scene, which have been suggested to enable more efficient
encoding of sensory stimuli (Joselevitch, 2008). In specific, the
functional significance of the separated ON and OFF channels

mainly includes the extension of dynamic range, improved SNR,
increased spatial resolution, and other information processing
benefits (Joselevitch, 2008). For example, ON and OFF bipolar
cells would each amplify half of the dynamic range of the
photoreceptor signals by responding mainly to the positive and
negative contrasts, respectively (Ratliff et al., 2010). Figure 6
shows an example illustrating the different functional roles of
the ON and OFF system. For the ON pathway, the quite bright
roof of the small tabernacle at the right-top corner of the
image can be clearly responded by the ON ganglion cells with
appropriate setting (e.g., Au = 0.5 or 0.7), but the details and
colors of the sunless regions (e.g., the dominant region with
a crowd of people) can not be properly enhanced along the
ON pathway. In contrast, though the OFF system outputs an
over-saturated roof of the tabernacle in terms of brightness, this
pathway can vividly enhance the details of the dim regions.
In short, it is clear that the OFF system carries on more dark
elements while the ON system transmits and processes more

FIGURE 7 | Qualitative comparison with several representative methods on a real-world image.
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FIGURE 8 | Comparisons with He’s method on real-world traffic images.

bright elements. By merging the outputs from the ON and OFF
systems, the final result combines the benefits from the both
sources, as indicated by the first image of the bottom row in
Figure 6.

Visual Comparison on Real-World Images
For all the input hazy images in the following sections, we
experimentally set k = 0.3, Ac = As = 2, and Au = 0.7 and
0.5 for the ON and OFF ganglion cells, respectively.

Figure 7 compares the result of our method with that of
several state-of-the-art methods (Fattal, 2008; Kopf et al., 2008;
Tan, 2008; He et al., 2009, 2011). Note that the results of Tan,
Fattal, Koph, and He are quoted from http://research.microsoft.
com/en-us/um/people/kahe/. In specific, Tan’s method (Tan,
2008) removes haze by maximizing the local contrast of the
input hazy image, which can well-enhance the local contrast,
but normally results in oversaturated colors and halo artifacts.
Fattal’s method (Fattal, 2008) eliminates the scattered light by
estimating the optical transmission in hazy scenes and requires
sufficient color information and variance. Considering that the
color of distant parts of the hazy image in Figure 7 is faint, which
does not satisfy the requirement of Fattal’s method, and hence
in his result, this part is too bright to see the details like the
towers. The method of Kopf et al. (2008) removes the haze by
3D models and texture maps of the scene, which needs additional
geography information. With visible residual hazes, the result
image of this method is not very clear. The method of He et al.
(2009, 2011) is based on the dark channel prior. By removing haze
and enhancing details, our result is comparable in saturation with
He’s, but has higher visibility of structures, except a little haze left
over the distant region.

In Figure 8, we also compare our method with He’s method
on several traffic scenes captured by our group. Note that He’s
results on these images were calculated by us with the common
parameter setting suggested in their paper: ω = 0.9, t0 = 0.1
and a patch size of 15∗15 pixels (see the detailed meaning of these
parameters in He et al., 2009, 2011). Since He’s dark channel prior
based method estimates the atmospheric light (the parameter A
in his model) as constant, its result is sometimes a little dark
and may lose some details (e.g., the electrical wires occurring
in the sky region of the bottom image of Figure 8) when the
atmospheric light seems to vary spatially. In contrast, in the
results recovered by our model, cars are easier to see, and the
road markings and traffic signs are more visible and can be easier
to read out.

Quantitative Comparison on Synthetic
Images
With the haze-free images and the known disparity maps d(x)
(Scharstein and Szeliski, 2003; Hirschmuller and Scharstein,
2007; Scharstein and Pal, 2007), we set the transmission map
t(x) = 0.8 × d(x) in the Koschmieder model (Koschmieder,
1925), and then synthesize the hazy images according to

I(x) = J(x) · t(x) + A · (1 − t(x)) (13)

where J(x) is the input haze-free image, I(x) is the hazy image,
and A is the global atmospheric airlight, assumed as pure white
for simplicity.

Quantifying by the commonly used mean squared error
(MSE) between the original haze-free image and the recovered
image, we compared the performance of our method with that
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FIGURE 9 | Comparison with He’s method on two synthetic hazy images. (A) Teddy image, (B) Art image. For each of (A,B), the top row shows the clear
image and the image added with haze, the middle row lists the results by He’s and our methods, and the bottom row lists the enlarged local patches. The Teddy and
Art images are downloaded from http://vision.middlebury.edu/stereo/data/.

TABLE 1 | Quantitative comparison of MSE with He’s model on synthetic
images.

Scenes He’s result Our result

Cone 0.0083 0.0038

Teddy 0.0102 0.0040

Art 0.0087 0.0059

Books 0.0099 0.0037

Dolls 0.0062 0.0042

Laundry 0.0077 0.0038

Moebius 0.0048 0.0032

Reindeer 0.0116 0.0092

of He (He et al., 2009, 2011) in Table 1 on a group of synthetic
images. In general, a lower MSE means a better performance in
removing haze. This table clearly shows that our results are much
more close to the original haze-free images in all eight scenes.
Two examples are shown in Figure 9. He’s results are a little dark
and our results have more vivid colors. The enlarged local patches
show that He’s results are a little hazier than that by our model.

DISCUSSION

In this paper, without explicit assumption, we proposed a
hazy image enhancement method inspired by the information
processing mechanisms of the retinal network in the biological
visual system, from the photoreceptors absorption via the bipolar
cells to the opponent ganglion cells equipped with subunit-
structured RF surround. The proposed model was compared

with the state-of-the-art methods qualitatively and quantitatively,
and shows competitive results on both real-world and synthetic
images. In particular, our model can remove the haze as well as
clearly enhance the details, without sacrificing the color fidelity.

This simplified retinal model proposed here also provides
valuable suggestions about the role of the RGC surround
disinhibition as well as the ON and OFF pathways in image
enhancement. As shown in Equation (13), an image with haze
loses its contrast and saturation. In our model, the DOG shaped
RF of bipolar cells, which partially filters out the low spatial
frequency elements, serves to obtain an incomplete but fast
reduction in the obvious influence of the airlight components.
The modulation from the AII amacrine cells driven by rod
bipolars is capable of increasing the contrast of the image, but
decreasing the saturation. This undesired decrease of saturation
is then compensated by the chromatically single-opponent RGCs.
Subunit-deduced surround disinhibition in RGCs contributes
a fine and adaptive correction based on the spatial resolution
of the disinhibition. Roughly speaking, the proposed model
realizes the haze removal by enhancing the contrast of details
and recovering the object colors while reducing the low spatial
frequency components of scenes.

Though performing well in dehazing and enhancing single
haze images, our model also has some limitations. In particular,
our method does not perform quite well for the images
with quite dense haze. As shown in Figure 10, due to the
heterogeneously distrusted thick haze, the travelers, trestle and
plants are almost visually undetectable. Though the visibility is
improved significantly after haze removal by our model, there
is still clear haze left in the top part of the scene. However,
it is interesting to point out that the dehazing performance

Frontiers in Computational Neuroscience | www.frontiersin.org 10 December 2015 | Volume 9 | Article 151

http://vision.middlebury.edu/stereo/data/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhang et al. A Retina Inspired Model for Dehazing

FIGURE 10 | Our result on an image with dense haze. (A) The hazy
image. (B) The image after haze removal by the proposed method.

for the scenes with heterogeneously distributed heavy haze
as shown in Figure 10 may be improved by introducing the
dynamic spatiotemporal structure of receptive field (RF). In the
space domain, profound contrast-dependent change in RF size,
normally an inverse relationship between stimulus contrast and
the RF size, has been well-observed for the retinal ganglion cells,
LGN and V1 cells (Sceniak et al., 1999; Nolt et al., 2004; Chen
et al., 2013). For example, at the level of retina, Nolt et al. (2004)
reported that the size of the receptive field center decreases
with an increase in contrast for both LGN cells and RGCs. In
particular, the center size was, on average, 1.99 times greater at
low contrast than at high contrast for the RGCs. Such adaptive
changes in the spatial summation as a function of local contrast
may allow the visual system to optimize performance under
changing stimulus conditions (Sceniak et al., 1999). For example,
for the heavy hazy local regions of low contrast, expansion of
spatial summation may produce increased sensitivity and a better

detection capability for weak signals (with the sacrificing of
spatial resolution) of an image. Inspired by such property of
contrast-dependent change in RF size and the results shown in
Figure 6 for the analysis of the roles of ON and OFF systems, we
expect to improve the performance of our model in the future
by automatically selecting the model parameters that are spatially
adaptive to the local haze related visual features.

Undoubtedly, another future direction is to introduce the
information processing mechanisms of the higher visual cortexes,
considering that the scene depth is a quite important cue
that is closely related to the thickness of haze. Based on
the binocular disparity, the human visual system can easily
extract the scene depth (Haefner and Cumming, 2007), which
is expected to be especially helpful for the observers to estimate
and remove the haze before the objects, though it is very
difficult for the visual system to exactly extract the binocular
disparity from the scenes with heterogeneously distributed
thick haze.
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