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Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been

suggested to characterize active non-linear processes observed in the auditory system.

Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically

distributed frequencies have been used as models of auditory processing at various

levels, but systematic investigation of the dynamical properties of such oscillatory

networks is still lacking. Here we provide a dynamical systems analysis of a canonical

model for gradient frequency neural networks driven by a periodic signal. We use linear

stability analysis to identify various driven behaviors of canonical oscillators for all possible

ranges of model and forcing parameters. The analysis shows that canonical oscillators

exhibit qualitatively different sets of driven states and transitions for different regimes

of model parameters. We classify the parameter regimes into four main categories

based on their distinct signal processing capabilities. This analysis will lead to deeper

understanding of the diverse behaviors of neural systems under periodic forcing and can

inform the design of oscillatory network models of auditory signal processing.

Keywords: non-linear oscillation, neural networks, synchronization, signal processing, auditory perception

1. INTRODUCTION

Neural oscillation is observed throughout the central nervous system and has been suggested
to have important functional roles in peripheral, subcortical, and cortical processing (Buzsáki
and Draguhn, 2004; Sejnowski and Paulsen, 2006; Koepsell et al., 2010). In the auditory system,
oscillatory activities are found at all levels of the pathway, including spontaneous oscillation of
haircell bundles (Crawford and Fettiplace, 1985; Martin et al., 2003; Ramunno-Johnson et al.,
2009), cochlear dynamics poised near a critical point of oscillatory instability called the Hopf
bifurcation (Camalet et al., 2000; Ospeck et al., 2001), chopper and onset cells in the cochlear
nucleus mode-locking to periodic stimulation (Laudanski et al., 2010), and the inferior colliculus
neurons spontaneously firing at audible frequencies (Schwarz et al., 1993). Mathematical models
of non-linear oscillation are used to explain the oscillatory response of these auditory areas to
periodic stimulation (Eguíluz et al., 2000; Jülicher et al., 2001; Meddis and O’Mard, 2006; Laudanski
et al., 2010; Fredrickson-Hemsing et al., 2012). Forced non-linear oscillator models share important
behaviors including synchronization and non-linear compression, but at the same time they exhibit
diverse dynamical responses to periodic signals.

To apprehend the full range of possible behaviors, it is important to understand how the
dynamical properties of forced non-linear oscillations vary from one parameter regime to another.
Here we provide a mathematical analysis of an oscillatory network model that is widely used in
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auditory modeling. We enumerate the full set of behaviors the
model exhibits under periodic forcing. This analysis reveals
the signal processing capabilities of a large class of dynamical
systems.

Mathematical models of individual neurons and neural
populations vary in their degree of physiological detail and
mathematical complexity. Biophysically detailed models describe
neurophysiological mechanisms with variables representing
physical or chemical quantities and can exhibit a range of
diverse behaviors observed in the original biological system
(e.g., the Hodgkin–Huxley model; Hodgkin and Huxley, 1952).
Other models take simpler mathematical forms and capture the
local dynamics of a select behavior with fewer variables, thus
making the essential dynamicsmore transparent and amenable to
mathematical analysis (Hoppensteadt and Izhikevich, 2001). The
canonical model for gradient frequency neural networks (abbr.
GrFNNs) is one such simple mathematical model that describes
the dynamical properties shared by networks of oscillatory
neural populations tuned to a gradient of distinct frequencies,
which are found at various stages of the auditory system
(Large et al., 2010). The model assumes that each oscillatory
neural population (or neural oscillator) in the network is poised
near a Hopf bifurcation point, which is a transition between
quiescence and spontaneous oscillation (Guckenheimer and
Holmes, 1983). The canonical model for gradient frequency
networks can be considered as an extension of the canonical
model for homogeneous (equal or very close) frequency networks
of neural oscillators (Hoppensteadt and Izhikevich, 1997) into
multi-frequency systems.

When the oscillators are tuned to logarithmically spaced
frequencies, the dynamics of the canonical model for gradient
frequency neural networks (Large et al., 2010) is described by

τiżi = zi

(

α + i2π + (β1 + iδ1)|zi|2 +
ǫ(β2 + iδ2)|zi|4

1− ǫ|zi|2

)

+ RT,

(1)

where zi is a complex state variable representing the amplitude
and phase of synchronized firing of the ith neural population
in the network, ǫ is a small real number indicating the degree
of non-linearity in the network, a dot over a variable denotes
its time derivative, and the roman i denotes the imaginary unit.
The right-hand side of Equation (1) consists of the intrinsic
terms (all right-hand-side terms except RT), which determine
the autonomous behavior of the model, and the input terms
(RT), which describe the interaction of the model with the
input. The bandwidth of oscillators is constant in logarithmic
frequency because the equation is scaled by the time constant τi,
which is the reciprocal of the natural frequency fi. The intrinsic
parameters α, β1, and β2 control the bifurcation of autonomous
behavior (see below), and δ1 and δ2 determine the dependency
of autonomous frequency on amplitude. RT (resonant terms) is a
sum of input terms that are potentially resonant to the oscillator’s
dynamics, which could include both linear and non-linear terms
involving external forcing and/or coupling with other oscillators
in the network (see Large et al., 2010; Lerud et al., 2014, for
possible closed-form expressions of RT). Commonly, models of

oscillation near a Hopf bifurcation have intrinsic terms only
up to the third order [i.e., the cubic term with β1 and δ1 in
Equation (1); see Eguíluz et al., 2000; Jülicher et al., 2001 for
instance], but the canonical model retains a full series of higher-
order terms expressed as a geometric sum (i.e., the term with β2
and δ2) to cope with the high-order non-linear input terms in
RT.

With the high-order terms governing non-linear interactions
of an oscillator with the external signal and also with other
oscillators in the network, the canonical model captures the
general properties of non-linear dynamics arising in gradient
frequency oscillator networks. When driven by an external
signal, the oscillators in the canonical model produce non-
linear responses containing not only the frequencies in the
signal but also non-linear combinations of their natural
frequencies and the signal frequencies. Non-linear coupling
in the network transforms the signal further by introducing
frequencies arising from resonance between oscillators tuned
to different frequencies. As a generic model of non-linear,
multi-frequency transformation of acoustic signals into neural
firing patterns occurring in the auditory system, the canonical
model has been used to model auditory processing and music
perception. Multi-layer gradient frequency networks were used
to model cochlear dynamics by fitting the auditory nerve tuning
curves of macaque monkeys (Lerud et al., 2015) and to model
the human brainstem frequency-following response to musical
intervals by fitting the spectra of auditory evoked potentials
(Large and Almonte, 2012; Lerud et al., 2014). Also, both
model simulations and analytic predictions were used to explain
the perception of musical tonality (Large, 2010; Large et al.,
in press) and the beat perception in musical rhythm (Large et al.,
2015).

Despite its simple mathematical form, the canonical model
for gradient frequency neural networks is still difficult to analyze
in its entirety because its dynamics is determined by complex
interactions among multiple network components. Oscillators
in the network are driven by external forcing and at the same
time receive input from other oscillators, and both types of
interaction may involve linear and/or non-linear coupling which
can evolve over time via a generalized form of Hebbian plasticity
(Hoppensteadt and Izhikevich, 1996; Large, 2011). Our approach
is to analyze individual components of the network separately
and attempt to understand its overall dynamics as a combination
of its component dynamics. In this paper, we set to analyze and
categorize the driven behaviors of canonical oscillators under
periodic forcing.

2. METHODS

We consider the following differential equation describing
an oscillator in the canonical model (or simply, a canonical
oscillator) driven by sinusoidal forcing of fixed frequency, ω0,
and amplitude, F:

ż = z

(

α + iω + β1|z|2 +
ǫβ2|z|4

1− ǫ|z|2

)

+ Feiω0t, (2)
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FIGURE 1 | Autonomous behavior of a canonical oscillator in different parameter regimes. Amplitude vector field is shown for (A) a critical Hopf regime

(α = 0, β1 < 0, β2 = 0), (B) a supercritical Hopf regime (α > 0, β1 < 0, β2 = 0), (C) a supercritical double limit cycle regime (α < 0, β1 > 0, β2 < 0, local max > 0),

and (D) a subcritical double limit cycle regime (α < 0, β1 > 0, β2 < 0, local max < 0). Filled circles indicate stable fixed points (attractors) and empty circles unstable

fixed points (repellers). Arrows indicate the direction of trajectories in the vector field.

where ω = 2π f is the radian natural frequency. To understand
the response of a gradient frequency network, our analysis will
focus on how the driven state of an oscillator changes as a
function of its natural frequency. Since only one oscillator is
analyzed, the subscript i in Equation (1) is dropped and the
scaling factor is ignored (but see Section 3.6 for frequency
scaling of log frequency networks). For the simplicity of
analysis, the δ parameters are set to zero, meaning that the
intrinsic frequency of the oscillator is not dependent on its
amplitude.

The autonomous behavior of the oscillator (i.e., when F = 0)
is readily seen when it is brought to polar coordinates using
z = reiφ . Then, the amplitude and phase dynamics are described
by

{

ṙ = αr + β1r3 + ǫβ2r
5

1−ǫr2
φ̇ = ω.

The first equation above defines the amplitude vector field,
which shows whether the amplitude increases, decreases, or is
stationary over time at a given amplitude value (Figure 1). A fixed
point in the vector field, which is obtained by solving ṙ = 0,
represents a steady-state amplitude of the autonomous oscillator.
The stability of a fixed point determines if it is an attractor, to
which the oscillator returns after small perturbation, or a repeller,
from which the oscillator diverges when perturbed. The second
equation above shows that the phase φ advances at the constant
rate of ω.

Depending on the values of α, β1, and β2, the autonomous
amplitude vector field can have one of four distinct topologies.
When ṙ decreases monotonically as r increases, the origin is
the only fixed point which is stable as the arrow indicates
(Figure 1A). An oscillator with this type of amplitude vector
field decays to zero while oscillating at its natural frequency.
A representative parameter regime for this type is the critical
point of a supercritical Hopf bifurcation (α = 0, β1 < 0). (A
subcritical Hopf bifurcation occurs when α = 0 and β1 > 0).
When ṙ increases from the origin and then decreases after a local
maximum, there is a stable non-zero fixed point while the origin
is rendered unstable (Figure 1B). An oscillator of this type shows
spontaneous oscillation at the amplitude of the stable fixed point

(unless the initial condition is zero). The supercritical branch of
a supercritical Hopf bifurcation (α > 0, β1 < 0) is an example.
When there are three fixed points with two local extrema, two
of the fixed points are stable, indicating bistability between
equilibrium at zero and spontaneous oscillation at a non-zero
amplitude (Figure 1C). As the local maximum in the vector field
moves below the r axis by, say, decreasing β1, the two non-zero
fixed points collide and vanish (Figure 1D). This transition is
called a double limit cycle (hereafter, DLC) bifurcation since it
involves two limit cycles (closed orbits) in the (r, φ) plane, one
stable and the other unstable. Thus, we call the regime shown
in Figure 1C (α < 0, β1 > 0, β2 < 0, local max > 0)
supercritical DLC and the one shown in Figure 1D (α < 0,
β1 > 0, β2 < 0, local max < 0) subcritical DLC. The subcritical
DLC regime has only one stable fixed point at zero but is different
from the critical Hopf regime (Figure 1A) in that it has a local
maximum in the vector field.We will show that a subcritical DLC
oscillator has different sets of driven behaviors from a critical
Hopf oscillator despite their qualitatively identical autonomous
behavior.

To examine how a canonical oscillator responds to external
forcing, we bring Equation (2) to polar coordinates, again using
z = reiφ , and express its dynamics in terms of the relative phase
ψ = φ − ω0t so that a stable fixed point in (r, ψ) indicates a
phase-locked state:

{

ṙ = αr + β1r3 + ǫβ2r
5

1−ǫr2 + F cosψ

ψ̇ = �− F
r sinψ,

(3)

where � = ω − ω0 is the frequency difference between the
oscillator and the input.We evaluate the stability of fixed point(s)
for a range of forcing parameters � and F wide enough to
encompass all possible qualitatively different driven behaviors
of the four regimes of intrinsic parameters introduced above.
Stability analysis is crucial for understanding the dynamical
responses of the driven oscillator because not all fixed points
are stable. The existence of a steady-state solution (i.e., a
fixed point) does not guarantee that the oscillator phase-
locks to the forcing, since the fixed point could be unstable
(Figure 2).
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FIGURE 2 | Not all steady-state solutions are stable. Time-averaged

amplitude of a canonical oscillator driven by a sinusoidal input obtained from

numerical simulations (solid line) is compared with the steady-state solution of

Equation 3 (dashed line). Steady-state solutions are stable attractors where

they match the mean amplitudes from simulations. The gray shade indicates

the range of amplitude fluctuation where the oscillator does not stably

phase-lock to the input. Compare with the stability analysis of the same

oscillator (α = 1, β1 = −100, β2 = 0, F = 0.2) shown in Figure 6.

Fixed points, notated as (r∗, ψ∗), are obtained by solving the
steady-state equations ṙ = 0 and ψ̇ = 0 simultaneously, and
the stability of each fixed point is determined by evaluating the
Jacobian matrix, J, at the fixed point:

J =
(

∂p
∂r

∂p
∂ψ

∂q
∂r

∂q
∂ψ

)

(r∗,ψ∗)

=
(

α + 3β1r
∗2 + ǫβ2r

∗4(5−3ǫr∗2)
(1−ǫr∗2)2 −F sinψ∗

2δ1r
∗ + 2ǫδ2r

∗3(2−ǫr∗2)
(1−ǫr∗2)2 + F

r∗2
sinψ∗ − F

r∗ cosψ
∗

)

,

where ṙ = p(r, ψ, · · · ) and ψ̇ = q(r, ψ, · · · ) in Equation (3).
Let T and 1 be the trace and determinant of the Jacobian
matrix. Then its eigenvalues are λ1,2 = 1

2 (T ±
√
T2 − 41), and

local trajectories near the fixed point have the form c1e
λ1tv1 +

c2e
λ2tv2 where v1,2 are the eigenvectors of λ1,2, c1,2 are constants

determined by initial conditions, and t is time. So the shape of
local trajectories near a fixed point, and thus its stability type,
is determined by the signs of T, 1, and T2 − 41. A fixed
point is

• a stable node if1 > 0, T2 − 41 > 0, and T < 0,
• a stable spiral if1 > 0, T2 − 41 < 0, and T < 0,
• an unstable node if1 > 0, T2 − 41 > 0, and T > 0,
• an unstable spiral if1 > 0, T2 − 41 < 0, and T > 0, or
• a saddle point if1 < 0 (see Strogatz, 1994).

We categorize the driven behavior of a canonical oscillator by
examining how the stability of fixed point(s) varies for different
values of forcing parameters� and F. Stability analysis is done for
four regimes of intrinsic behavior using representative parameter
settings (see Figure 1): critical Hopf (α = 0, β1 < 0, β2 = 0),
supercritical Hopf (α > 0, β1 < 0, β2 = 0), supercritical double
limit cycle (α < 0, β1 > 0, β2 < 0, local max > 0), and
subcritical double limit cycle regimes (α < 0, β1 > 0, β2 < 0,
local max< 0).

3. RESULTS

3.1. Critical Hopf Oscillator
A critical Hopf oscillator is a canonical oscillator poised at
the critical point of a supercritical Hopf bifurcation (where
α = 0 and β1 < 0), which means the system is on the
verge of spontaneous oscillation. Oscillatory instability at a
Hopf bifurcation has recently been shown to underlie non-
linear cochlear dynamics characterized by frequency selectivity,
sensitivity to weak signals, and non-linear compression (see
Hudspeth et al., 2010, for a review), and a bank of oscillators
poised at or near Hopf bifurcation points has been used as a
model of the cochlea (Jülicher et al., 2001; Duke and Jülicher,
2003; Kern and Stoop, 2003; Magnasco, 2003; Stoop et al., 2005).
Here, we choose the simple parameter setting of α = 0, β1 < 0,
and β2 = 0 to analyze the behavior of a critical Hopf oscillator
under sinusoidal forcing, but there are other parameter regimes
that share qualitatively the same driven dynamics (e.g., α, β1,
β2 < 0; see Section 3.5 for a classification of parameter regimes
by driven behavior).

A stability analysis shows that a critical Hopf oscillator phase-
locks to sinusoidal forcing of any frequency and amplitude.
For a fixed forcing amplitude, the steady-state amplitude r∗ is
maximum when the forcing frequency is the same as the natural
frequency (i.e., � = 0), for which the steady-state relative phase
ψ∗ is zero indicating in-phase synchronization (Figure 3A). As
the natural frequency and the forcing frequency become more
different, r∗ decreases monotonically and approaches zero while
ψ∗ approaches±π

2 . While the fixed point (r∗, ψ∗) remains stable
for all values of �, it changes its stability type from a stable node
to a stable spiral as |�| increases from 0. It is clearly seen in the
(r, ψ) space that the two attractors have distinct local trajectories
(Figures 3B,C). The way r and ψ approach their steady-state
values in time (monotonic vs. oscillating approach) reflects the
difference between a node and a spiral (only the relative phase is
shown in Figures 3D,E).

We can find the boundary between stable nodes and stable
spirals by solving T2−41 = 0, ṙ = 0, and ψ̇ = 0 simultaneously
where T and 1 are the trace and determinant of the Jacobian
matrix evaluated at a fixed point (see Section 2). We find that the
boundary is at

|�c| =
3

√

−
β1F2

2
,

for which

(r∗c , ψ
∗
c ) =

(

6

√

F2

2β21
,±
π

4

)

.

A critical Hopf oscillator shows the same set of driven behaviors
summarized in Figure 3 for all levels of forcing amplitude. With
increasing F, r∗ increases and the node-spiral boundary widens,
but no qualitatively different behaviors are introduced as the
forcing amplitude changes (Figure 4A, see also Supplementary
Video 1).
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FIGURE 3 | Driven behavior of a critical Hopf oscillator. (A) Steady-state amplitude and relative phase as a function of frequency difference (α = 0, β1 = −100,

β2 = 0, F = 0.2), with vertical dashed lines indicating the frequency differences used for (B–E), (B) trajectories attracted to a stable node in the (r, ψ ) plane starting

from a set of different initial conditions (�/2π = 0.1), (C) trajectories attracted to a stable spiral (�/2π = 0.5), (D) relative phase plotted over time for a trajectory in (B)

(phase locking), and (E) relative phase plotted over time for a trajectory in (C) (phase locking). Filled circles in (B,C) indicate stable fixed points.

FIGURE 4 | Stability regions for a canonical oscillator under sinusoidal forcing. The stability of driven state (r*, ψ* ) is shown as a function of forcing amplitude

and frequency difference for (A) a critical Hopf oscillator (α = 0, β1 = −100, β2 = 0), (B) a supercritical Hopf oscillator (α = 1, β1 = −100, β2 = 0), (C) a supercritical

double limit cycle oscillator (α = −1, β1 = 4, β2 = −1, ǫ = 1), and (D) a subcritical double limit cycle oscillator (α = −1, β1 = 2.5, β2 = −1, ǫ = 1). The color indicates

the stability type of a stable fixed point if there is one (purple if there are two). If there is no stable fixed point, the color indicates the stability of an unstable fixed point.

Dashed horizontal lines indicate the forcing amplitudes used for Figures 3, 5–11. See also Supplementary Videos 1–4.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 December 2015 | Volume 9 | Article 152

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kim and Large Periodically Forced Gradient Frequency Networks

FIGURE 5 | Driven behavior of a supercritical Hopf oscillator under weak forcing. (A) Steady-state amplitude and relative phase as a function of frequency

difference (α = 1, β1 = −100, β2 = 0, F = 0.02), with vertical dashed lines indicating the frequency differences used for (B–E), (B) trajectories attracted to a stable

node in the (r, ψ ) plane (�/2π = 0.02), (C) trajectories drawn to a limit cycle (�/2π = 0.04), (D) relative phase plotted over time for a trajectory in (B) (phase locking),

and (E) relative phase plotted over time for a trajectory in (C) (phase slip). In (B,C), filled and empty circles indicate stable and unstable fixed points respectively, and

red lines show limit-cycle orbits.

3.2. Supercritical Hopf Oscillator
A supercritical Hopf oscillator, which is on the supercritical
branch of a supercritical Hopf bifurcation (α > 0, β1 <

0), has a non-zero spontaneous amplitude (Figure 1B) and
has been used as a model of spontaneously oscillating systems
such as haircell bundles (Fredrickson-Hemsing et al., 2012).
(Spontaneous amplitude refers to the steady-state amplitude of
an oscillator when no external forcing is applied). A stability
analysis shows that it has two distinct sets of driven behaviors
depending on the forcing amplitude and that, unlike a critical
Hopf oscillator, it does not always phase-lock to sinusoidal
forcing.

For weak forcing, there exist three steady-state solutions for
small frequency differences, two of which are a saddle-node pair,
and just one unstable solution for large frequency differences
(Figure 5A). As the frequency difference increases from zero
for a fixed forcing amplitude, the saddle and node are lost via
a saddle-node invariant-circle (SNIC) bifurcation (also called
a saddle-node infinite-period or SNIPER bifurcation), which
leaves a stable (attracting) limit-cycle orbit with an unstable fixed
point inside (Figures 5A–C). The critical frequency difference
for which a SNIC bifurcation occurs can be obtained by solving
1 = 0, ṙ = 0, and ψ̇ = 0 together. We find the SNIC boundary
to be at

ŴSN = |�c| =
√

−(α + 3β1r∗2c )(α + β1r∗2c ),

where r∗c is the bigger of the two positive real roots of 2β21 r
∗6
c +

2αβ1r
∗4
c + F2 = 0. For |�| < ŴSN , the canonical oscillator

phase-locks to the forcing, with its driven state attracted to a

stable node (Figures 5B,D). For |�| > ŴSN for which only
one unstable fixed point exists, the relative phase does not
converge to a steady-state value but makes full 2π-rotations
(i.e., phase slip), meaning the oscillator is not phase-locked to
the input, and the amplitude fluctuates near the spontaneous
amplitude (Figures 5C,E). (The spontaneous amplitude of the
oscillator shown in Figure 5 is

√
−α/β1 = 0.1). Thus, the SNIC

bifurcation marks the phase-locking boundary for a supercritical
Hopf oscillator under weak forcing. Note that the flow of relative
phase is slow near π

2 (or −π
2 when � < 0) where the

saddle-node pair collides and leaves a bottleneck or a “ghost”
(Figure 5E).

For stronger forcing, only one fixed point exists for all values
of frequency difference, but it changes from a stable node to a
stable spiral then to an unstable spiral as |�| grows from zero
(Figure 6A). Now the phase-locking boundary is at the transition
from a stable spiral to an unstable spiral (i.e., a Hopf bifurcation
in the (r, ψ) space), which we can find by solving T = 0, ṙ = 0,
and ψ̇ = 0 together. We get

ŴH = |�c| =

√

−
2β1F2

α
−
α2

4
,

for which

r∗c =
√

−
α

2β1
and cosψ∗

c = −
1

F

√

−
α3

8β1
.

Note that at the Hopf boundary the steady-state amplitude r∗c is
smaller than the spontaneous amplitude (r∗ =

√
−α/β1 when
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FIGURE 6 | Driven behavior of a supercritical Hopf oscillator under strong forcing. (A) Steady-state amplitude and relative phase as a function of frequency

difference (α = 1, β1 = −100, β2 = 0, F = 0.2), with vertical dashed lines indicating the frequency differences used for (B–E), (B) trajectories attracted to a

phase-trapped libration in the (r, ψ ) plane (�/2π = 0.5), (C) trajectories attracted to a rotation (�/2π = 0.7), (D) relative phase plotted over time for a trajectory in (B)

(phase-trapped frequency locking without phase locking), and (E) relative phase plotted over time for a trajectory in (C) (phase slip). In (B,C), empty circles indicate

unstable fixed points, and red lines show limit-cycle orbits.

F = 0), and the steady-state relative phase ψ∗
c goes beyond ±π

2
since cosψ∗

c is negative (see also Figure 6A).
Outside the phase-locking range for strong forcing, the driven

behavior of a supercritical Hopf oscillator can be divided into
two categories. Just outside the Hopf boundary, the driven state
(r, ψ) circles on a stable limit cycle which forms around the
unstable spiral and is small enough not to encompass the origin
(Figure 6B). In this case, the relative phase changes over time but
is bounded and does not traverse the full 2π range (Figure 6D),
which is called a libration (as opposed to a rotation, see Strogatz,
1994). When averaged over time, this “phase-trapped” oscillation
has the same mean frequency as the input frequency, so it
can be described as frequency locking without phase locking
(Hoppensteadt and Izhikevich, 1997; Pikovsky et al., 2000, 2001).
As |�| increases further, the limit cycle around the unstable spiral
grows and eventually encompasses the origin (Figure 6C), and
the relative phase starts making full rotations (Figure 6E). At
this point, the average instantaneous frequency of the oscillator
is different from the input frequency and approaches the natural
frequency as |�| approaches infinity.

The existence of phase-trapped libration (thus, frequency
locking) outside the phase-locking boundary is a distinct feature
of the Hopf boundary. When crossing the SNIC boundary for
weak forcing, the driven state changes directly from phase locking
to phase slipping (Figures 5B–E). The same transition of driven
behaviors is found for phase models (i.e., oscillators described
by their phases only). This is not unexpected since under
weak forcing the amplitude of a supercritical Hopf oscillator
is effectively constant and does not change much from its
spontaneous value.

The SNIC phase-locking boundary and the Hopf boundary
exist only for weak and strong forcing levels respectively
(Figure 4B; see also Supplementary Video 2 for the transition
between Figures 5A, 6A), but the two types of phase-locking
boundary coexist for a small range of intermediate forcing level.
The SNIC boundary exists for forcing amplitudes smaller than

FSN =

√

−
8α3

27β1
,

for which the fixed point at the SNIC bifurcation is

(r∗c , ψ
∗
c ) =

(
√

−
2α

3β1
,±

2π

3

)

.

The Hopf boundary, on the other hand, exists for forcing
amplitudes greater than

FH =

√

−
α3

4β1
,

for which the fixed point at the bifurcation is

(r∗c , ψ
∗
c ) =

(√

−
α

2β1
,±

3π

4

)

.

Note that FSN > FH . For forcing amplitudes between the two
values, two stable fixed points (a stable node and a stable spiral)
coexist for some values of � near the locking boundaries. Also,
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FIGURE 7 | Driven behavior of a supercritical double limit cycle oscillator under weak forcing. (A) Steady-state amplitude and relative phase as a function of

frequency difference (α = −1, β1 = 4, β2 = −1, ǫ = 1, F = 0.1), with vertical dashed lines indicating the frequency differences used for (B–E), (B) trajectories attracted

to either of two stable fixed points in the (r, ψ ) plane (�/2π = 0.01), (C) trajectories drawn to either a stable spiral or a limit-cycle rotation (�/2π = 0.05), (D) relative

phase plotted over time for two trajectories in (B) (both phase locking), and (E) relative phase plotted over time for two trajectories in (C) (phase locking in blue, phase

slip in green). In (B,C), filled and empty circles indicate stable and unstable fixed points respectively, and red lines show limit-cycle orbits.

this region of the forcing parameter space (i.e., near the tip of
the yellow regions in Figure 4B) contains a complicated but well-
studied set of bifurcations. For instance, a Bogdanov–Takens
bifurcation is at the lower end of ŴH , and a cusp point is at
the upper end of ŴSN . Detailed analysis of the dynamics around
them can be found in Guckenheimer and Holmes (1983), for
example. Also, it is worth noting that the same set of bifurcations
are found for other periodically driven non-linear oscillators
or populations of oscillators such as the forced van der Pol
oscillator (Holmes and Rand, 1978) and the forced Kuramoto
model (Childs and Strogatz, 2008). However, the canonical
model analyzed here, with its simple mathematical form, allows
closer analytical examination than is possible for more complex
models.

3.3. Supercritical Double Limit Cycle
Oscillator
As shown in the introduction, a supercritical DLC oscillator
(α < 0, β1 > 0, β2 < 0, local max > 0) has two stable
autonomous behaviors. Depending on the initial condition, it can
be attracted to an equilibrium at zero or oscillate spontaneously
with non-zero amplitudes at its natural frequency (Figure 1C).
The transition between a supercritical DLC oscillator and a
subcritical DLC oscillator, called a double limit cycle bifurcation
or a fold limit cycle bifurcation, has been suggested to be involved
in several types of bursting neurons (Izhikevich, 2000, 2001).
When driven by a sinusoid, a supercritical DLC oscillator shows
three distinct sets of behaviors depending on the strength of
the forcing, and many of these behaviors involve bistability as
well.

Under weak forcing, it has two stable fixed points for
small frequency differences and only one for large frequency
differences (Figure 7A). The stable fixed point with a small
amplitude exists for all values of �, but the one with a high
amplitude (a stable node) is lost via a SNIC bifurcation and
leaves a limit-cycle rotation (phase slip) where it collides with
a saddle point (Figures 7B–E). (Due to non-zero β2 and the
higher-order terms it introduces, it is not possible to get a
closed-form expression for the frequency difference for which
a bifurcation of driven states occurs, as was done for the
models with β2 = 0 discussed above. However, the location
of bifurcations can be obtained using numerical methods.) The
transition from phase locking on a stable node to phase slip on a
stable limit cycle is identical to what happens at the phase-locking
boundary of a supercritical Hopf oscillator under weak forcing
(Figure 5), but the presence of a second stable fixed point at
low amplitudes differentiates supercritical DLC oscillators from
supercritical Hopf oscillators. So, a weakly forced supercritical
DLC oscillator shows bistability for all values of frequency
difference—phase locking at high or low amplitudes for small
values of |�|, and phase locking at low amplitudes or phase
slip at high amplitudes for large values of |�|—and the initial
condition determines the driven state to which the oscillator is
attracted.

For intermediate forcing amplitudes, the saddle-node pair
at high amplitudes still exists for small frequency differences,
but the stable fixed point at low amplitudes exists only for
large frequency differences (Figure 8A). There is a range of
intermediate frequency differences for which no stable fixed
point exists and all trajectories are attracted to a limit-cycle
rotation that the saddle-node pair leaves (Figure 8C). As the
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FIGURE 8 | Driven behavior of a supercritical double limit cycle oscillator under intermediate forcing. (A) Steady-state amplitude and relative phase as a

function of frequency difference (α = −1, β1 = 4, β2 = −1, ǫ = 1, F = 0.3), with vertical dashed lines indicating the frequency differences used for (B–E), (B)

trajectories attracted to a stable node in the (r, ψ ) plane (�/2π = 0.02), (C) trajectories drawn to a limit-cycle rotation (�/2π = 0.08), (D) trajectories drawn to either a

stable spiral or a limit cycle (�/2π = 0.2), and (E) relative phase plotted over time for two trajectories in (D) (phase locking in blue, phase slip in green). In (B–D), filled

and empty circles indicate stable and unstable fixed points respectively, and red lines show limit-cycle orbits.

frequency difference increases, the fixed point inside the limit
cycle changes from an unstable node to an unstable spiral and
eventually to a stable spiral (Figures 8A,C,D). The emergence of
a stable spiral inside a stable (attracting) limit cycle indicates a
subcritical Hopf bifurcation. Thus, as the frequency difference
increases from zero, the driven state of a supercritical DLC
oscillator under intermediate forcing goes from phase locking
(a stable node, Figure 8B) to phase slip (a stable limit cycle,
Figure 8C) and then to the bistability between phase locking
and phase slip (a stable spiral inside a stable limit cycle,
Figure 8D).

When the forcing amplitude is further increased, only
one fixed point exists for any value of frequency difference
(Figure 9A). Similar to a strongly forced supercritical Hopf
oscillator (Figure 6), the driven state (r, ψ) of a strongly forced
supercritical DLC oscillator goes through transitions from a
stable node (phase locking), a stable spiral (phase locking,
Figure 9B), a libration around an unstable spiral (frequency
locking without phase locking, Figure 9C), and a rotation around
an unstable spiral (phase slip, Figure 9D). In addition to these
states, a supercritical DLC oscillator exhibits another driven
behavior for even larger frequency differences, bistability between
phase locking on a stable spiral and phase slip on a stable
limit cycle (Figure 9E). So, a strongly forced supercritical DLC
oscillator has two phase-locking boundaries, a supercritical
Hopf bifurcation (between Figure 9B and Figure 9C) and a
subcritical Hopf bifurcation (between Figure 9D and Figure 9E).
Figure 4C and Supplementary Video 3 show how the three sets of
driven behaviors shown in Figures 7–9 transition between each
other.

3.4. Subcritical Double Limit Cycle
Oscillator
Like a critical Hopf oscillator, a subcritical DLC oscillator is
attracted to an equilibrium at zero when it is not driven
(Figure 1D). But the presence of a local maximum in the
amplitude vector field makes its driven dynamics more varied
and interesting than that of a critical Hopf oscillator. Like a
supercritical DLC oscillator, a subcritical DLC oscillator exhibits
three different sets of driven behaviors depending on the forcing
amplitude.

For weak forcing, it behaves like a critical Hopf oscillator,
with its driven state attracted to a stable node when |�| is
small and to a stable spiral when |�| is large (Figure 10A). For
intermediate forcing amplitudes, a pair of fixed points appears at
high amplitudes and they are lost via a saddle-node bifurcation
at a certain frequency difference (Figures 10B–D). (It is not
clearly seen in Figure 10B, but the stable fixed point turns
back into a stable node just before it collides with the saddle
point.) Note that this saddle-node bifurcation does not leave a
limit cycle like a SNIC bifurcation (Figure 10D; compare with
Figure 7C), making the fixed point at low amplitudes the only
(global) attractor. This means that bistability exists only for
small frequency differences for a subcritical DLC oscillator under
intermediate forcing.

When driven strongly, a subcritical DLC oscillator has the
same set of fixed points as a supercritical DLC oscillator—
a stable node, a stable spiral, an unstable spiral, and a stable
spiral as |�| increases from zero (compare Figure 9A and
Figure 11A). A supercritical Hopf bifurcation occurs at the first
phase-locking boundary, where a stable spiral turns unstable
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FIGURE 9 | Driven behavior of a supercritical double limit cycle oscillator under strong forcing. (A) Steady-state amplitude and relative phase as a function

of frequency difference (α = −1, β1 = 4, β2 = −1, ǫ = 1, F = 1.5), with vertical dashed lines indicating the frequency differences used for (B–E), (B) trajectories

attracted to a stable spiral in the (r, ψ ) plane (�/2π = 0.3, phase locking), (C) trajectories drawn to a phase-trapped libration (�/2π = 0.4, frequency locking), (D)

trajectories drawn to a rotation (�/2π = 0.6, phase slip), and (E) trajectories drawn to either a stable spiral or a rotation (�/2π = 0.8, phase locking and phase slip). In

(B–E), filled and empty circles indicate stable and unstable fixed points respectively, and red lines show limit-cycle orbits.

FIGURE 10 | Driven behavior of a subcritical double limit cycle oscillator under weak and intermediate forcing. (A) Steady-state amplitude and relative

phase as a function of frequency difference for weak forcing (α = −1, β1 = 2.5, β2 = −1, ǫ = 1, F = 0.1) and (B) for intermediate forcing (F = 0.2), with vertical

dashed lines indicating the frequency differences used for (C,D), (C) trajectories attracted to either of two stable fixed points in the (r, ψ ) plane (�/2π = 0.01, both

phase locking), and (D) trajectories drawn to a stable spiral (�/2π = 0.05, phase locking). In (C,D), filled and empty circles indicate stable and unstable fixed points

respectively.

and a stable limit cycle grows around it (between Figure 11C

and Figure 11D). However, the limit cycle does not grow into
a rotation that encompasses the origin, which is the case for a
supercritical DLC oscillator. Instead, it shrinks back and turns
into a stable spiral via another supercritical Hopf bifurcation

(between Figure 11D and Figure 11E). In the absence of a SNIC
or subcritical Hopf bifurcation, a strongly driven subcritical DLC
oscillator shows no bistability and, since the only non-locked
behavior is a libration (Figure 11D), it either phase-locks or
frequency-locks to the input for all values of �. The transitions
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FIGURE 11 | Driven behavior of a subcritical double limit cycle oscillator under strong forcing. (A) Steady-state amplitude and relative phase as a function of

frequency difference (α = −1, β1 = 2.5, β2 = −1, ǫ = 1, F = 0.5), with vertical dashed lines indicating the frequency differences used for (B–E), (B) trajectories

attracted to a stable node in the (r, ψ ) plane (�/2π = 0.05, phase locking), (C) trajectories attracted to a stable spiral (�/2π = 0.11, phase locking), (D) trajectories

drawn to a phase-trapped libration (�/2π = 0.13, frequency locking), and (E) trajectories drawn to a stable spiral (�/2π = 0.2, phase locking). In (B–E), filled and

empty circles indicate stable and unstable fixed points respectively, and red lines show limit-cycle orbits.

between different forcing levels are shown in Figure 4D and
Supplementary Video 4.

3.5. Classification of Parameter Regimes
by Driven Behavior
Above we examined the dynamics of periodically forced
canonical oscillators in four different intrinsic parameter
regimes. We used a representative parameter setting for each
of the four distinct driven behaviors, but there are other
combinations of intrinsic parameters that show the same sets of
behaviors. For instance, the same set of driven behaviors is found
for α > 0, β1 < 0, and β2 = 0 (discussed as a supercritical
Hopf oscillator) and for α = 0, β1 > 0, and β2 < 0. This is
because the two parameter settings have topologically identical
autonomous amplitude vector fields (i.e., increasing from zero
and then monotonically decreasing as in Figure 1B).

We can classify all possible parameter settings for canonical
oscillators into four regimes with distinct driven behaviors
(Table 1). Oscillators with an autonomous amplitude vector field
that monotonically decreases from zero with no local extremum
(Figure 1A) have the same set of driven behaviors as a critical
Hopf oscillator (α = 0, β1 < 0, β2 = 0). Linear oscillators (α <
0, β1 = 0, β2 = 0) belong to this category. Oscillators whose
amplitude vector fields have one local maximum (Figure 1B)
have the same set of driven behaviors and bifurcations as a
supercritical Hopf oscillator (α > 0, β1 < 0, β2 = 0).
Oscillators with α < 0, β1 > 0, and β2 < 0 are divided into
three groups depending on whether the local maximum of the
amplitude vector field is above zero (Figure 1C, a supercritical
DLC oscillator), is below zero (Figure 1D, a subcritical DLC

oscillator), or does not exist (with the same driven behaviors as
a critical Hopf oscillator).

3.6. Frequency Scaling of Logarithmic
Frequency Networks
The analysis so far shows that for a fixed forcing amplitude
the driven behavior of a canonical oscillator depends on the
frequency difference�, not on the natural frequencyω per se, and
is symmetrical about� = 0 on a linear scale (see Figure 11A, for
example). This is to be expected from the fact that Equation (2),
which was used for the above analysis, is not scaled by natural
frequency (or time constant) as is Equation (1). Thus, the width
of phase-locking range for an oscillator described by Equation (2)
is constant regardless of its natural frequency if other intrinsic
parameters remain the same. For an oscillator network with
logarithmically equally spaced natural frequencies, this might not
be desirable if we want each oscillator in the network to cover the
same portion of logarithmic frequency space. Frequency scaling
solves this problem by making the driven behavior depend on
both frequency difference and natural frequency.

The frequency-scaled version of Equation (2),

1

f
ż = z

(

α + i2π + β1|z|2 +
ǫβ2|z|4

1− ǫ|z|2

)

+ Feiω0t,

has the polar form

{

1
f
ṙ = αr + β1r3 + ǫβ2r

5

1−ǫr2 + F cosψ
1
f
ψ̇ = �

f
− F

r sinψ,
(4)
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TABLE 1 | Classification of parameter regimes by driven behavior.

α β1 β2 Local extremaa Discussed as Bifurcationsb

− 0 0 None None

0 − 0 Critical Hopf

0 0 −

− − 0

− 0 −

0 − −

− − −

− + − (No max)

+ − 0 One Supercritical Hopf SNIC (low F );

+ 0 − Super-Hopf (high F )

0 + −

+ − −

+ + −

− + − Two (max > 0) Supercritical DLC SNIC (low F );

SNIC, Sub-Hopf (mid F );

Super-Hopf, Sub-Hopf (high F )

− + − Two (max < 0) Subcritical DLC None (low F );

SN (mid F );

Super-Hopf, Super-Hopf (high F )

SNIC, saddle-node bifurcation on an invariant circle; Super-Hopf, supercritical Hopf bifurcation; Sub-Hopf, subcritical Hopf bifurcation; SN, saddle-node bifurcation.
a The number of local extrema in the autonomous amplitude vector field.
b Bifurcations at phase-locking boundaries.

where f = ω
2π is the linear natural frequency. There are two main

differences between Equation (4) and its non-scaled version,
Equation (3). First, the left-hand sides of the scaled equations
are multiplied by the inverse of natural frequency, indicating
that high-frequency oscillators have faster dynamics and shorter
relaxation time than low-frequency oscillators. Second, the right-
hand sides are identical for the two versions except that the scaled
version has �/f in place of � in the non-scaled version. This
means that the two versions share the same set of steady-state
solutions and stability types, but for the frequency-scaled version
the distribution of solutions in frequency space is proportional
to the natural frequency. Figure 12A shows that frequency-
scaled canonical oscillators of different natural frequencies have
steady-state amplitude curves of an identical shape and width
when plotted on a logarithmic frequency axis. But note that the
amplitude curves and locking ranges are asymmetrical on the
logarithmic axis because even with frequency scaling they are
symmetrical in linear frequency (Figure 12B).

4. DISCUSSION

Here we have examined the response of gradient frequency
neural networks to periodic forcing by analyzing the driven
behavior of a canonical model for such networks. Using a
dynamical systems analysis of a canonical oscillator under
sinusoidal forcing, we showed that oscillators with distinct
autonomous behaviors have different sets of driven behaviors

and different types of bifurcation at phase-locking boundaries
(summarized in Table 1 and Figure 4). Oscillators that decay
to zero without external forcing are found to phase-lock to
sinusoidal forcing of any frequency and amplitude, if the
autonomous amplitude vector field decreases monotonically
(e.g., a critical Hopf oscillator). When the vector field has a
below-zero local maximum (i.e., a subcritical DLC oscillator), the
oscillator always phase-locks to weak forcing, shows bistability
for intermediate forcing, and either phase-locks or frequency-
locks to strong forcing. Oscillators with one stable non-zero
spontaneous amplitude (e.g., supercritical Hopf oscillators)
phase-lock only to forcing frequencies close to their natural
frequencies. Just outside the phase-locking range, oscillators of
this type frequency-lock to strong forcing. Finally, oscillators
with two stable spontaneous amplitudes (i.e., supercritical DLC
oscillators) exhibit the most diverse set of behaviors including
phase locking, frequency locking, phase slip, bistability between
two phase-locked states, and bistability between phase locking
and phase slip. We also showed that frequency scaling makes
the response of canonical oscillators constant over logarithmic
frequency.

The present analysis shows how a gradient frequency network
of non-linear oscillators processes a periodic signal. Given
the values of intrinsic parameters and the range of natural
frequencies, the analysis shows which part of the network would
phase-lock to the signal while the other part oscillates near the
spontaneous (i.e., autonomous) states. Thus, the response of the
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FIGURE 12 | Frequency scaled canonical oscillators in a logarithmic frequency network. The steady-state amplitude of frequency-scaled canonical

oscillators (α = 1, β1 = −1, β2 = −1, ǫ = 1, F = 1) with logarithmically equally spaced natural frequencies ( ω2π = 0.5,1,2, 4,8) is plotted as a function of input

frequency on (A) a logarithmic frequency axis and (B) a linear frequency axis.

network as a whole would include both the signal frequency
and the natural frequencies of oscillators not locked to the
signal, plus some non-linear combination frequencies in non-
locked, fluctuating oscillations. Here we analyzed the phase-
locking behavior of an oscillator with a linear input term (i.e.,
the signal itself), but the canonical model also includes non-
linear terms that govern mode locking (i.e., synchronization in
integer ratios other than 1:1). For instance, the input term xkz̄m−1

allows the oscillator, z, to mode-lock to the external signal, x, in
a k:m ratio, where k and m are positive integers. With such non-
linear input terms, the response of a gradient frequency network
contains not only signal frequencies and natural frequencies
but also non-linear responses such as harmonics, subharmonics,
and combination frequencies including quadratic and cubic
difference tones (Cartwright et al., 2001; Large et al., 2010),
which are essential for explaining non-linearities found in the
neural responses of the auditory system to acoustic signals (Large
and Almonte, 2012; Lerud et al., 2014). The analysis of the
canonical model with non-linear input terms, which will be given
elsewhere, combines with the present analysis of linear forcing
to demonstrate the full signal processing capabilities of gradient
frequency neural networks.

An understanding of the relationship between auditory
neurophysiology, auditory population dynamics and auditory
perception remains an elusive goal, due to the intricate circuitry,
the many structural levels involved, and the highly non-linear
nature of the neural responses. Traditional signal processing
approaches employ linear systems almost exclusively, and they
approximate human perceptual capabilities only roughly. From
the linear systems point of view, the basic job of the auditory
system is to decompose signals into orthogonal frequency bands
for subsequent pattern analysis. However, cochlear outer hair
cells and auditory neurons do not decompose signals into
orthogonal bands; instead, each process responds to multiple
related frequencies, in a manner that is fundamentally different

from linear techniques such as Fourier analysis. It appears
that active networks form spatiotemporal patterns that may
correspond to the perception of pitch, to the recognition of
specific auditory objects, or to the induction of a beat in a musical
rhythm. Significant theoretical advances will be necessary to
understand signal processing, pattern formation, and plasticity in

this complex and highly non-linear system. Here, we have taken
the first step, by studying the responses of gradient frequency
networks of non-linear oscillators forced with periodic signals.
Our aim is to extend our understanding of signal processing to
include more biologically realistic elements, such as oscillatory
neural networks. This will enable analysis of non-linear auditory
physiology from a signal processing point of view, and facilitate
the design of artificial auditory networks for performing specific
functions. By studying the way in which realistic neurodynamic
processes respond to sounds, we hope to shed light on the
remarkable capabilities of human perception that arise from
non-linear processes in the auditory system.
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