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Neurons communicate with each other via synapses. Action potentials cause release

of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is

tightly time-locked to the arrival of an action potential and is thus called synchronous

release. However, neurotransmitter release is stochastic and the rate of release of

small quanta of neurotransmitters can be considerably elevated even long after the

ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such

asynchronous release varies for tissue and neuron types and has been shown recently to

be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release

is enhanced in human epileptic tissue implicating a possibly important role in generating

abnormal neural activity. Current neural network models for simulating and studying

neural activity virtually only consider synchronous release and ignore asynchronous

transmitter release. Here, we develop a phenomenological model for asynchronous

neurotransmitter release, which, on one hand, captures the fundamental features of

the asynchronous release process, and, on the other hand, is simple enough to be

incorporated in large-size network simulations. Our proposed model is based on the

well-known equations for short-term dynamical synaptic interactions and includes an

additional stochastic term for modeling asynchronous release. We use experimental data

obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model

parameters, and demonstrate that our model reproduces the characteristics of realistic

asynchronous transmitter release.

Keywords: asynchronous release, synchronous release, neurotransmitter, synaptic model, short-term plasticity,

Ca2+ concentration, stochasticity

1. INTRODUCTION

Most neurons are connected with chemical synapses that release neurotransmitters to
communicate. A synapse connects the axon of a presynaptic neuron with the dendrite of a
postsynaptic neuron and has complex physiological structure including several functional sub-
compartments (Sudhof, 2004). In particular, neurotransmitters are stored in vesicles located at
the axon terminal, called the active zone (Paradiso et al., 2007). Upon arrival of an axonic
action potential, the voltage-gated Ca2+ channels in the active zone open, leading to the influx of
Ca2+-ions that bind to Ca2+ sensors on the vesicles. When sufficiently many Ca2+-ions are bound,
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sensors activate and the fusion of the vesicles with the membrane
is initiated. Consequently, the neurotransmitters stored inside
the vesicles are released to the outside of the axon terminal.
They then diffuse to the postsynaptic site, bind to membrane
receptors, and initiate a sequence of biochemical reactions in the
postsynaptic neurons, e.g., activate ion channels that change the
membrane voltage possible resulting in firing activity of the post
synaptic neuron (Sudhof, 2004).

The release of neurotransmitters is generally time-locked to
the arrival of an action potential, so that the former occurs
immediately after the latter; a process called synchronous
release. However, in some types of neurons and in certain
circumstances, significant amount of neurotransmitters can be
released asynchronously to the arrival of action potentials (Goda
and Stevens, 1994). Asynchronous release of neurotransmitters is
stochastic and may occur and persist long after the last arrival of
an action potential (Chapman, 2008).

Although synchronous release predominates in most
synapses, asynchronous release can be strong in certain types of
chemical synapses, in particular, when the presynaptic neuron
fires at high frequency (Hefft and Jonas, 2005; Daw et al.,
2009). Notably, it was found that in fast-spiking interneurons in
human epileptic tissues, asynchronous GABA release increases
significantly compared to control tissues (Jiang et al., 2012),
indicating that asynchronous neurotransmitter release may play
an important role in generating or compensating for abnormal
neural activities. Although it has been speculated in several
studies that asynchronous release may contribute to enhancing
neuronal inhibitory interactions (Medrihan et al., 2014) and
desynchronizing network responses (Manseau et al., 2010), the
exact role of asynchronous release in brain function remains
largely unknown and unexplored.

One reason for the lack of understanding of the effect of
asynchronous release onto neural activity is that virtually
all modeling studies of brain functions only include
synchronous neurotransmitter release and neglect the existence
of asynchronous release. While many phenomenological
models of various degrees of complexities exist for modeling
synchronous release—from simple exponential decays (Destexhe
et al., 1994; Dayan and Abbott, 2003) and delayed alpha
functions (Rall, 1967) to more-variable models that include
short-term plasticity (Markram and Tsodyks, 1996; Tsodyks
and Wu, 2013)—a simple phenomenological model of
the effect of asynchronous release onto the membrane
voltage of the postsynaptic neurons does not exist. Thus,
the computational neuroscience toolbox currently does not
provide a simple mathematical framework to describe the
dynamics of asynchronous release that could be easily included
in large-scale neural network models.

Therefore, to enable the study of the role of asynchronous
release in brain functions by using a neural network modeling
approach, we here develop a simple phenomenological model
for synaptic release that includes both, synchronous and
asynchronous transmitter release. We base our description on
a common synaptic model for short-term synaptic plasticity
(STP), that phenomenologically describes the dynamics of the
synchronous release (Loebel et al., 2009; Tsodyks and Wu, 2013).

We thus call our model the synchronous-asynchronous release
STP model (short: SAR model). By comparison to experimental
data, we show that the SAR model, despite being simple enough
to support large-size network simulation, nevertheless captures
the essential features of both transmitter release processes.

2. RESULTS

2.1. Derivation of the SAR Model
We first show an example measurement of experimentally
observed asynchronous transmitter release. Figure 1A shows
presynaptically and postsynaptically measured currents
measured at the synapse from a fast-spiking interneuron to
a pyramidal neuron in a human epileptic tissue (same data
as described in Jiang et al., 2012). Note that large inhibitory
postsynaptic currents (IPSC) are coupled with the spikes of the
presynaptic neurons (in the time range of 80–110 ms), indicating
synchronous release. However, IPSC are variable and stochastic
release events can be seen even after the spiking activity
(indicated with arrows), which we refer to as asynchronous
release.

To develop an adequate synaptic model describing both
asynchronous and synchronous synaptic activity, we first review
a well-known model describing synchronous release, which we
will later extend to include asynchronous release as well.

2.1.1. STP Model for Synchronous Release
The classical phenomenological model for describing the
short-term dynamics of synaptic currents of the synchronous
neurotransmitter release was introduced by Markram and
Tsodyks (1996). This model postulates a pool of releasable vesicle
and a dynamically changing release probability (e.g., depending
on the changing Ca2+ concentration). Let u denote the release
probability and x the amount of neurotransmitters contained
in the readily releasable vesicles. Each presynaptic spike
induces the current fraction u(t) of vesicles to release all their
neurotransmitters, which subsequently causes a postsynaptic
voltage change.

The dynamics of u and x are given by Tsodyks andWu (2013),

du (t)

dt
= −u (t)

τf
+ U [1− u (t)]

∑

m

δ (t − tm) , (1)

dx (t)

dt
= XF − x (t)

τd
− q(t), (2)

q(t) = u (t+) x (t−)
∑

m

δ (t − tm) , (3)

where tm denotes the arriving moment of the mth spike, and
δ(·) is the Dirac delta function. Note that in comparison to
the original model in Markram and Tsodyks (1996), we have
here for convenience changed the definition of the variable x
to be the amount of neurotransmitter available rather than the
fraction of neurotransmitters available. Further, U denotes the
increment of u due to the arrival of an action potential. The
time constant τf controls the rate of the decay of u, and τd
controls the rate of replenishment of vesicles. XF is the total
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FIGURE 1 | (A) An example of asynchronous release recorded at a presynaptic neuron from Jiang et al. (2012). Upper panel: the membrane current at the

presynaptic neuron. The current pulses represent action potentials at the presynaptic neuron. Lower panel: the IPSC at the postsynaptic neuron. Two asynchronous

release events long after action potentials are indicated with arrows. (B) Illustration of the neurotransmitter release process in the SAR model for consecutive times

(from upper to lower row) in the active zone. First row: at resting state, vesicles dock at the membrane in the active zone, the amount of Ca2+ bound to the Ca2+

sensors in the vesicles in low (indicated color by the white color). Second row: after an action potential, Ca2+ binds to the sensors on the vesicles (orange color), and

vesicles have high release probability. Third row: soon after the action potential, some vesicles (marked green and blue) are activated by the Ca2+ sensors and start to

release transmitters. Activation of vesicles can stem from the synchronous release (green) or the asynchronous release (blue) process competing for vesicles. Forth

row: Vesicles released need to be replenished and newly recruited to the active zone (indicated with arrows). In this time, they are not available for release. Due to

Ca2+ clearance process in the neuron, remaining available vesicles decrease in release probability (yellow). However, some vesicles are still activated by the

asynchronous release sensors and start to release transmitters (blue). Some other vesicles are being replenished at the same time. Fifth row: as the release probability

decreases, less vesicles are activated by the asynchronous release process. Last row: as Ca2+ is cleared, all vesicles return to the resting state and release is

stopped. Neurotransmitter release will only be newly initiated by spiking activity.

amount of neurotransmitters in all vesicles at the active zone,
when all vesicles are replenished. The notion t+ and t− indicates,
respectively, the moments of just after and before the arrival of
an action potential. q(t) is the rate of neurotransmitter release at
a given time t. According with the synchronous release process,
this neurotransmitters release here is time-locked to the arrival of
a presynaptic spike (delta function in Equation 3).

Finally, a simple way to describe the induced postsynaptic
membrane current Isyn due to the released neurotransmitters
is Destexhe et al. (1994), Dayan and Abbott (2003)

Isyn(t) = g(t)
(

v(t)− Esyn
)

, (4)

dg(t)

dt
= − g(t)

τsyn
+ wq(t − D), (5)

where v(t) is the membrane potential, g(t) is the synaptic
conductance at the postsynaptic site, Esyn the reversal potential of
the synapse, τsyn the time constant of the synaptic ion-channels,
w the synaptic efficacy produced by one unit of neurotransmitter,
and D the time delay due to the signal transmission.

2.1.2. Extension of the STP Model to Include

Asynchronous Release
We extend the above STP model to include the asynchronous
release process. The simple dynamics of the synchronous release
probability in the STP model provides an adequate framework
for modeling the asynchronous release since it allows for
implementing a slowly changing asynchronous release rate that
is modulated by firing activity as observed in experiments (Wen
et al., 2010; Jiang et al., 2012).

Molecular biological studies found that synchronous and
asynchronous neurotransmitter release are mediated via different
Ca2+ sensors (Sun et al., 2007; Xu et al., 2009; Wen et al.,
2010; Bacaj et al., 2013) that have distinct association and
dissociation rates with Ca2+. We therefore use two variables, usr
and uar, to denote their corresponding release probabilities, that
is, usr denotes the release probability due to synchronous release
during spiking events, and uar the release probability due to the
asynchronous release per unit time.

In the SAR model, we assume that for both release
probabilities the qualitative dynamics remain identical to the STP
model (Equation 1) although parameters are different in general.
We thus write

dusr (t)

dt
= −usr (t)

τsr
+ Usr [1− usr (t)]

∑

m

δ (t − tm) , (6)

duar (t)

dt
= −uar (t)

τar
+ Uar [Umax − uar (t)]

∑

m

δ (t − tm) , (7)

where Usr and Uar denote, respectively, the increments of release
probability induced by an action potential via the synchronous
and asynchronous release pathways, and τsr and τar denote,
respectively, the dissociation rates of Ca2+ from the two kinds
of sensors. Note that technically, since the synchronous release
is locked to instantaneous events while the asynchronous
release process is an ongoing process, the usr is a release
probability whereas uar is a probability rate. We thus add an
additional parameter, Umax, representing the saturation level of
the facilitation for asynchronous release probability rate.
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Experimental studies further suggest that fluctuations of
synchronous and asynchronous releases are anti-correlated,
implying that they are competing for the same pool of vesicles
(Wen et al., 2010). We therefore use a single variable x as
in Equation (2) to denote the amount of readily available
neurotransmitters.

As before, the synchronous release of neurotransmitters is
time-locked to the arrival of an action potential, and rate of
release is given by

qsr(t) = usr(t+)x(t−)
∑

m

δ(t − tm). (8)

The asynchronous release of neurotransmitters is, on the other
hand, highly stochastic. This stochasticity can be modeled as
a binomial process (Del Castillo and Katz, 1954). A random
variable n is said to be binomial, n ∼ B

(

M, p
)

, when it follows

the distribution P(n = k|M, p) =
(N
k

)

pk(1 − p)N−k, with k ∈
{0, . . . ,M} and p the probability of a single event.

Suppose that x0 is the amount of neurotransmitters contained
in a vesicle, called the quantum size. Thus, the maximal number
of readily releasable vesicles at time t is therefore ∼

⌊

x(t)/x0
⌋

,
with the symbol ⌊·⌋ denoting taking the nearest integer number
from below. Further, in a small time interval [t, t + dt), the
release probability of a single vesicles due to asynchronous
release is uar(t) dt. Therefore, when assuming that the number
of asynchronous release events is binomial distributed, it is
given by a binomial random variable n(t) that follows the
binomial distribution B

(⌊

x(t)/x0
⌋

, uar(t) dt
)

. Thus, the amount
of neurotransmitters released in the interval [t, t + dt) is
given by

qar(t) dt = x0nar(t), (9)

where nar(t) is the binomial random variable defined above.
When calculating the joint rate of synchronous and

asynchronous releases, in principle we have to correct for
the case that some active vesicle were released due to the
asynchronous release and are thus not available anymore for
the synchronous release during spiking activity. However, since
spikes are instantaneous events, and in practice the time interval
is very small, the overlap of the two processes can be neglected.
Thus, the overall neurotransmitter release rate at t is given by

q(t) = qar(t)+ qsr(t). (10)

The Equations (2, 6, 7, 10) jointly define the synaptic dynamics of
a release model, that includes stochastic asynchronous besides a
deterministic synchronous release process.

2.1.3. Including Stochastic Synchronous Release in

the SAR Model
While in the previous section the synchronous release is based
on the deterministic STP model, in reality the synchronous
release process is stochastic (Loebel et al., 2009). To arrive at our
final SAR-model, we replace the deterministic STP model by a
stochastic version, as suggested previously (Loebel et al., 2009).
For that, we add two stochastic processes, one to describe the

number of released vesicles by the synchronous release, nsr(t),
and the other describing the number of replenished vesicles, r(t).
These variables can be similarly modeled as binomial processes as
shown previously. For the number of released vesicles triggered
by the spikes by the synchronous release, it is thus

nsr(t) ∼ B
(

N(t), usr(t+)
)

, (11)

where N(t) is the number of available vesicle resources, that is
N(t) =

⌊

x(t)/x0
⌋

in the notation of the last subsubsection and
the usr is the release probability given by Equation (6). Second,
for the number of replenished vesicles at time t it is

r(t) ∼ B
(

NF − N(t), dt/τd
)

, (12)

implementing a stochastic depression process analogous to
Equation (2), with parameter NF = ⌊XF/x0⌋. Taken together, the
number of available vesicles at time t in the common pool, N(t),
changes according to the released and replenished vesicles at time
t, thus

dN(t) = r(t)− nar(t)− nsr(t)
∑

m

δ (t − tm) dt. (13)

Finally, the synchronous release rate changes to

qsr(t) = x0nsr(t)
∑

m

δ (t − tm) (14)

These equations complete our SAR model, which is illustrated
in Figure 1B. The equations jointly defining the synaptic
dynamics of the SAR model, which includes both stochastic
synchronous and asynchronous neurotransmitter release, are
summarized in the Algorithm 1. A numerical example
simulation of the SAR model is shown in Figure 2.

Algorithm 1 | Synchronous-Asynchronous Release STP
Model

Sync. release probability:
dusr (t)

dt
= −usr (t)

τsr
+ Usr [1− usr (t)]

∑

m

δ (t − tm)

Async. rel. probability rate:
duar (t)

dt
= −uar (t)

τar
+Uar [Umax−uar (t)]

∑

m

δ (t − tm)

Sync. release rate: qsr(t) = x0nsr(t)
∑

m

δ (t − tm)

Async. release rate: qar(t) dt = x0nar(t)

Available vesicle number: dN(t) = r(t)− nar(t)− nsr(t)
∑

m

δ (t − tm) dt

Vesicles replenishment: r(t) ∼ B
(

NF − N(t), dt/τd
)

Sync. released vesicles: nsr(t) ∼ B
(

N(t), usr(t+)
)

Async. released vesicles: nar(t) ∼ B
(

N(t), uar(t) dt
)

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2016 | Volume 9 | Article 153

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wang et al. A Phenomenological Synapse Model

FIGURE 2 | Numerical simulation of the SAR-model. The spike train

consist of 5 spikes (100 Hz, black dotted lines). (A) The number of released

vesicle according to the stochastic processes for the synchronous (black line)

and asynchronous release (red line). (B) Dynamics of the release probability of

synchronous (black) and asynchronous release (red line). (C) Fraction of

available vesicles in the pool. Parameters: τsr = 2 ms, Usr = 0.3, τar = 12 ms,

Uar = 0.005, τd = 30 ms, Umax = 0.5, and NF = 271.

2.2. Estimation of the Parameters of the
SAR Model
To apply the SAR model in network simulations in practice,
we need to find a working set of its free parameters, which
are τsr, τar, Usr, Uar, τd, NF , Umax, and x0. In general, these
parameters may vary in different cortical areas and for different
types of synapses, analogous to the parameters of the STP model
for synchronous release (Silberberg et al., 2005). Note that the
SAR model includes short-term plasticity of the synchronous
release, so that facilitating and depressing synapse dynamics can
be expressed with the model in addition to dynamics of the
asynchronous release.

In the following, we develop a method which fits the free
parameters according to experimental data. We use experimental
data from a synapse connecting a fast-spiking neuron to a
pyramidal neuron as an example case (Jiang et al., 2012). We
proceed in two steps. First, the time course of the release rate
has to be estimated from the raw IPSC traces. Second, we use the
release rate time course to estimate parameters of the model by
probabilistic inference.

2.2.1. Extracting the Neurotransmitter Release Rate

from the Recorded IPSC
We first extract the release rate of neurotransmitters from
the inhibitory postsynaptic currents (IPSCs) recorded at the
postsynaptic pyramidal neuron.

Let Isyn denote the synaptic current and g(t) the synaptic
conductance at the postsynaptic neuron. We use Equations (4)
and (5) to describe the synaptic currents induced by GABA
receptors, and have

Isyn(t) = g(t) (v− EGABA) , (15)

dg(t)

dt
= − g(t)

τGABA
+ wq(t − D), (16)

with analogous variables as in Equations (4) and (5).

The experimental data was recorded using voltage-clamp, the
membrane voltage v was fixed and EGABA was stable when the
neuron was at equilibrium, therefore A ≡ w(v − EGABA) is
a constant (Jiang et al., 2012). With this condition, the above
equations are solved for Isyn(t),

Isyn(t) =
∫ t

−∞
e
− t−t′

τGABA Aq(t′ − D) dt′. (17)

We need to extract q(t) given Isyn(t). Since q(t) and A always
come together as a product in Equation (17), we can only estimate
q(t) up to a scaling factor A. Because the asynchronous release
events are relatively sparse, classical approaches, such as Fourier
methods, are not suitable in estimating the release rate. In the
Section 4, we thus develop an effective deconvolution method
to estimate Aq(t) from Isyn (see Section 4.3, for details), and
take care that the measured Isyn was not confounded by a leaky
current (see Section 4.2). Figure 3 presents an example of the
estimated release rate extracted from IPSC of the postsynaptic
neuron. The reconstructed postsynaptic current based on the
estimated release rate agrees well with the experimental data
showing the adequateness of our deconvolution method.

2.2.2. Estimating the Parameters by Probabilistic

Inference
Before fitting the SAR model, by comparing the membrane
current at the presynaptic neuron with the extracted release rate,
we observed that the peak of the release rate profile lags behind
the peak of the membrane current by roughly a constant time
0.75 ms (Figures 3C,D). This implies that the transmission delay
D = 0.75 in Equation (16).

We found further that the release rate increased sharply
after 0.3 ms of the presynaptic spike, and decreased abruptly
after 1.1 ms of the sharp increase. Thus, we divided the time
trails into two types of time intervals: The first type started
at 0.3 ms after each spike and lasted 1.1 ms, and we called

these intervals the synchronous release periods P
(k,i)
sr , where k

is the spike number and i the trial number. The second type
was the time interval between two synchronous release periods

and named asynchronous release periods P
(k,i)
ar . The integrated

neurotransmitter release in the defined time periods is calculated
as (with r = sr, ar)

M(k,i)
r =

∫

t∈P(k,i)r

Aq(t) dt. (18)

After calculating the integrated neurotransmitter release in each
synchronous or asynchronous periods, we adopted a probabilistic
inference method to estimate the parameters in the SAR model
similar to Costa et al. (2013). Similar to the assumptions in Costa
et al. (2013), we assume that the released neurotransmitters in
a certain release period conforms to a Gaussian distribution.
Therefore, we use only the sample mean and standard deviation

for each period over trials i, i.e., µ
(k)
r =

∑

iM
(k,i)
r /n and σ

(k)
r =

√

∑

i(M
(k,i)
r − µ

(k)
r )2/n, for fitting the model.

When Mr collects the values for the released
neurotransmitters in predefined intervals from experimental
data, the likelihood that the parameter set θ = {τsr, Usr, τar,
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FIGURE 3 | Pre-processing of the raw IPSC recordings for estimating parameters of the SAR model. The experimental data was recorded from a synapse

connecting a fast-spiking neuron to a pyramidal neuron in a human epileptic tissue (Jiang et al., 2012). (A) Blue curve: an example IPSC trace. Red dashed curve: the

reconstructed IPSC trace based on the extracted release rate (from B). The two curves agree very well with each other. (B) Extracting release rate from experimentally

measured IPSC traces. The scaled release rate q̃ = Aq extracted from the IPSC in A by the deconvolution method. (C,D) Estimation of the transmission delay by

comparison of the time of spikes (black dotted lines) in the pre-synaptic voltage trace (C) and the peak of the release rate (D). Red dotted line mark the moments 0.75

ms after action potentials, which roughly coincide with the peaks of release rate indicating a constant transmission delay.

TABLE 1 | Fitted parameters that maximizes the log likelihood within the

indicated search space using grid search for a FS-PC synapse.

Parameter Unit Value Confidence interval Search space

Usr 0.11 [0.104,0.117] [0.02,0.3]

τsr ms 1 [0.10,3.7] [1,4]

Uar 0.0035 [0.00325,0.0037] [0.004,0.024]/Umax

τar ms 13 [12,14] [4, 32]

τd ms 60 [51,76] [20,80]

Umax 1/ms 0.5 [0.06,> 2] [0.125,2]

NF 271 n.a. n.a.

Uar, τd, Umax} can match the experimental observations Mr is
P (Mr |θ ). Given each parameter set θ the log likelihood is

log P (Mr |θ ) =
∑

r∈{sr,ar}

Nsp
∑

k=1

(

−
(

M̃
(k)
r − µ

(k)
r

)2

2
(

σ
(k)
r

)2
− log

√
2πσ (k)

r

)

,

(19)

where M̃
(k)
r are the amount of released neurotransmitters

predicted by the SAR model in the corresponding periods for a
given parameter set. The technical details of the fitting process
are described in the Section 4.4.

The results on the experimental data are shown in Table 1 and
Figure 4. We found that the SAR model qualitatively captured
the randomness and the general appearance of the experimental
data (see Figure 5, for a comparison).

After having estimated a suitable parameter set, we explore
in the following effects of selected parameter variations on the
response of the SAR model.

2.3. Effect on Asynchronous Release
Caused by Slower Ca2+ Buffering
For a fast-spiking interneuron of the epileptic human tissues,
the estimated decay time constant of the asynchronous release

was τar = 8 ms (see Table 1), which means that the
asynchronous release rate decays very fast after spiking activity.
In cholecystokinin (CCK)-expressing interneurons, on the other
hand, the post spike train asynchronous release was found
to decay slower (Hefft and Jonas, 2005). Mechanistically, the
fast decay of the release might be caused by the parvalbumin
(PV) contained in the fast-spiking interneuron. Parvalbumin
is a Ca2+-binding albumin protein, which can cause free Ca2+

concentration to rapidly decay causing a fast deactivation of Ca2+

sensors. Therefore, τar in PV-containing fast-spiking interneuron
synapses is expected to be relatively small. Accordingly, a
previous study (Jiang et al., 2015) suggested that faster
clearance of free Ca2+ could contribute to the reduction of the
asynchronous release.

In experiments, the speed of free Ca2+ clearance can be
controlled by the administration of the drug EGTA-AM, which
enhances the speed of Ca2+ clearance (Otsu et al., 2004; Jiang
et al., 2012). This would correspond to smaller τsr and τar time
constants in the SAR model. Because the two Ca2+ sensors
have different biochemical properties, the influence of a slower
decay of the free Ca2+ concentration on τsr and τar may be
different.

We ran the model with different τar to see how the time
decay of the Ca2+ concentration can affect asynchronous
and synchronous release. For better illustration, we plot both
releases separately. Specifically, based on the receptor model
Equation (17), we can separate IPSCs in Iar(t) and Isr(t)
according to

Isyn(t) = Isr(t)+ Iar(t), (20)

Iar(t) =
∫ t

−∞
e
− t−t′

τGABA w(v− EGABA) qar(t
′) dt′, (21)

Isr(t) =
∫ t

−∞
e
− t−t′

τGABA w(v− EGABA) qsr(t
′) dt′. (22)
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FIGURE 4 | Parameter estimation of the SAR model and comparison of the best fitting SAR model with experimental data. (A) Average amount of

neurotransmitter release in the periods after the kth spike in experiments (asterisks) for synchronous and asynchronous release periods (red and green colors,

respectively) and prediction of the SAR model (solid lines). The model captures the experimental observation very well (log likelihood value –52.8259, see Equation 19),

although the fit was only constraint by the first 10 spikes (see Section 4). Error bars indicate standard deviations. Note that the number of trails for each spike is

different. In particular, for spikes 21–25 only 3 trials were available (see Section 4). (B–G) Scaled likelihood along each dimension around the optimal parameter set for

the 6 fitted parameters of the SAR model. Shaded areas indicate the region where the likelihood is above 90% of the maximal value, when the single parameter is

varied while all other remain fixed.

Increasing the time constant τar from e.g., 8 to 30 ms made
the asynchronous release rate uar visibly slower, so that uar
accumulates and saturates at higher levels after repetitive spikes,
in turn leading to a larger Iar (see Figure 6). Moreover, the
amount of free vesicles x decreases to lower levels as a result of
the enhancement of asynchronous release, which also causes a
smaller Isr due to the resource competition of the two release
processes. This form of competition was found in experimental
data as well (Otsu et al., 2004). Finally, after the spike train,
the asynchronous current lasts longer because τar decays more
slowly.

2.4. Effect on Asynchronous Release
Caused by Stronger Influx of Ca2+

In rat epileptic tissues, it was found that action potentials
have higher amplitude than that in normal rats (Jiang et al.,
2012). The higher amplitude could in principle lead to an
increased Ca2+ influx, which will cause the Ca2+ sensors to
be more active. Interestingly, it was found that manipulating
the amplitude of action potentials had greater influence on
the asynchronous release than on the synchronous release
process (Jiang et al., 2012). The change of Ca2+ influx
would correspond to an increase of Usr and Uar in the SAR
model.

We therefore run themodel with differentUar to see the effects
on Isr and Iar (results are shown in Figure 7). Increasing the
parameter Uar caused uar to rise to higher levels after each spike.

Since τar was short, uar saturated soon after a few spikes. Higher
uar levels resulted in stronger asynchronous IPSC. Similar to
the previous simulation, stronger asynchronous release depletes
resources (that is, a decrease in x), and thus forces smaller
synchronous IPSCs.

It is known that changes of Na+, K+, and Ca2+ channels can
all contribute to epilepsy (Lytton, 2008). Changes in the channel
dynamics might deform the waveform of action potentials, and
thus in turn might lead to the enhancement of asynchronous
release. In some experiments (Zengel and Magleby, 1977;
Otsu et al., 2004), Ba2+, Sr2+, and Li+ are used to selectively
enhance synchronous or asynchronous release. These changes
can be modeled with the change of Uar in the SAR model as
described.

Although both, larger Uar and larger τar, can enhance
asynchronous release, there are some crucial differences on
the release characteristics. With large τar, the asynchronous
release rate uar will increase slowly during repetitive spikes,
and then decay slowly after the spikes have ceased. Thus, Iar
does not increase much during the first few spikes, but lasts
longer after the spike train. On the other hand, with large Uar,
asynchronous release level uar increases rapidly after the first few
spikes, and also decays fast after the spikes have ceased. Thus,
in contrast to the case when varying the time constant, when
changing Uar the dynamics of Iar is faster, while the level of
asynchronous release during the spike train is elevated in both
cases.
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FIGURE 5 | Comparison of the experimental traces with the SAR model after fitting the parameters. (A) Experimentally observed release rate for the 3 trials

having 10 spikes. (B) Experimentally observed synaptic current corresponding to the release rate in (A). (C,D) 3 example trials simulated with the SAR model with the

same spike pattern as in (A,B). Note that simulated traces are qualitatively similar with the experimental data. (E,F) Synaptic current comparison of the rest of the

experimental trials (E) and further example realizations of the SAR model (F). See Table 1 for parameters used. For (A,C), a boxcar filter with 1 ms width was used to

better visualize the instantaneous release events.

2.5. Quantum Size Controls the Transmitter
Release Variability
We found that the quantum size x0 mainly affects the variability
of the asynchronous release.

Assume that the overall amount of released neurotransmitter
stayed the same but each vesicles contained less neurotransmitter
(implicating a increased numbers of vesicles in the active zone).
This can be modeled by holding the synapse strength wXF

constant, when increasing the total available vesicles XF
x0

by
reducing the released quantum x0. Note that w is the synaptic
weight in the receptor model (see Equation 16).

Suppose that at a time t, the fraction of remaining

neurotransmitters is ξ . Then there are ξXF
x0

vesicles. If each
vesicle had a release probability of p in a short period, then the

variance of released vesicles is ξXF
x0

p(1− p) based on the binomial
release hypothesis. So the variance of the conductance g from
Equation (16) is

(wx0)
2 ξXF

x0
p(1− p) = wx0(ξwXF)p(1− p)

= wx0c,

(23)

where c is a constant, since wXF is held constant. Thus, for
larger XF/x0, wx0 becomes smaller, so that the variance of
the conductance caused by neurotransmitter release becomes
smaller. Therefore, smaller wx0 makes the IPSC generated by the
asynchronous release appear smoother (see Figure 8).

3. DISCUSSION

In this article, we developed a phenomenological synaptic model,
the SAR model, that includes a description of the dynamics of
both, asynchronous and synchronous neurotransmitter release.
We based the derivation of the SAR model on a popular
model for short-term plasticity, so that possible short-term
synaptic plasticity dynamics of the synchronous release process
can be described in addition to the asynchronous release
dynamics. We found that our model agrees well with data on
asynchronous release characteristics from experiments (Jiang
et al., 2012) and in particular reproduced the effect of
selectively enhancing or reducing asynchronous release found by
experimental manipulation of the Ca2+-dynamics (Otsu et al.,
2004).
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FIGURE 6 | Effect of an increase in the asynchronous release decay time constant τar in the SAR model. (A) The IPSCs caused by transmitter release. (B)

The synchronous component of the IPSC caused by synchronous release. (C) The asynchronous IPSC caused by asynchronous release. (D) The internal state usr of

the synapse model during the spike train. (E) The internal state uar during the spike train. (F) The internal state x (with a scale of 1 : XF ) during the spike train.

Parameters: taken from Table 1 except τar as indicated. The amplitude of the IPSC caused by a quantum release is Ax0 = 10 pA.

FIGURE 7 | Enhancement of asynchronous release with an increase of Uar in the SAR model. (A) The IPSCs caused by total transmitter release. (B) The

synchronous component of the IPSC caused by synchronous release. (C) The asynchronous IPSC caused by asynchronous release. (D) The internal state usr of the

synapse model during the spike train. (E) The internal state Uar during the spike train. (F) The internal state x (with a scale of 1 : XF ) during the spike train. Note that

asynchronous release causes a decrease in the synchronous release due to the competition of vesicle resources. Parameters: taken from Table 1, except Uar as

indicated. Ax0 = 10 pA.

3.1. Features of the Model
A previous experimental study suggested that the asynchronous
release phenomenon may be caused by two different release
sites having different distances to the Ca2+ channels (Hefft and
Jonas, 2005). However, this phenomenon can also be explained
by only having one release site but different Ca2+ sensors
that have distinct association, dissociation, and cooperativity
properties. In our model, we thus assumed two different

Ca2+ sensors for the two release processes. This could be a
simplification, because in a much more biologically detailed
model that only includes one kind of Ca2+ sensor but assumes
a detailed vesicle life cycle and Ca2+ concentration dynamics,
asynchronous release phenomenon also emerged (Pan and
Zucker, 2009). However, for the purpose of building a simple
phenomenological model, the assumption of having two pools of
sensors competing for a common pool of free vesicles seems to
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FIGURE 8 | Influence of the effective quantum size on the asynchronous release in the SAR model. (A) The IPSCs caused by the total transmitter release.

(B) The synchronous component of the IPSC caused by synchronous release. (C) The asynchronous component of the IPSC caused by asynchronous release. (D)

The internal state usr of the synapse model during the spike train. (E) The internal state Uar during the spike train. (F) The internal state x (with a scale of 1 : XF ) during

the spike train. Note that the current caused by asynchronous release is visibly smoother if the released quantum size is smaller. Parameters: taken from Table 1,

except NF = XF /x0 as indicated. Ax0 = 10 pA.

be an adequate simplification and able to reproduce experimental
data.

Another model was proposed for describing asynchronous
release on a molecular basis using 3D Monte-Carlo simulations
of Ca2+ diffusion in a single synapse (Nadkarni et al.,
2010). However, these molecular details for describing the
asynchronous release process in the hippocampal synapse
makes the model very computationally expensive and thus
unsuitable for large scale network simulations. Computational
efficiency in simulating synaptic interactions is in particular
important because in a network of N neurons, the number
of synapses is proportional to N2. Thus, the dynamics of
synapses are the most costly aspect to compute in typical
neural network simulations. When considered in addition to
the synchronous release process already present in a network
simulation, the asynchronous release in our SAR model
adds only a single dynamical equation (for the asynchronous
release rate) together with two noise processes (one for
replenishment, one for the released amount) per synapse
and time step for simulating the dynamics of a neural
network.

Our model is thus simple and computationally efficient while
still catching some key features of the asynchronous release
found in the experimental studies. Note that also the STP model,
which we use for describing the synchronous release process
in the SAR model, is in itself only an phenomenologically
approximation to the complex biophysical mechanism of
synchronous release (Tsodyks and Wu, 2013). Taken together,
the SAR model is thus suitable to be used in large-scale network
simulation to investigate the effect of asynchronous release
on network dynamics. Parameters of the SAR model can be

adjusted to adapt for different contributions of synchronous and
asynchronous release as illustrated in the Section 2.

3.2. Possible Extension of the Model
Our model does not include a positive stationary probability of
asynchronous release in the absence of spike, because the release
probability rate will decay to zero (with time constant τar) when
spiking ceases (compare to Equation 7). However, it is known that
in some synapses, spontaneous release events occur even in the
absent of spikes (Kavalali, 2015). We here neglected spontaneous
release, since in our data single events are tiny and thus cannot
be reliably distinguished from background noise. However, if
needed, this rate could be easily incorporated in the SAR model.
In Equation (7), the steady state had to be changed to some
positive spontaneous rate, e.g., U0, that is the equation would be
modified to

duar (t)

dt
= −uar(t)− U0

τar
+ Uar [Umax − uar (t)]

∑

m

δ (t − tm) .

(24)
This would yield spontaneous release events in the absent of
spiking activity in the SAR model.

3.3. Release Rate Estimation from
Experimental Trials
Some assumptions during the estimation of the model
parameters may not hold exactly in the reality, possible
confounding the accuracy of the estimated release rate from
experimental trails. For example, it was assumed that the
leaky current was constant, but in fact, it may change with
the membrane voltage and the internal state of the neuron.
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Moreover, the reversal potential EGABA was also assumed to be
constant. However, in high frequency spike trains it is known
that a neuron may not be able to maintain ion concentration
stable (Staley et al., 1995), which may lead to a drift in EGABA.

In the estimation of the parameters of the SAR model, the
receptor dynamics was assumed to be a simple exponential decay
process. This assumptions might be too restrictive for some
synapse types, for instance, because any receptor saturation is
neglected. While the fitting process might be more difficult with
more complex receptor dynamics, the core of the SAR model is
still valid as it models the neurotransmitter release process and
not the receptor dynamics.

Taken together, there are some assumptions that limit the
precision of the estimation of the release rate from IPSC, which in
turn might affect the accuracy of the parameter estimation of the
SAR model. Although quantitative aspects might slightly change,
it is unlikely that the above assumptions would compromise a
useful qualitative description of the asynchronous release process
by the SAR model.

3.4. Categorizing the Synchronous and
Asynchronous Release Periods from the
Experimental Observed IPSC
Though synchronous and asynchronous release have different
underlying mechanisms, it is difficult to distinguish them from
the postsynaptic currents alone. Some experimental studies (Pan
and Zucker, 2009; Wen et al., 2010) chose the neuromuscular
junctions as model system because the receptor’s conductance
decay constant is very short. It is thus easy to directly identify
both release processes from the measured synaptic currents.
This method gives both the timing and relative amount of
neurotransmitter release, but it is limited to certain kinds of
synapses. Other studies (Jiang et al., 2012, 2015) used the slope of
the IPSC after the spike train to identify events of asynchronous
release. This method can give the timing of asynchronous release,
but cannot give the amount of released neurotransmitters at the
same time.

If the receptor decay time constant is not short enough,
the asynchronous IPSC will be mingled together with the
synchronous IPSC, and it is not easy to categorize the release
as synchronous or asynchronous. In this article in contrast to
previous method, we thus developed a deconvolution approach
to account for the finite conductance decay time constant to
directly get an estimation of the transmitter release rate. We then
used the timing of the release rate (and not that of the IPSCs)
to achieve categorization since it is more reasonable to assume
that synchronous release rate can be described by a instantaneous
pulse functions.

3.5. Applicability to Other Synapse Types
To fit the SAR model we used data obtained from a synapse of
a fast spiking interneuron to pyramidal cell. We found that the
average release rate changes after spikes were well captured by
the model yielding simulations that were qualitative comparable
to the experimental traces. Note that the model is also suitable for
modeling synapses with negligible asynchronous release, such as
PC-PC synapses, since the SARmodel generalizes the established

STP model of the synchronous release. Data were too limited to
more quantitatively test how well other more detailed aspects,
i.e., the form of the distribution of asynchronous events, were
predicted after fitting the model. Since we assumed only very
simple release dynamics, the SAR model can only be seen as a
first approximation to the underlying biophysics. The variability
of the parameters of the model for other synapses of the same
type or between different synapse types is not addressed here and
needs future experimental studies, where the SAR model and our
methods could be used to fit data frommany synapses of the same
type (but from different neurons or areas) and between different
types of synapses.

3.6. Conclusion
We here presented a new model for the phenomenological
description of synchronous and asynchronous neurotransmitter
release at chemical synapses. Since our model extends a well-
known STP model often used in large-scale network simulations,
it should be easy to include it in future modeling studies.
We hope that the SAR model will facilitate the understanding
of the computational properties and neural function of the
asynchronous release process.

4. MATERIALS AND METHODS

4.1. Experimental Methods
The experimental data used for the fitting of the SAR model
was taken from a previous study (Jiang et al., 2012). We
thus refer to Jiang et al. (2012) for a detailed description of
the experimental protocol. In brief, human neocortical tissues
obtained from patients with intractable epilepsy were sectioned
in ice-cold sucrose-based slicing solution, and then maintained
in artificial cerebrospinal fluid at 35.5C◦. Whole-cell recordings
were performed in synaptically connected layer 5 fast-spiking and
pyramidal cell pairs (FS-PC) with high-chloride internal solution.
The presynaptic FS cells were stimulated by current pulses to
generate action potentials. Asynchronous release (AR) events
could be detected in the postsynaptic PC during and after the
action potentials.

4.2. Estimating the Synaptic Current
The leaky current should be subtracted from the recorded
current, so that the remaining part is purely the synaptic current
Isyn(t) caused by neurotransmitter release. Here, we estimate the
leaky current Ileaky to be the mean of the recorded current in a
short period before each spike train. In principle, Isyn(t) should
be non-positive for inhibitory synapses. However, in some trials,
there were some time points where Isyn(t) > 0, probably due to
small noise fluctuations. We thus set Isyn(t) to a small negative
value −ǫ where Isyn(t) > −ǫ. Here ǫ should be small enough so
that it does not introduce much bias compared to the amount
of noise. We set ǫ to 0.2 pA, which is much smaller than the
amplitude of the IPSC.

4.3. The Deconvolution Method
We found that classical approaches to deconvolution are
ineffective for inferring the release events. We thus develop in
the following a new deconvolution approach.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2016 | Volume 9 | Article 153

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wang et al. A Phenomenological Synapse Model

Consider that a time course of a postsynaptic current Isyn(t) in
a time interval [0,T] with a temporal resolution dt = 0.05 ms
was recorded. After pre-processing (see Section 4.2), we divided
the time interval into a sequence of N = T/ dt time bins with
size dt. In discrete form, the synaptic current in the ith time bin
according to the model is given by (compare to Equation 17),

Isyn(i) =
i
∑

j=1

K(i− j)q(j− 1) dt, (25)

where the kernel is K(i − j) = Ae−(i−j) dt/τGABA when i ≥ j and
otherwise 0 and 1 = D/ dt is the transmission delay.

First, we estimate the GABA receptor’s decay time constant
τGABA by estimating the kernel K from the data using MATLAB’s
curve fitting toolbox.

The time constant τGABA could be estimated from
spontaneous neurotransmitter release events or from single
action potentials. However, both estimates were similar (see
Figure 9). For a synapse between fast-spiking neurons, we found
τGABA ≈ 2.6 ms, for a synapse from fast-spiking neurons to
pyramidal neurons, τGABA ≈ 5 ms, which is in good agreement
with values reported in the literature (Bartos et al., 2002).

Having estimated the form of the kernel, we adopted a
sequential approach to estimate q(i − 1) one-by-one, starting
from i = 1 to i = N. We start with q(1 − 1) = 0. At the ith
step, we assume that the q(j − 1) for steps j = 1, . . . , i − 1 are
already estimated. We then choose the q(i− 1) by satisfying

q(i− 1) = argmin
p≥0

∣

∣

∣

i−1
∑

j=1

K(i− j)q(j− 1) dt + Ap dt − Ĩsyn(i)
∣

∣

∣

≡ argmin
p≥0

|J(i)|,

subject to Ĩsyn(k) ≥ e−(k−i) dt/τGABA J(i) ∀k ≥ i,

(26)

where Ĩsyn(i) is the experimentally measured IPSC in the time
interval i and J(i) is an abbreviation of the term tomaximize. Note

that the optimization constraints achieves that the release rate at
time t can only grow if the future decay can be accommodated.
This procedure resulted in an good estimate of the release rate
(see Figure 3, for an example).

4.4. Parameter Fitting
We used n = 12 trials of release rate under spike frequency
of 100 Hz and spike number of 10 (3 trials), 15 (3 trials), 20
(3 trials), and 25 (3 trials). For comparability, only the release
rate statistics of first Nsp = 10 spikes were used for all trails.
Incorporatingmore spikes did not improve the fit, because (a) the
usable trials number was reduced and (b) the release rate statistic
change started to saturate after about 10 spikes in this data set.
Because the amount of available trails were limited, we divided
the spike trails in short intervals and optimized the parameters
of the model to match the average estimated neurotransmitter
within these short intervals. We inferred the model parameters
by minimizing the log likelihood given in Equation (19) of the
main text.

Since the amount of released neurotransmitters in the SAR
model is stochastic, the released amount M̃

(k)
r in each of the time

periods defined in the main text should be averaged over trials.
Since we only fit the mean of the experimental data, to save

time in calculating M̃
(k)
r for purpose of fitting, we modified the

Equation (9) of the SAR model to

qar(t) dt = x(t)uar(t) dt, (27)

and additionally used the deterministicmodel of the synchronous
release described in the main text, so that there is no stochasticity
in the model during fitting. Calculating mean release rate in this
way was much faster than taking the average of release rate over
many trials generated by the model in Section 2.1.2 but does not
change the results. This modification alsomakes x0 ameaningless
parameter during the fitting. We thus estimated quantum size x0
later using another method (see Section 4.4.2 below).

After we calculated the generated release rate q′(t) by the

model, we computed the model response M̃
(k)
r as described for

FIGURE 9 | Estimating the receptor decay time constant. The experimental data is from a synapse of epileptic human tissue connecting a fast-spiking

interneuron with a pyramidal neuron. Blue curve: the IPSCs. Red curve: the fitted IPSC using an exponential decay function (with offset). (A) A spontaneous release

event. The estimated τGABA was 4.8 ms (confidence interval 4.39–5.27 ms). (B) Single action potential triggered release. The estimated τGABA was 6.2 ms

(confidence interval 6.06–6.46 ms).
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the experimental data [the synchronous release periods P
(k,i)
sr

started immediately when there was synchronous release and also
lasted for 1.1 ms], except that we accounted for the normalization
factor A [corresponding to w(v− EGABA)] to ensure that the sum
∑

M̃
(k)
r corresponded to that of the experimental data.

Note that the released neurotransmitters increase
proportionally to the parameter XF (see Equations 6, 7, 10,
and 2), so that A ∝ 1

XF
. This means that XF is not constrained if

w(v − EGABA) is not known. Thus, we arbitrarily set XF = 1 in
the fitting process.

A grid search was used to find the parameter set which
maximized the log likelihood. See Table 1 in the main text for
the grid space used and the inferred parameters.

After finding the optimal parameter set θ̂ , we examined the
nearby space around it with thinner bin size and smaller range
along each parameter dimension to estimate a confidence region.
The confidence interval along the each dimension was taken
where the likelihood was above 90% of the maximal likelihood
value. See Table 1, for the list of the determined confidence
intervals.

4.4.1. Validating the Fitting Method on Simulated Data
To check how reliably the fitting method finds the true
parameters of themodel, we tested it on artificially generated data
with the SAR model. For that, we randomly chose 120 random
parameter settings (in the ranges τsr ∈ [4, 10], Usr ∈ [0.1, 0.5],
τar ∈ [8, 20], Uar ∈ [0.004, 0.02], τd ∈ [20, 80], Umax ∈
[0.2, 1], and NF = 271), simulated released neurotransmitter for
spike trains with 25 action potentials (100 Hz) for 50 trials and
performed grid search for all 6 parameter.

We found that when comparing the estimated with the true
values, the parametersUsr and τd could be very reliably estimated
(Usr: R

2 = 0.9261; τd: R
2 = 0.957). We thus fixed the values

found for these two parameter to save computation time and
performed a finer grid search for the other 4 free parameters. This
yielded values very close to the true values for τar (R

2 = 0.81)
and still reasonable values for τsr (R

2 = 0.49). The reason why
τsr could be less reliably estimated, is that for moderate spike
rates and moderate facilitation, the exact time constant of the
synchronous release rate does not affect the dynamics of the
model significantly as long as it decays almost to zero within the
inter-spike interval (see e.g., Figure 6B).

Finally, we found that although the overall quality of the fit
to the simulated data was very good throughout (on average 1%
relative deviation of the likelihood of the estimated parameter
compared to the likelihood of the true model on the same
data, averaged over all 120 groups of parameters), the estimated
parameters Umax and Uar were in general not close to the true
values (Umax: R

2 = 0.25; Uar: R
2 = 0.2). This could be

understood by reviewing the SAR model formulation. Note that
the parameter Umax is somewhat redundant with the parameter
Uar, because they both increase the update of the asynchronous
release rate (see Equation 7). Indeed, we found that the product
UmaxUar was correctly estimated by our fitting method and very
close to the true values (R2 = 0.93). In other words, for relatively
short spike trains with moderate firing rate, the saturation level
of the asynchronous release process, Umax, is seldom reached,

so that an incorrect setting of Umax does not significantly affect
the dynamics as it can be compensated for by an appropriate
setting of Uar. For our data, we found that fixing Umax to a
constant number e.g., Umax = 1ms−1, and performing the grid
search only on the remaining 5 parameters yielded good results
in practice.

4.4.2. Estimating the Quantum Size
After the parameters are found, one can calculate the quantity
of x0. According to the receptor model, the amplitude of
the IPSC triggered by a release of an individual quantum

neurotransmitters is x̃0 = A · x0, with x0 = x̃0
A the quantum

size. A is the normalization factor and x̃0 can be estimated based
on the statistics of the post train release rate as follows.

Similar to the case of fitting the release rate, we can only
estimate x̃0 = w(v − EGABA)x0 = Ax0, that is the amplitude of
IPSC generated by the release of a single vesicle.

For that, we collected the postsynaptic currents generated
by pure asynchronous release, i.e., those after the synchronous
release due to presynaptic action potentials are ceased (Jiang
et al., 2012). We divided the time into small intervals of equal
length with 1t = 3.9 ms. At each interval j, the quantityM(j) =
q̃(j)1t was extracted using the deconvolution method described
in Section 4.3.

The vesicle fusion associated with asynchronous release is
a binomial process, which can be approximated by a Poisson
process. In particular, a previous study found that the mean
and variance of post spike train IPSC are linearly correlated
(Hefft and Jonas, 2005), which is an indicator for a Poisson
process. Although the number of released vesicles is in general an
inhomogeneous Poisson process over time, in a short interval, it
can be treated as homogeneous. Thus, the ratio between its mean
and variance (that is the Fano factor) should equal to 1 in each
small interval. We use this property to infer the value of x̃0.

FIGURE 10 | Estimation of the amplitude of the postsynaptic current

due to the release of a single vesicle. The Poisson nature of the vesicle

release process is utilized to estimate the quantum size. Each data point

represents the mean and the variance of M(j) obtained from 6 trials. Linear

regression (R2 = 0.89) gives an estimation of x̃0 = 10.21 pA.
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Denote p(j) a random number associated with the Poisson
release at the jth interval of each trial. The amount of
neurotransmitters released in this interval is thus given byM(j) =
x̃0p(j). For the Fano factor F{M(j)} for each interval j, that is
the ratio between the mean and the variance of M(j) over trials,
should thus hold

F
{

M(j)
}

= x̃0F
{

p(j)
}

= x̃0, (28)

because the Fano factor of a Poisson process is 1. By calculating
the mean and variance of M(j), j = 1, . . . ,N, from the
experimental data and fitting them by linear regression, we
obtained x̃0 = 10.21 pA (see Figure 10). This value is in the range
of the amplitude of the minimum spontaneous postsynaptic
current (10–20 pA) recorded in the experiments (Jiang et al.,
2012) validating our approach.
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