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Background: The muscle spindle is an important sensory organ for proprioceptive

information, yet there have been few attempts to use Shannon information theory to

quantify the capacity of human muscle spindles to encode sensory input.

Methods: Computer simulations linked kinematics, to biomechanics, to six muscle

spindle models that generated predictions of firing rate. The predicted firing rates were

compared to firing rates of human muscle spindles recorded during a step-tracking

(center-out) task to validate their use. The models were then used to predict firing rates

during random movements with statistical properties matched to the ergonomics of

human wrist movements. The data were analyzed for entropy and mutual information.

Results: Three of the six models produced predictions that approximated the firing

rate of human spindles during the step-tracking task. For simulated random movements

these models predicted mean rates of 16.0 ± 4.1 imp/s (mean ± SD), peak firing

rates <50 imp/s and zero firing rate during an average of 25% of the movement. The

average entropy of the neural response was 4.1 ± 0.3 bits and is an estimate of the

maximum information that could be carried by muscles spindles during ecologically

valid movements. The information about tendon displacement preserved in the neural

response was 0.10 ± 0.05 bits per symbol; whereas 1.25 ± 0.30 bits per symbol of

velocity input were preserved in the neural response of the spindle models.

Conclusions: Muscle spindle models, originally based on cat experiments, have

predictive value for modeling responses of human muscle spindles with minimal

parameter optimization. These models predict more than 10-fold more velocity over

length information encoding during ecologically valid movements. These results establish

theoretical parameters for developing neuroprostheses for proprioceptive function.

Keywords: proprioception, Ia afferent, sensorimotor control, spike train, entropy

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00154
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2015.00154&domain=pdf&date_stamp=2016-01-14
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:kejones@ualberta.ca
http://dx.doi.org/10.3389/fncom.2015.00154
http://journal.frontiersin.org/article/10.3389/fncom.2015.00154/abstract
http://loop.frontiersin.org/people/6323/overview


Malik et al. Human Muscle Spindles: Models

BACKGROUND

The realization of restoring movement using brain-machine
interfaces has begun and there is a great deal more work needed
to refine and develop this technology (Wessberg et al., 2000;
Nicolelis, 2003; Donoghue et al., 2004; Schwartz, 2004). An
area of current development is the incorporation of sensory
feedback from proprioceptors, or artificial proprioceptor-like
sensors (Clark et al., 2014; Fisher et al., 2014, 2015; McGee
et al., 2014; Niu et al., 2014). One of the afferents involved
in proprioception is the primary (Ia) afferent innervating the
specialized sensory structures in skeletal muscle: muscle spindles
(Gandevia, 1996; Prochazka, 1996). It is our belief that studying
the sensory coding schemes that have evolved in muscle spindles
will be important for developing biomimetic prosthetics.

Information theory has been a useful tool to estimate the
capacity of communication channels in engineering and design
codes that take advantage of that capacity (Shannon, 1948).
Engineering closed-loop neuroprosthetics with proprioceptive
sensory encoding would benefit from measuring the information
about movement encoded in the firing rate of the muscle spindle
afferents. These data can be used to estimate the bandwidth of
proprioceptive feedback in the intact sensorimotor system that is
being replaced with a neuroprosthetic device. Information theory
also provides an estimate of the precision of the neural code,
informing the choice of resolution of synthetic sensors (McGee
et al., 2014) or stimulus parameters for activating intact sensory
systems (Clark et al., 2014; Fisher et al., 2014). To characterize
the potential information content it is important to capture the
full entropy of the sensory source that would be encountered
in ecological conditions. In the visual system investigations of
neural codingmoved from synthetic input, e.g., oriented bars and
sinusoidal gratings, to natural stimuli improving the decoding
algorithms (Simoncelli and Olshausen, 2001; Olshausen and
Reinagel, 2003). We propose that the same approach should be
used to define the information content of the sensory systems
underlying proprioception. Prior to collecting experimental data,
our intention was to predict the sensory information encoded
in muscle spindle firing during movements of the wrist joint in
humans. To make these predictions, a plausible model of human
muscle spindle firing in response to movement needed to be
determined.

Quantitative models based on cat muscle spindle physiology
started in the late 1960s (Matthews and Stein, 1969) and
continued slowly over the next three decades (Houk et al., 1981;
Hasan, 1983; Scott and Loeb, 1994; Prochazka and Gorassini,
1998b; Mileusnic et al., 2006; Niu et al., 2014). To date,
the mathematical models of muscle spindle primary afferents
have only been tested with data sets acquired in acute and
chronic cat experiments. It is imperative that these models be
tested against responses from human muscle spindles, especially
given suspected differences between species (Prochazka, 1999).
Thus a secondary aim of this study is to determine whether
mathematical models based on the cat, have predictive value
for human muscle spindle responses. We chose to follow the
approach of Prochazka and Gorassini (1998b) who compared
the performance of six models to muscle spindle data from cat

hamstring muscles during locomotion: a behavioral task with
natural sensory statistics. In that study there was only a modest
improvement from adding an EMG signal to mimic coactivation
of gamma and beta motor neurons. Therefore, we have excluded
this parameter in our initial study of thesemodels. The sixmodels
were assessed in relation to the ensemble firing rate profile
of eight human extensor carpi radialis (ECR) muscle spindes
(presumed group Ia) recorded during a step-tracking, center-out
task. Our emphasis is on a first order assessment of the utility of
these models for capturing basic features of the step-tracking task
and then using the models to predict the response during a more
complex task: random two-dimensional tracking (Paninski et al.,
2004).

METHODS

Overview
The simulations and models developed for this study are
schematically illustrated in Figure 1. The first step was generation
of hypothetical wrist movements for two different tasks: center-
out and random movements. The kinematics of the wrist
movements were simplified to rotations about two orthogonal
and intersecting axes. The movements were measured in degrees
with respect to a neutral position defined as the origin of
a co-ordinate system with flexion/extension movements along
the x-axis (extension being positive) and radial/ulnar deviation
movements along the y-axis (radial deviation being positive).
This Cartesian system was transformed into a polar co-ordinate
system. In the polar system pure extension movements pointed
toward the right at 0◦, pure flexion movements to the left at 180◦,
radial deviation movements pointed upwards at 90◦, and ulnar
deviationmovements pointed downwards at 270◦ (Figure 1, left).

The resulting rotations of the wrist were input to a model
of tendon displacement for the extensor carpi radialis brevis
(ECRb) muscle (Loren et al., 1996). The tendon displacement
output was then used as input to six different muscle spindle
models to generate predicted Ia afferent firing rate. These models
have been evaluated in relation to the natural movements during
cat locomotion and exhibited good fits to firing rate profiles of
ensembles of cat Ia afferents (Prochazka and Gorassini, 1998a,b).
For our goal of predicting sensory feedback from Ia afferents
during natural human wrist movements, these models seemed a
clear choice. A more detailed and comprehensive model was not
included in our assessment (Mileusnic et al., 2006). A major goal
of this model is the accurate modeling of fusimotor effects, which
we did not investigate in this initial assessment. In addition, the
length input to this model is fascicle length (in units of optimal
muscle fascicle length). Converting from our approximation of
tendon displacement to fascicle length was dubious given the
sparse experimental data from the human ECR muscle.

All simulations and analysis were performed in Matlab ver
7.0.4 and Simulink ver 6.2 with a time step of 1ms.

Center-Out Movement Simulations
The center-out task is a staple of sensorimotor neurophysiology
and has been used extensively for 2D and 3D reaching
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FIGURE 1 | Schematic of the steps involved in the simulations. All simulations are hypothetical movements of the wrist in right-hand coordinates. The wrist joint

coordinate system is illustrated to orient the reader to subsequent polar plot figures where angle is determined by the rotation of the wrist about its two axes. Two

types of task are examined: center-out and random movements. fem, flexion/extension movement; rud, radial/ulnar deviation movement; ECRB, extensor carpi

radialis brevis muscle.

experiments in monkeys and humans (Georgopoulos et al., 1982;
Gordon et al., 1994). This task, also referred to as step-tracking,
has been intensively studied during wrist movements byHoffman
and Strick in both man and monkey (Hoffman and Strick,
1986a,b, 1990, 1993, 1999; Kakei et al., 1999). Our simulations
of afferent responses during the center-out task build on the
wide-spread use of these movements for studying sensorimotor
systems.

The kinematics of the center-out movements were calculated
to eight equally spaced targets around a circle in wrist joint
space (Figure 1). Minimum jerk trajectories were used as they are
descriptive of wrist movements (Stein et al., 1988) and similar to
the kinematics predicted by a more accurate causative optimal
control model for the wrist (Haruno and Wolpert, 2005). The
amplitude of the movements was 7◦ of joint rotation to match
with a subset of data extracted from a previous human muscle
spindle study (Jones et al., 2001). The simulations included a
short period of 500ms in the neutral wrist position followed by
a movement phase of 650ms that followed the minimum jerk
trajectory (Flash and Hogan, 1985). The simulations continued
for a period of 500ms after reaching the target. The average
velocity of movement to the targets was 10.8 deg/s with a
peak velocity equal to 20.7 deg/s. These movement velocities
correspond to those previously reported for the human data:
average 9–10 deg/s with peak velocities of 20–30 deg/s (Jones
et al., 2001).

Center-Out Movement—Human Data
Eight ECR muscle spindle afferents were selected from a larger
sample of data to compare with the predicted firing rate of the
spindle model. This subset of data were selected because: the
data were from putative Ia afferents in the ECR muscle; the
responses were obtained during a center-out task with kinematics
that approximate minimum jerk trajectories; and responses were
obtained during movements to all eight targets. In a previous
study of the ensemble response of spindle primary afferents in
the cat hamstring, the authors reported that after five or six had
been averaged to estimate a population response, the addition of
more units did not change the population response significantly

TABLE 1 | Wrist movement statistics.

Position Velocity

Typist data Simulations Typist data Simulations

(deg) (deg) (deg/s) (deg/s)

Flexion/Extension 19.9 ± 6.0 0 ± 6.0 25 ± 12 7.1 – 21.1

Radial/Ulnar

deviation

18.6 ± 4.1 0 ± 4.1 11 ± 7 5.1 – 14.4

Typist data was given as mean ± within-subject SD (Tables 2, 3.) and the probability

distribution of position was assumed to be Gaussian. The non-zero mean joint position

was not a parameter for the spindle models so it was zeroed in the simulations and the

standard deviations were matched. Velocity was rectified prior to calculating statistics:

mean ± SD for data; range of median velocities for simulations.

(Prochazka and Gorassini, 1998b). On this precedent, we felt
confident that our data sample was sufficient to estimate general
ensemble firing rate behavior of human ECR spindle primary
afferents. The spike trains were aligned to movement onset and
the average movement duration was 634 ± 19ms (mean ± SD).
To calculate themean firing rate and 95% confidence intervals for
the ensemble of ECR afferents, the individual single-trial spike
trains were convolved with a Gaussian kernel then averaged.
The width of the kernel function (60ms) was chosen iteratively
considering the phasic response and background discharge rate
while comparing the ensemble to the predicted firing rates from
the six muscle spindle models.

Random Movement Simulations
While the center-out task has been widely used in sensorimotor
neurophysiology to investigate neural coding, there are a number
of shortcomings that have been noted (Paninski et al., 2004).
First, these movements, as with all point-to-point movements,
are relatively straight and exhibit bell-shaped velocity profiles
where the peak velocity is proportional to the target distance.
These invariant features of movement result in the coupling of
position and velocity, two variables that can have independent
effects on responses of muscle spindles and proprioception.
Another difficulty with the center-out task is that the data are
statistically non-stationary, i.e., the mean and variance change
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FIGURE 2 | Features of the random wrist movement simulations. (A,B) The trajectory of the random wrist movements in 2D wrist joint space is illustrated for the

fastest (1.5Hz cut-off) and slowest (0.5Hz cut-off) movement speeds. The histograms illustrate the distribution of angles about the two wrist axis and a Gaussian

curve is overlaid to illustrate the distribution of position is the same at the two different speeds. (C,D) Thirty seconds of the wrist position time series for each wrist axis

to illustrate the random nature of the simulated movements. (E,F) Power spectral densities of wrist position in both wrist dimensions for the 1.5 and 0.5Hz signals

respectively.

over time during the task. The non-stationarity precludes the use
of any analysis methods that require a stationary stochastic time
series; information-theoretic analysis for example. In addition
to the inevitable coupling of position and velocity and the
non-stationary data, the center-out task results in movements
that occupy a limited amount of the available joint space, and
while natural, do not approximate the statistics of ergonomic
movements of the wrist. For these reasons, we decided to simulate
a random pursuit-tracking task introduced to sensorimotor
neural coding studies (Paninski et al., 1999, 2004).

The goal of the random movement simulations was to
reproduce the statistics of human wrist movements during typing
(Serina et al., 1999). The random movements were generated
by a Gaussian random number generator so that the standard
deviation of position matched the ergonomic data (Table 1). In
order to match the statistics of wrist velocity during typing, a 6th-
order low-pass Butterworth filter with cut-off frequency of 1.5Hz
was applied.

Given the importance of the simulations of the random
movements, we have illustrated the key features in Figure 2.
Gaussian curves overlying the histograms (Figures 2A,B)
illustrate that a constant position distribution was conserved
in the final random wrist movement signals. The curves have

the same parameters for a given axis at fast and slow speeds.
Power spectral analysis was carried out for position and velocity
along each wrist axes to check for a flat spectrum below eleven
cut-off frequencies: 0.5–1.5Hz in 0.1Hz increments. The flat
nature of the power spectral density plots indicated the signals
were approximately white within the band-pass of interest and
therefore considered random (Figures 2E,F).

Tendon Displacement Model
The rotations about the two axes of the wrist were used to
calculate the tendon displacement of the ECRb muscle resulting
from the movements. These calculations were based on a
human cadaveric forearm study that reported equations for
instantaneous moment arms with respect to joint rotation (Loren
et al., 1996). The equation for ECRb, in the neutral wrist posture,
was integrated to generate an equation for instantaneous tendon
displacement (in mm) with respect to joint rotation. Tendon
displacement and velocity, computed with the transfer function
500 s/(s+500) where s is the Laplace operator, were then used as
input to the six muscle spindle models (Figure 1). Corrections
for compliance or muscle fiber pennation were not features
of the spindle models tested, so were ignored for the present
study.
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FIGURE 3 | Features of ECRb tendon displacement and velocity during random human wrist movements. The simulated random movements result in

Gaussian distributed inputs to the muscle spindle models. The distribution of tendon displacement is constant across the slow to fast movement speeds, whereas the

velocity increases. Since the simulated movements are constrained to the statistics gleaned from ergonomic studies of wrist movements, these stimuli can be

considered to have a statistically natural distribution. (A,B) tendon displacement (above) and velocity (below), for fast (1.5Hz cut-off) and slow (0.5Hz cut-off) random

wrist movements. (C,D) Histograms of tendon displacement and rectified velocity. At the faster movement, the tendon velocity distribution spreads out to higher

values. (E,F) Polar plots of tendon displacement and rectified velocity (below) for 1.5Hz (E) and 0.5Hz (F). Positive displacement or velocity is black, negative is gray.

The tendon displacement and velocity during the random
wrist movements are illustrated in Figure 3 for the fastest and
slowest speeds. The key feature of this figure is that it illustrates
the range and distribution of the two inputs to muscle spindles
during statistically natural human wrist movements. These data
allow comparison of the statistics of tendon movements in
humans and that in other species, e.g., cats during locomotion.
In the middle column the velocity distribution has been rectified
prior to calculating the median value at each of the 11 different
filter rates. A Kurskal-Wallis test showed a significant difference
in the median tendon velocities as a function of filter rate (p <

0.05). The last column illustrates polar plots where the angle is
determined by the position in wrist joint space and the distance to
a point is the value of tendon displacement or velocity. The polar
plots of displacement illustrate the ECRb tendon is stretched
(positive displacement, black) for wrist positions combining
flexion and ulnar deviation and shortened for wrist positions in
the opposite direction. Tendon velocity is independent of wrist
position and can have positive or negative values anywhere in
wrist joint space. This illustrates a key objective of the random
movement simulations, uncoupling of wrist joint position, and
tendon velocity that are unavoidably linked in the center-out task.

Predicted Ia Afferent Firing Rates
Six muscle spindle models were used to generate predicted
firing rate time series resulting from the simulated movements
(Matthews and Stein, 1969; Chen and Poppele, 1978; Houk
et al., 1981; Hasan, 1983; Prochazka and Gorassini, 1998b).
All of these models were shown to have some predictive
value for estimating ensemble Ia afferent firing rate during
normal cat locomotion, though when compared with slow
ramp-&-hold stretches one emerged as the most general and
accurate. The muscle spindle models were implemented in
Simulink, using a previous published block-diagram (Figure 7 in
Prochazka and Gorassini, 1998b). As the models were no longer
available from the cited internet site, correct implementation
was verified by comparing model behavior to the published
responses during cat locomotion (Figure 3 in Prochazka and
Gorassini, 1998b). The solver used in our simulations was the
Euler algorithm with a step-size of 1ms. For comparison to
the human data set, the baseline firing rate of the models
was set to 10 imp/s from its original 82 imp/s. This decision
was made after averaging the mean firing rate for each
of the eight human muscle spindles while holding in the
central starting position: 10.2 (SD 1.4) imp/s. Our goal was
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FIGURE 4 | Comparing movements to opposite targets. Upper trace shows an example spike train from a human ECR muscle spindle during movements to two

targets. Middle trace shows the continuous firing rate generated from the ensemble data of 8 ECR spindle afferents. The first dashed line indicates the onset of

movement to the targets and the second is 650ms later, the end of the minimum jerk movement phase.

to make the minimal adjustment to the models rather than
leaving parameters free and running a traditional optimization
algorithm. This was done to evaluate if the models had predictive
value with minimal change, to test the hypothesis that there
is little difference between cat and human muscle spindle
responses.

Data Analysis
Center-Out
The most wide spread approach to analysis of neurophysiological
data during the center-out, or step-tracking, task is the “mean
vector” analysis method by which the directional tuning is
determined (Georgopoulos et al., 1982; Gribble and Scott,
2002). This approach has been extensively used for analysis
of muscle spindle coding during passive movements of the
ankle (Bergenheim et al., 2000; Roll et al., 2000, 2004; Ribot-
Ciscar et al., 2002, 2003) as well as our previous study of active
and passive movements of the wrist (Jones et al., 2001). The
length of the mean vector was normalized to values between
0 and 1. To test for significance of directional tuning, a
bootstrap test was used where the mean rate and target angle
are resampled from the original data (4000 resampling trials)
and the resulting resampled vector length is compared to the
original. If fewer than 200 resampled vectors are longer than
the original, the directional tuning is considered significant
with 95% confidence. Note, resampling is not done if the
original mean vector length is <0.001, as this already indicates

a non-directional distribution in circular statistics (Batschelet,
1981).

Quantitative Comparison of Human Data and Model
Both qualitative and quantitative comparisons were done to
evaluate the ability of the sixmuscle spindlemodels to capture the
dynamics of the human experimental data during the center-out
task. Root mean square (RMS) error was calculated between each
model and the ensemble data on the following measures: mean
firing rate, directional tuning vector length, static index, dynamic
index, and temporal similarity. For the first two measures, an
RMS error was calculated during two phases of the task: (1)
movement to the target, and (2) holding on the target. The RMS
error for a particular measure was normalized by dividing by
the median RMS error for the six models. The normalized errors
were summed over all themeasures to give a total error score. The
error score has a lower limit of zero, which corresponds to perfect
prediction, and an unbounded upper limit. The consolidated
error score was used to rank order the six models in their ability
to predict the human ensemble data. Most of these measures
are self-explanatory with full details given in Malik (2006). The
measure of temporal similarity evaluated the difference between
the ensemble instantaneous firing rates and the firing rates
predicted by the models over intervals of 100ms. The squared
difference in firing rate at each interval was summed over the
duration of a trial to each of the eight targets. The final RMS error
for each model was computed by dividing the sum of squared
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differences by the number of 100ms bins and number of targets,
then taking the square root.

Random Movements
The random movement data was analyzed using entropy and
mutual information for a continuous channel (Shannon, 1948).
This approach to analysis of sensory stimuli in neural systems
has proven to be a powerful framework for nonparametric
and nonlinear analysis (e.g., Bialek et al., 1991; Bialek and
Rieke, 1992). Following Shannon we adopt the logic that
information = uncertainty = entropy and, using base 2 for
our logarithms, interpret the entropy as the smallest number
of bits needed to communicate our signal of interest, which is
tendon displacement or velocity. The ability to transmit these
signals that convey the mechanical state of the muscle using
muscle spindle firing rate was assessed by mutual information.
This quantity measures the average number of bits an observer
receives about the tendon displacement or velocity by observing
firing rate. The probability density function for a signal was
estimated from a histogram of the signal after which entropy
was calculated. Mutual information is a linear addition of the
respective entropies, Ixy = Hx + Hxy, where H is entropy, x
is the input signal (tendon displacement or velocity) and y is
the firing rate of one of the six muscle spindle models. The
relevant equations can be found in Shannon (1948), and have
been reproduced in other sources (e.g., Cover and Thomas,
1991; Rieke et al., 1999). Calculations were done in Matlab using
(Moddemeijer, 1989).

RESULTS

Center-Out Movements
In this section we assess whether a group of six muscle spindle
models, which have been developed and used to interpret data
from cat studies, give a general and accurate prediction of the
responses of human muscle spindles during a step-tracking task.

Comparing Time Series Data
In the human data set that was analyzed for this study, the
subjects were asked to move quickly to the targets with an
emphasis on accuracy. The main movement phase to the target
was in a straight line with a bell-shaped velocity. Movements
to some targets, for which the ECR muscle is the primary
agonist, resulted in a decrease in firing rate of the human muscle
spindles as illustrated in Figure 4. During movement to target 2
(negative tendon displacement, Figure 3E), this muscle spindle
was temporarily unloaded resulting in a pause in the spike
train (Figure 4A, left upper trace). A continuous estimate of
firing rate generated from the ensemble firing rates of all eight
spindles in the data set showed a transient period of decreased
firing rate during movement followed by recovery of firing rate
during the static hold-target phase (Figure 4A, left middle trace).
Movement in the opposite direction to target 6 (positive tendon
displacement, Figure 3E) resulted in a burst of action potentials
from the muscle spindle afferent with instantaneous firing rates
reaching almost 90 imp/s followed by adaptation to a lower
rate during the static phase. The continuous firing rate estimate

FIGURE 5 | Comparing the temporal dynamics of firing rate and

variability for a human muscle spindle and six models. Continuous firing

rate responses from a single human ECR spindle, recorded during four repeat

movements to the target at 270◦. A smoothed response was generated from

the spike trains using a Gaussian kernel (60ms bandwidth) and the five

repeated movements were averaged to find the mean response and 95%

confidence intervals (gray band). The movement duration was 662 ± 95ms

(mean, SD). Overlaid are predicted firing rates from the six models for a

minimum jerk trajectory (650ms duration) to the same target. Baseline firing

rate in the models was set to 10 imp/s and the average for the human data

was 8.5 imp/s. Records are aligned at movement onset (0.5 s).

from the ensemble showed a clear separation of dynamic and
static firing rate responses during “movement to” and subsequent
“holding on” the target.

The changes in firing rate predicted by the models during
movements to these same targets had similar dynamic and static
phases. During movements to target 2, five of the six models
showed a transient decrease in firing rate during movement with
recovery of firing rate during the static phase of holding on the
target. Simulations of movements to target 6 showed a transient
increase in predicted firing rate that was higher than the rate
after reaching the target. The firing rates predicted by four of the
models during the dynamic phase were of similar magnitude to
the human data, but only three of these predicted rates similar to
the human example in the static phase.

While the individual movements to these two targets were
nearly 100ms shorter than the simulated movements (650ms),
the grouped data for all eight spindles during movements to all
targets was 634± 19ms (mean± SD). Therefore, the durations in
the experimental data and simulations are of a similar magnitude
to allow qualitative comparison. To check how well the models
predicted the temporal behavior and variability during this task,
the responses of a single spindle during four repeatedmovements
to the same target were averaged (Figure 5). The data were
aligned to movement onset and the average firing rate with
95% confidence intervals calculated (Figure 5, gray band). The
human spindle showed a clear dynamic phase where the average
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maximum was 18 imp/s, up from a baseline of 8.5 imp/s, and a
static component where average rate was 12 imp/s.

Since these movements are well described by a minimum
jerk trajectory, we calculated the minimum jerk trajectory to the
same target, with movement duration equal to 650ms (Figure 5).
Three of the models showed qualitative features similar to the
human data (Figure 5). The remaining three models did not
make good predictions of the static phase activity: one was too
strong (orange) while the others were too weak (yellow and
green) compared to the human data.

These results suggest that some of the models do a better job
at predicting the temporal profile of human muscle spindle firing
rates during this task. While we have not attempted to match
the human kinematics in detail, the predicted minimum jerk
trajectories result in predicted firing rates that have clear dynamic
and static phases that are similar in magnitude to the average
human data. Next we examine whether the models can predict
firing rates duringmovements to all targets in the center-out task.

Comparing Directional Tuning
The human ECR spindle data were analyzed tomeasure themean
firing rate during the dynamic and static phases of movement
to each of the eight targets. Six of the eight afferents were
directionally tuned during the dynamic (move) phase (bootstrap,
p < 0.05) while only three were significantly tuned during the
static (hold) phase. The data were then used to estimate the
directional tuning for the population. The mean vector for the
dynamic phase had a normalized length of 0.28 and an angle
of 239◦. The mean vector for the static phase was 0.11 long
with an angle of 240◦. A bootstrap test showed that both vectors
were significantly tuned (p < 0.05). This result differs from the
previous study in which these units were part of a larger sample
of ECR spindle afferents. In the previous study, the data were not
significantly tuned during the static phase (Jones et al., 2001).

All the models showed directional tuning during the dynamic
phase with a mean vector angle of 225◦. The lengths of the
mean vectors are given in the legend for Figure 6 where the
directional tuning is illustrated in polar coordinates. The central
gray area illustrates the distribution of the human data and the
black arrow the direction of the mean vector. The accuracy of
the mean vector predicted by the models (Figure 6 red arrow)
was surprising given the variability in the human data and the
simplifying assumptions for the biomechanical wrist model and
simulations. The human data shows higher firing rates than those
predicted by the models in the direction opposite the preferred
direction, which could be due to co-activation of gamma or beta
motor neurons not accounted for in these simulations.

The data in Figures 4–6 provide qualitative evaluation of the
ability of the models to match the human ensemble data. RMS
errors were calculated for seven different measures during the
center-out task during movements to, and holding on, the eight
targets to provide a quantitative comparison of the models. The
RMS errors were normalized and summed to produce a total
error score, which is a relative measure of the models against
each other. These data are presented in Table 2 and indicate that
the three models with the lowest error scores in rank order are:
red, Chen and Poppele (1978); purple, Hasan (1983); and blue,

FIGURE 6 | Comparing directional tuning in polar plots. The top panel

(A) shows mean firing rate for the models (see legend) and averaged human

data (gray area). The preferred direction of the models (computed by mean

vector) was 225◦ (red arrow) and the preferred direction of the human data

was 239◦ (black arrow). The length of the normalized mean vectors (not

illustrated) were: 0.28 (human), 0.28 (red), 0.46 (orange), 0.62 (yellow), 0.45

(green), 0.52 (blue), and 0.46 (purple). The bottom panel (B) shows mean firing

rates during the static phase of holding on the target. Two models (yellow and

green) were not significantly tuned during the hold phase (mean vector length

= 0.0), while the others had the same preferred direction (225◦) and

normalized mean vector lengths of: 0.25 (red), 0.64 (orange), 0.28 (blue), and

0.28 (purple). The mean vector for the human data had an angle of 240◦ and a

length of 0.11, which was significant (p < 0.05).

Prochazka and Gorassini 2 (Prochazka and Gorassini, 1998b).
Therefore, these models provide the best overall prediction of the
ensemble human muscle spindle data.

Random Movements
In the previous section we found that previous models of cat
muscle spindles could approximate firing rate and directional
tuning of a sample of human ECR muscle spindles. The three
models with the lowest overall error scores were used to estimate
how much information muscle spindle firing rate carries about
movement. This was achieved by simulating randommovements
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TABLE 2 | Overall error for model ranking.

Mean rate Directional tuning Dynamic index Static index Temporal similarity TOTAL error

Move Hold Move Hold

C and P (red) 1.0 0.5 0.8 0.5 0.5 0.7 0.8 4.8

M and S (orange) 1.1 2.9 1.6 4.8 0.9 3.5 1.8 16.6

Houk (yellow) 2.1 1.3 2.4 0.1 2.8 2.9 2.1 13.6

P and G1 (green) 0.9 3.4 0.1 0.9 1.4 1.2 0.9 8.7

P and G2 (blue) 1.0 0.7 1.2 1.1 1.1 0.8 1.1 7.0

Hasan (purple) 0.9 0.7 0.5 1.1 0.8 0.8 0.9 5.8

RMS errors for the seven different measures were calculated then normalized by dividing by the median error of the six models in each column. Errors less than one indicate the model

is in the top three for predictive ability for that measure. The last column is the sum of the normalized errors. The red model Chen and Poppele (1978) has the lowest summed error.

that dissociate joint position and velocity to maximize the
entropy of the stimulus while remaining an ecologically valid
input.

Prediction of the Firing Rate Time Series
The time series plots of firing rate predicted by the three spindle
models during simulated random movements at two speeds are
shown in Figure 7A. The predicted firing rates during the fast
movements had a striking “peaky” structure that showed sharp
rises to a peak firing rate followed by periods of low to zero firing
rates. The primary differences predicted by the three models
are the dynamic gain and frequency response with the Chen
and Popele (red) model having the lowest dynamic gain and
frequency response. The mean predicted firing rates, over 5min
of simulated movement, for the three models ranged from 10.5
to 13.1 imp/s with peak firing rates <50 imp/s (Table 3). Using
the mean firing rate to characterize the different models was
complicated by periods of zero firing rate. The models predicted
periods of unloading, or silencing, that ranged between 12.5 and
35.0% of movement duration. This had a significant effect on the
probability distributions for the firing rate signals (Figure 7B).
The probability distribution of firing for the Chen and Popele
model is unimodal (if the peak at zero is ignored) while the
other two models predict a bimodal distribution of firing rates.
The differences in distribution are associated with differences in
the dynamic gain and frequency response illustrated in the time
series plots.

Assessing the Representation of Tendon

Displacement and Velocity Using Entropy and Mutual

Information
The final goal of this investigation was to characterize the muscle
spindle responses to sensory stimuli using information-theoretic
analysis. The amount of information in the sensory stimuli was
quantified by the entropy of tendon displacement and velocity
at each of the eleven random movement speeds. The average
entropy and standard error for tendon displacement was 3.05 ±
0.01 bits per symbol across all eleven speeds while the entropy
of the tendon velocity signal increased linearly from 3.88 ± 0.01
at the slowest speed to 5.49 ± 0.01 bits per symbol at the fastest
speed.

TABLE 3 | Descriptive statistics of firing rates during fast random

movements.

C and P (red) P and G 2 (blue) Hasan (purple)

Mean 10.5 (12.0) 13.1 (20.2) 11.4 (15.9)

Peak 36.4 49.7 41.4

%Silent 12.5 35.0 28.4

Hrate 4.41 3.85 3.91

Irate,disp 0.16 0.08 0.07

Irate,vel 0.92 1.33 1.50

The units for mean and peak firing rates are (imp/s). Mean firing rates were calculated in

two ways, with and without (in parentheses) the time during which predicted firing rates

were zero. %Silent is the percentage of time during the randommovements that firing rate

is zero. Hrate = total entropy of firing rates (bits). Irate,disp = mutual information between

firing rate and tendon displacement. Irate,vel = mutual information between firing rate and

tendon velocity. Units for mutual information are bits per symbol. The standard error for

mutual information estimates was ≤0.01 in all cases.

The muscle spindle is a physiological transducer and the
mathematical representation of transduction states that the
entropy of the firing rates should be less than or equal to
the entropy of the source they are encoding (Theorem 7 in
Shannon, 1948). The entropies of the firing rates predicted
by the models at the fastest speed (Table 3) are all greater
than the entropy for tendon displacement and less than the
entropy for the tendon velocity signal. Theoretically, if the
models were perfect inverse transducers of displacement and
velocity then the entropy of the firing rates would be equal
to the sum of their source entropies, in this case 3.05 +

5.49 = 8.54. Instead the firing rate entropies are about half
this value. But these measures of firing rate entropy do not
quantify how much information firing rates encode about the
stimulus.

To measure the transmission of tendon displacement
or velocity information in the firing rates of the models
we calculated Shannon’s mutual information. The mutual
information values were very low between firing rate and tendon
displacement (Irate,disp in Table 3). On average about 3.3% of
the information about tendon displacement is preserved in the
firing rates of the models. In comparison about 22.8% of the
information about tendon velocity is preserved in the firing
rates of the models during the fastest movements (Irate,vel in
Table 3).
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FIGURE 7 | The time series and histograms of firing rates predicted for random movements. The random 2D movements in wrist joint space resulted in

changes in ECRb tendon length that were input to the muscle spindle models to predict firing rates during movements of the human wrist encountered in normal

movements. (A). During fast movements, the predicted firing rates are <40 imp/s. The main distinguishing feature when comparing the three models is the peak rate

and periods of silence (i.e., firing rate of zero). Even during slow movements the Prochazka and Gorassini 2 model predicts periods of zero firing rate. (B). The

histograms all have the same scale starting at zero firing rate and the dotted line indicates 20 imp/s. The means of these distributions, with and without using zero

firing rate in the calculations, are given in Table 3. The shapes of firing rate histograms predicted by the three models are different: unimodal and bimodal.

Experimental data during a similar task should be plotted in a similar fashion to evaluate the model predictions.

DISCUSSION

Muscle spindles are an important source of sensory feedback that
signal information about the position and movement of joints
(Stein et al., 2004). Over the past three decades recordings have
been made from single muscle spindle afferents in behaving cats,
monkeys and humans. The experiments are technically difficult
so valid models are helpful to consolidate understanding and
guide further experiments. Until now, none of the six models
compared here had been tested against a human data set. Our
goal in this report was to compare six models against human
data and then predict responses expected from human muscle
spindles during a novel experimental paradigm: random pursuit
tracking.

In simulations of center-out movements, we found that the
ensemble firing rate and directional tuning of human ECR Ia
afferents was adequately captured by three of the six models:
Chen and Poppele (red), Prochazka and Gorassini 2 (P&G2,
blue) and Hasan (purple). The three remaining models were
considered a poorer representation of the ensemble given the
error scores (Table 2).

Limitations
We have used minimum jerk trajectories rather than fitting to the
actual kinematics; we have excluded any terms that would capture
phasic gamma or beta motor neuron activity; we have excluded
the finer details of the muscle geometry and biomechanics by

using tendon displacement as the main stimulus input to the
models; and, we have used models that output firing rate as a
continuous function rather than a series of action potentials.
Despite these simplifications, as a first order approximation these
models have clear predictive value for estimating human ECR
muscle spindle response during wrist movements. One of the
differences we noted between the models and human data was
the prediction of zero firing rates during movements opposite
to the preferred direction. The human spindle response during
movement to target 2 (Figure 4A) was atypical for the sample
of eight spindles reported here. The majority of human ECR
spindles (75%) did not fall silent during movement to targets
opposite to the preferred direction. In comparison, the majority
of the models predict a period of zero firing rate. This difference
between model predictions and human data could be improved
by adding an EMG-linked gammamotor neuron activation term.
This should be done in conjunction with human experiments that
include a load at the wrist since the “non-forceful” contractions in
these step-tracking data do not recruit the ECR muscle strongly.
We hypothesize that by creating a load that would recruit the
ECR muscle during this task, responses would switch from
“hamstring-like” to “triceps surae-like.” The triceps suraemuscles
are more strongly recruited during locomotion and required
an EMG-linked term to improve the prediction of the models
(Prochazka and Gorassini, 1998b).

After convincing ourselves that the models had predictive
value for human spindles, we simulated the random movement
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task. We had a number of objectives for pursuing these
simulations. First, we wanted to address the issue of whether
firing rates approaching those reported during cat locomotion
would be predicted during human movements that were
ecologically valid. The human experimental data has been
criticized for being unnaturally slow, and this has been used as a
possible explanation for the lower overall firing rates (Prochazka,
1999). Second, we wanted to use a task that could predict tuning
properties of muscle spindles when joint position and velocity
were dissociated. Finally, we wanted to use a task that generated
data amenable to analysis by statistical methods other than the
“mean vector” directional tuning approach. These objectives
could have been achieved in a number of ways, but we chose
to match the statistics of the movements to the ergonomics of
typing.

Importance of Natural Movement
Statistics?
What is the appropriate stimulus ensemble for evaluating the
sensory information encoded in muscle spindle responses? If
you subscribe to the notion that sensory neurons have adapted
and evolved in an environment where some stimuli are more
likely than others, then the answer is found in the statistics of
that natural environment. Over the past decade, it has become
clear that sensory encoding in the visual and auditory systems
is specifically adapted to the statistics of natural environments
(Simoncelli and Olshausen, 2001; Olshausen and Reinagel, 2003).
In the primary visual system for example, it has been shown that
models based on synthetic stimuli do not generalize to natural
stimulus statistics (David et al., 2004). Based on these findings
from other areas of sensory neurophysiology, we wanted to test
the muscle spindle models with natural stimulus ensembles—in
a statistical sense.

The random movement simulations resulted in a number
of predictions that are amenable to testing. While we have
ranked the models according to similarity of responses to human

data in the center-out task, the firing rates predicted during
random movements will allow more definitive ranking of the
models against human data. The information-theoretic analysis
was useful for estimating a lower boundary of information
transmission by muscle spindles. Since the models output
continuous functions, that are filters of the original spike train,
the entropy in the firing rates is less than that of the original
spike trains. Less entropymeans a lower capacity for transmitting
information about the stimulus.

Conclusions
We have found that models based on cat muscle spindle primary
afferents have some predictive value for predicting the dynamic
and static features of human muscle spindle firing during a
simple task. The remaining discrepancy between cat and human
data is the lower overall mean firing rate in humans. These
models were then used to predict the information content of
natural wrist movements and the mutual information between
kinematics and spindle firing. This analysis predicts that the
information that is represented in spindle firing rate is more
strongly weighted to velocity when compared to length. This

prediction, which needs to be tested empirically, suggests that
biomimetic neuroprosthetic systems should concentrate more on
providing velocity feedback to central structures responsible for
decoding muscle spindle signals.
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