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Cortical spreading depression (CSD), a depolarization wave which originates in the visual

cortex and travels toward the frontal lobe, has been suggested to be one neural correlate

of aura migraine. To the date, little is known about the mechanisms which can trigger or

stop aura migraine. Here, to shed some light on this problem and, under the hypothesis

that CSD might mediate aura migraine, we aim to study different aspects favoring or

disfavoring the propagation of CSD. In particular, by using a computational neuronal

model distributed throughout a realistic cortical mesh, we study the role that the geometry

has in shaping CSD. Our results are two-fold: first, we found significant differences in

the propagation traveling patterns of CSD, both intra and inter-hemispherically, revealing

important asymmetries in the propagation profile. Second, we developed methods able

to identify brain regions featuring a peculiar behavior during CSD propagation. Our study

reveals dynamical aspects of CSD, which, if applied to subject-specific cortical geometry,

might shed some light on how to differentiate between healthy subjects and those

suffering migraine.

Keywords: cortical spreading depression, computational model, realistic cortical geometry, magnetic resonance

imaging, finite elements simulation, reaction diffusion

1. INTRODUCTION

Migraine is a prevailing disease within a 15% of the world’s population suffering from severe
unilateral headache and nausea (Vos et al., 2012). About one third of migraine patients
experience a migraine aura preceding the typical headache (Hadjikhani et al., 2001; Richter
and Lehmenkühler, 2008). During this aura, patients undergo transitory perceptual, visual
and/or auditory, disturbances. To the date, several studies and experiments suggest that a
propagating depolarization wave on the cortex underlays migraine (see de Tommaso et al., 2014
and references therein). This wave of intense excitation, named cortical spreading depression
(CSD), causes a drastic failure of the brain homeostasis and is followed by a wave of inhibition
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(de Tommaso et al., 2014). Starting in the visual cortex, CSD
propagates to the peripheral areas in a time-scale up to 20
min (Leão, 1944, 1947). It is clear that wave propagations do
drastically depend on the propagation medium (Sanides, 1962).
In addition, the cortex geometry is highly individual and, to our
knowledge, studies of CSD based on realistic (subject-specific)
cortical geometries together with realistic neural modeling have
not been addressed so far.

Several mathematical models of CSD have been used in the
past, from reaction diffusion models to microscopic models
accounting for the cells’ connectivity. Based on the fact that
the extracellular potassium concentration follows approximately
the time-course of depolarized neurons and glia cells during
spreading depression (Kraio and Nicholson, 1978), Tuckwell
and Miura propose a model for its wave propagation in
1D heterogenous space. Including potassium and calcium
fluxes, extracellular diffusion and active transport pumps in
a Hodgkin-Huxley like system of equations, its numerical
simulations portray the basic qualitative properties of the
spreading depression waves and account for the annihilation
of two colliding waves (Tuckwell and Miura, 1978). Reggia
and Montgomery couple synaptic connectivity and extracellular
potassium uptake at a single cell level in a simplified 2D array
representation of the cortex (Reggia and Montgomery, 1996).
They use a reaction diffusion equation to describe the potassium
changes and project the simulated cortical activity onto the visual
field to mimic the corresponding visual pattern. The potassium
wave triggers irregular patches of highly activated areas on the
visual field, supporting the theory of CSD underlying migraine
aura.

A few recent studies started to consider the effects of cortical
geometry on CSD propagation, at different levels of detail.
Fissures and sulci of the cortex influence the propagation of
depolarization waves and can stop the migraine in different
positions depending on the patient. Pocci and collaborators
studied the effect of the cortical bending by using a reaction
diffusion equation to simulate a wave propagation in a 2D
duct containing a bend (Pocci et al., 2010). They show how
sharp bends naturally block the wave propagation. Above a
critical radius blocking can be achieved by changing the system
parameters, suggesting that adapted therapeutic agents could
stop migraine aura. In a personalized approach to migraine aura
treatment, Dahlem and his collaborators propose to use the
Gaussian curvature of the cortex (computable from MRI data)
to identify potential targets for neuromodulation (Dahlem et al.,
2015). Applying a generic reaction diffusionmodel they highlight
the local effects of the curvature on a simple 2D geometry with
a bump, and they track the propagation path of a stable wave
segment on a portion of the primary visual cortex obtained from
an MRI scan.

Although these recent studies of CSD focused on personalized
details of the brain geometry, still a realistic neural modeling
perspective that approaches the whole cortex is lacking. Our
goal is to study the wave propagation on a whole 3D individual
geometry to identify symmetries and asymmetries in its behavior
and analyze regions with respect to their potential to play a key
role in CSD episodes.

In particular, we formulate a mathematical model of
distributed neural excitability, and simulate the propagation
of depolarization waves on an individual cortical geometry
reconstructed from magnetic resonance imaging (MRI). The
neural activity is described by a modification of the Rogers
McCulloch variant of the FitzHugh-Nagumo model (Fitzhugh,
1961; Rogers and McCulloch, 1994) for excitable cells, and a
diffusion term is added to account for the wave propagation.
In order to localize the brain regions affecting propagation,
we consider the Brodmann anatomical atlas (Brodmann, 2006).
In each simulation, the wave propagation originates in one
of the regions in the Brodmann atlas and we measure
the arrival times to all the remaining regions. The data
obtained from these simulations are post-processed to derive
computable Quantities of Interest (QoI) that identify symmetries
and asymmetries in the propagation of the depolarization
wave.

2. MATERIALS AND METHODS

2.1. MRI Acquisition
We are making use of one dataset already acquired and published
in Diez et al. (2015). The work was approved by the Ethics
Committee at the Cruces University Hospital and consequently
all the methods were carried out in accordance to approved
guidelines. We have considered here one data set corresponding
to one healthy subject, male, age 28, and reanalyzed here by
simulating a computational model of CSD on the cortical mesh.
Data was acquired with a Philips Achieva 1.5TNova scanner. The
cortical mesh was obtained from a high-resolution anatomical
MRI, acquired using a T1-weighted 3D sequence with the
following parameters: TR = 7.482 ms, TE = 3.425 ms; parallel
imaging (SENSE) acceleration factor = 1.5; acquisition matrix
size = 256 x 256; FOV = 26 cm; slice thickness = 1.1 mm; 170
contiguous sections.

2.2. Realistic Cortical Geometry
The cortical geometry we used in this study has been
reconstructed from a MRI scan with FreeSurfer image
analysis suite, which is documented and freely available for
download online at http://surfer.nmr.mgh.harvard.edu/. This
processing includes removal of non-brain tissue using a
hybrid watershed/surface deformation procedure (Ségonne
et al., 2004), automated Talairach transformation, intensity
normalization, tessellation of the gray/white matter boundary,
automated topology correction, and surface deformation
following intensity gradients to optimally place the gray/white
and gray/cerebrospinal fluid borders at the location where the
greatest shift in intensity defines the transition to the other
tissue class. For further details, see Fischl (2012) and references
therein.

2.3. Brain Regions of Interest
In order to analyze the impact of the geometry on the
depolarization wave propagation, we consider a subdivision of
the brain cortex into different regions of interest (ROIs). In
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particular, we base our study on the anatomical subdivision of
each hemisphere into 34 ROIs, which is a generalized version
of the Brodmann atlas (Brodmann, 2006) (included in the
MRIcro software http://www.mricro.com). Such subdivision is
available as online SupplementaryMaterial to this paper. Another
more general classification of the cerebral cortex is based on a
coarser topographical conventional subdivision into six lobes:
the medial and lateral temporal lobes, occipital lobe, parietal
lobe, frontal lobe and cingulate cortex. Notice that although this
classification is purely anatomical, it is well-known that different
lobes are associated to different brain functions (Kandel et al.,
2000).

2.4. Neuron Modeling: A Computationally
Efficient Fitzhugh-Nagumo Distributed
Model
A key property of neural cells is to produce an action potential
(AP). It consists in a sudden variation in the transmembrane
potential, called spike, followed by a recovering of the resting
condition through a refractory period, during which the cell
cannot be excited. The Izhikevich’s model is a classical 2 variable
model describing the spiking behavior of cortical neurons
(Izhikevich, 2007). Its drawback is the lack of autonomous
behavior, as it needs a manual after-spike resetting of the
variables. Such drawback is overcome by the model proposed
in Cressman et al. (2009) that features self-sustained spiking
and recovery cycles. In this model the firing rate can be
modulated by acting on a parameter k0,∞ which represents
the concentration of potassium [K+] in the largest nearby
reservoir. Modulating the firing rate allows to reproduce
both resting and excited neuronal dynamics. In agreement
with previous computational studies (Cortes et al., 2012), we
consider neurons at rest to have a background firing rate of
4 Hz while excited neurons fire with an average frequency of
64 Hz.

With regard to computational considerations, first, because
the time scale of the neural electrical activity is given in
milliseconds, to simulate a frequency of 64 Hz with a detailed
neuronal model would prompt the use of an extremely small
time step (0.1 ms). But, with respect the time scale of the
wave propagation at the cortical level (around 20 min), this
makes the simulations to be computationally very expensive. In
order to avoid unnecessarily heavy computations, we therefore
describe the neuronal activity by deriving a slow variables model
for the firing rate, where the state variable u(x, t) represents
the average firing rate of neurons at location x and time t
(in seconds). Such model can thus be locally considered a
temporal mean field model with respect to the finer scale of the
action potential. The model is inspired by the Rogers-McCulloch
variant of the 2 variables FitzHugh-Nagumo model for excitable
media (Fitzhugh, 1961). Such variant describes the all-or-
nothing response of a single excited cell in a simplified manner
(Rogers and McCulloch, 1994), and it exhibits autonomous
behavior, ensuring the robustness of its numerical simulation.
We modify the Rogers-McCulloch model to adapt the resting
value (4 Hz), the spike value (64 Hz) and the plateau length

in order to match the duration of the neuron excitation after
the passage of the CSD (around 10 min, Porooshani et al.,
2004).

Finally, a diffusion term accounts for the spatial propagation
of the excitation. Thus, the complete model reads

∂u

∂t
= − I(u,w)+ div(D∇u) (1)

I(u,w) = G(u− u0)

(
1−

u

uth

) (
1−

u

up

)
+ η1(u− u0)w(2)

∂w

∂t
= η2 (u− u0 − η3w) , (3)

where u(t) is the firing rate at time t ≥ 0, and w(t) is the
recovery variable, uth and up are threshold and peak values
for u, u0 is the background firing rate and D ∈ R

3×3 is
the diffusion tensor (possibly anisotropic), while η1, η2, η3
and G are parameters, whose values are given in Table 1. The
above equation is a coupled PDE-ODE system for all points
(t, x) in the computational domain (0,T) × �, � ⊂ R

3. To
have a mathematically well posed problem, initial conditions
u(0, x),w(0, x) in �, and boundary conditions on ∂� have
to be imposed. If the computational domain is a 2D surface
6 ⊂ R

3 the classical divergence and gradient operators are
replaced by their tangential counterparts div6 and∇6 . Boundary
conditions are not necessary if the surface 6 is closed, as in
the case of the reconstructed cortical geometry we described in
Section 2.2.

2.5. Numerical Implementation
The computational grid consists of a triangulation of the
reconstructed cortex. The lack of axial symmetry in the brain
results in a mesh with 140.208 nodes and 280.412 triangles for
the left hemisphere, and a mesh with 139.953 nodes and 279.902
triangles for the right hemisphere. Problem (1)–(3) is discretized
in space by P1 finite elements, while the time derivative is
approximated by finite differences. Let tn = n1t, for n =

0, ..,N = T/1t, be a discretization of the time interval (0,T):
we denote with un and wn the approximation of u and w at
time tn. We use an implicit-explicit (IMEX) scheme to advance
from tn to tn+1: the recovery variable wn+1 is updated by solving
explicitly (after linearization around un) Equation (3) in (0,1t)
and plugged into the expression of I(u,w) for the computation
of un+1. The overall procedure can be summarized as
follows

TABLE 1 | Model parameters.

Parameter Description Value

G 1.6

u0 Resting value 4

uth Threshold parameter 11.8

up Peak value 64

η1, η2, η3 2.9227, 2.e-4, 60
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Given un and wn,

update: wn+1 =
un − u0

η3
+

(
wn −

un − u0

η3

)
exp (−η2η31t)

update: In+1 = I(un,wn+1) (4)

solve: Aun+1 = Mun − 1tMIn+1

where A: = M + 1tS, where M and S are the standard
finite elements mass and stiffness matrices (Quarteroni and Valli,
1997). A detailed description of the derivation of this system and
an explicit formulation of the matrices M and S is available as
Supplementary Material.

2.6. Simulation Protocol
The numerical simulations of Equations (1)–(3) are performed
with a self-developed code in Matlab (MathWorks Inc., Natick,
MA) with a uniform time step of 1t = 0.01 min. For every time
step we solve the linear system in (5) with the conjugate gradient
method, preconditioned by an incomplete Cholesky factorization
(Saad, 2003). The diffusion tensor D = δ Id is isotropic with
δ = 0.7174mm2s−1. This conductivity coefficient has been tuned
to ensure that a wave is actually propagating across the cortex, at a
velocity comparable with the one of the CSD. In general, smaller
conductivities still trigger a propagating wave front. However,
below a given threshold (δ ≤ 0.014mm2s−1) the refractory
period is no longer a unidirectional restriction due to the slow
propagation speed, allowing new patterns to emerge and spread
across the cortex.

CSD is known to originate from the visual cortex, but to gain
deeper insight in the way the geometry shapes the propagation,
we simulate, in both hemispheres, the spread of excitation waves
between all the regions of the anatomical classification. In each
simulation, we consider as initial condition one fully depolarized
region out of the 34 in the anatomical subdivision. Namely,
we set u(0, x) = up for all x in the initially excited region,
u(0, x) = u0 for all the remaining grid points and an initial
uniform resting condition for the gating variable, w(0, x) = 0.
Each simulation is run until all remaining regions have been fully
activated. The arrival times of the depolarization wave in the
remaining 33 regions are recorded. The only compartment that
is not considered as initially activated is the corpus callosum as
it constitutes the intersection between the two hemispheres and
obeys different rules for diffusion. In particular, high anisotropy
values of white-matter tracts, as revealed by tensor diffusion
imaging, yield a much larger diffusion within corpus callosum
with respect to other cortical areas. Our modeling strategy is
indirectly accounting for this aspect: the mesh geometry within
this region ismuch flatter in comparison with the other areas and,
as a consequence, the simulated CSD propagation is faster.

As an illustration, we show in Figure 1 the progression of
the depolarization wave starting from the caudal middle frontal
region and spreading across the whole cortex for the lateral (A)
andmedial (B) surface of the left hemisphere. In Figures 1C,Dwe
plot the corresponding activation times of the whole hemisphere.

2.7. Quantities of Interest
Using the data obtained from the 34 numerical simulations per
hemisphere, each one starting in a different Brodmann area, we
can introduce different ways to assess symmetry and asymmetry
in the propagation, with the aim of identifying regions featuring
a peculiar propagation behavior.

In any simulation, one region is initially activated, and we
record two values for each of the 33 remaining regions: the
minimum and the maximum activation times. The minimum
activation time is the moment when the first point of the region
at hand gets excited, while the maximum activation time is the
moment at which the last point of the region gets excited. The
minimum activation time for a given arrival region does not
depend on its shape or size, but only on the initially activated
region and the portion of the cortex traveled by the wave between
the two areas. On the other hand, the maximum activation time
is also related to the shape and area of the arrival region. The
two recorded quantities allow to assess different aspects of the
propagation. The minimum activation time for a region provides
information about the propagation behavior of its neighborhood.
The maximum activation time is also accounting for the effect of
the region’s geometry on the propagation.

These quantities are collected into four 34 × 34 matrices,
that we denote by Lmin, Lmax, Rmin, and Rmax, where L and R
refer to the left and right hemisphere, respectively. In all of the
above matrices, rows represent the starting region of the wave
propagation, while columns the arrival region: as an example, the
(i, j)-th element of Lmin represents the arrival time in region j of
a wave originated in region i.

The ordering of the regions in building such matrices plays
a crucial role in the clustering of the results. Different sorting
choices, like the clustering of all regions with respect to their
centroids distances or the clustering with respect to the activation
times, lead to different types of clustering. To emphasize the
spatial connection between the regions, we chose to rearrange
their ordering according to their affiliation to lobes. Regions
belonging to one lobe are then clustered according to the mutual
distance of their centroids in the Euclidean norm. The minimum
and maximum activation times for the left as well as for the right
hemisphere are given in Figure 2.

Whatever the ordering of the regions, a lack of symmetry
in the matrices Lmin and Rmin is a first clear indicator that the
geometry plays a role in shaping the propagation: if the cortex
had been spherical, an isotropic conductivity coefficient would
have resulted in both matrices being symmetric.

2.7.1. Correlation between Activation Times and

Distances
Despite the complex geometry of the cortex, a direct relation
between the propagation time of wavefronts and the distance
traveled is expected. However, to further assess differences
between the left and right hemisphere, we explicitly relate
activation times with distances from the initially activated region.
We consider the Euclidean distance between the centroids of two
regions as a proxy of the distance traveled by the wavefront.

The correlation between the distance of the centroids of
the different regions and the different activation times can be
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FIGURE 1 | A computational model of CSD on a realistic cortical geometry. The progression of a depolarization wave starting in the caudal middle frontal

region on the lateral (A) and medial (B) surface of the left hemisphere and the corresponding activation times, respectively, (C,D).

assessed by the Pearson product-moment correlation coefficient,
a measure of the linear correlation between two variables X and
Y. The Pearson test returns values between +1 and -1 inclusive,
where 1 is total positive correlation, 0 is no correlation, and -1
is total negative correlation. For a given sample of paired data
(xi, yi)i=1,...,n the Pearson correlation coefficient is defined as

r =

∑n
i=1 (xi − x̄)

(
yi − ȳ

)
√∑n

i=1 (xi − x̄)2
√∑n

i=1

(
yi − ȳ

)2 (5)

with x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.

2.7.2. Assessment of Bilateral Asymmetry: the Global

Asymmetry Index
Most of the anatomical areas are present in the brain bilaterally.
To assess propagation differences between brain hemispheres,
we analyze how an excitation wave propagates differently in the
two hemispheres. Indeed, comparing propagation speed in the

different directions provides substantial information about the
global geometry and how easily depolarization waves propagate
through certain areas. The minimum activation time matrices
Lmin and Rmin are the least dependent on the size and shape of the
regions, and provide valuable information about the propagation
in the neighborhood of all regions. As a consequence, these
matrices are natural candidates to assess global symmetry
properties on both hemispheres. First we focus on propagation
asymmetry within each hemisphere, and we consider the time
difference for a depolarization wave to travel back and forth
between any two regions. Such difference is given by the matrices

L = Lmin − LTmin and R = Rmin − RTmin, (6)

where LTmin and RTmin denote the transposes of matrices Lmin and
Rmin. Each entry Lij (respectively, Rij) expresses the difference in
arrival time between a wave traveling from region i to region j
of the left (respectively, right) hemisphere, and a wave traveling
from region j to region i. If the propagation of the excitation wave
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FIGURE 2 | Minimum and maximum activation times for CSD starting at one of the Brodmann areas and arriving to another. Activation times for the left

(left column) and right hemisphere (right column): minimum (top row) and maximum activation time (bottom row). Rows indicate the initial regions for the depolarization

while columns indicate the arrival regions. The abbreviations on the left hand side denote the lobes: m.t., medial temporal lobe; l.t., lateral temporal lobe; f.l., frontal

lobe; p.l., parietal lobe; o.l., occipital lobe; and c.c., cingulate cortex.

is symmetric in any hemisphere, the corresponding matrix L or R
vanishes. The absolute values of the entries of L and R provide a
global measure for the asymmetry in the geometry between two
different regions. As L and R are skew-symmetric matrices with
zero diagonal, we can display their absolute values in a single
matrix without loss of information (Figure 4).

To quantify the lack of symmetry in the propagation, we
consider the normalized difference matrices L̂ and R̂, whose
(i, j)-th entries are defined as

L̂ij =





Lij for i = j

Lij

(Lmin)ij
for i 6= j

R̂ij =





Rij for i = j

Rij

(Rmin)ij
for i 6= j.

(7)

We denote by l̄j and r̄j the mean of the j-th column of matrix L̂
and R̂, respectively. For each region j, positive values of lj (or rj)
indicate that depolarization waves moving away from the region

are faster than depolarization waves approaching that region. A
global asymmetry index, for each region j, is then obtained by
taking the sign of the quantities l̄j and r̄j

A
L
j = sign

(
lj
)

and A
R
j = sign

(
rj
)
. (8)

2.7.3. Local Residential Time of the Depolarization

Wave: the Retention Index
For a given region, the time the depolarization wavefront needs
to sweep the whole region provides important information about
its shape, size, and geometrical regularity. To assess possible
differences in the local behavior between the left and the right
hemisphere, we introduce the residence time as the time elapsed
between the depolarization of the first and the last point in a
region. The residence time depends not only on the shape and
the size of a region, but also on the direction from which the
depolarization wave is coming. An elongated region, for instance,
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FIGURE 3 | Activation times (CSD starting in one area and arriving to another) as a function of Euclidean distance between the two areas. Top row, left

hemisphere and bottom row, right hemisphere. Scatterplots for the minimum and maximum activation time as a function of the Euclidean distance between region

centroids. All p-values for the linear regression are below 10−7. The correlation coefficient, r, is also shown for each plot.

would feature very different residence time if the incoming
wave is entering the region along its short or its long axis. By
considering a different initially activated region per simulation,
all possible incoming directions are taken into account. We thus
define the depolarization residence matrices by considering the
difference between themaximum andminimum activation times,
as

D
L = Lmax − Lmin D

R = Rmax − Rmin. (9)

Again, rows represent the starting region of the wave
propagation, while columns the difference between activation
times: the (i, j)-th element ofDL andDR represents the residence
time in region j of a wavefront originates from region i. Hence,
the j-th column of DL gives the residence times for the j-th
region in the left hemisphere for all initially excited region,
while the j-th column of DR provides the same information
for the corresponding j-th region in the right hemisphere. The
behavioral symmetry (or lack of) between corresponding regions
of the two hemispheres can thus be assessed by comparing

the average residence time (both mean and median) from the
columns of DL and DR.

By summing up the entries of each column we obtain, for
any given region, a global measure for the retention of the
depolarization wave that is independent of the initial condition,
thus implicitly taking into account the region’s shape. For both
hemispheres we introduce the retention index, that measures the
overall time in which the depolarization wave stays in region j,
and is defined as

R
L
j =

34∑

i=1

D
L
ij, R

R
j =

34∑

i=1

D
R
ij . (10)

A direct relationship between the residence time of the
depolarization wave in a given region and the area of the region
itself is expected. We assess it by considering the datasets

(si,R
L
i )i=1,...,34, and (si,R

R
i )i=1,...,34, (11)
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FIGURE 4 | Global asymmetry from the minimum activation time. The

absolute time difference of the depolarization wave to propagate between two

regions back and forth. The lower triangle gives the values of the left

hemisphere and the upper triangle the values for the right hemisphere.

where si describes the surface of region i and Ri the
corresponding retention index. Since we focus on the
identification of symmetries (and lack of them) we are
particularly interested in regions whose propagative behavior
deviates significantly from the others. A natural choice to
detect regions of unusual behavior, is to look for outliers in
the database. The standard method for multivariate outlier
detection is the Mahalonobis distance. For an n× p dimensional
set of data (x1, . . . , xn)

T with the i-th observation defined as
xi = (xi1, . . . , xip) the Mahalonobis distance is defined as

MDi =

√
(xi − µ)T S−1 (xi − µ) for i = 1, . . . , n (12)

where µ is the estimated mean and S the estimated covariance
matrix. For multivariate normally distributed data the values
are approximately χ2-distributed with p degrees of freedom.
Multivariate outliers can now be defined as observations having
a large Mahalonobis distance. Thus, a quantile of the χ2

p

distribution, e.g., the 97.5% quantile, can be considered. A
drawback of the Mahalonobis distance is that it makes use of
the classical estimators for mean and covariance, which can be
highly affected by outlying values. In order to obtainmore reliable
results for the data analysis, more robust estimators are required.
The minimum covariance determinant (MCD) estimator is most
frequently used and can be computed with a fast algorithm
(Rousseeuw and Van Driessen, 1999). Using robust estimators
of location and scatter in Equation (12) we obtain the so called
robust distance (RD) (Rousseeuw and Van Zomeren, 1990, 1991).

.

3. RESULTS

3.1. Correlation between Activation Times
and Distances
We first correlate the activation times with the euclidean distance
between the centroids of the regions. The latter is used as a

proxy for the actual distance traveled by the depolarization wave.
We create 4 datasets from the off-diagonal entries of matrices
Lmin, Lmax, Rmin, and Rmax. Diagonal elements of these matrices
as well as the corresponding euclidean distances vanish, since
the starting and arrival points coincide. Thus, we can neglect
diagonal entries in the definition of the datasets, each of which
consist of 1122 pairs.

In Figure 3we plot the four datasets, together with their linear
regressions, all featuring p-values below 10−7. In all the plots,
Pearson coefficients are high, revealing a positive correlation
between the distance of the regions and the activation times.
When comparing between the two hemispheres, we can observe
a slightly stronger correlation between the activation times and
the distances on the right hemisphere.

3.2. Assessment of Bilateral Asymmetry:
the Global Asymmetry Index
We then focus on the difference in propagation between
hemispheres. To this aim we consider the matrices L and
R, defined in (6), each of whose entries represent the time
difference in a back-and-forth propagation between two regions.
The absolute value of their entries provides a global estimator
to which hemisphere features the most unsymmetric behavior.
Since both matrices L and R are skew-symmetric with zero
diagonal, their absolute values can be represented, without loss
of information, by their lower or upper triangular, off-diagonal,
portion, embedded in a single matrix G, whose entries are given
by

Gij =





∣∣Lij
∣∣ for i > j

0 for i = j∣∣Rij
∣∣ for i < j

(13)

The matrix G collects at once all the information on the lack
of symmetry of both hemispheres, that can be compared by the
single plot in Figure 4. For the cortical geometry at hand, we can
observe a more significant asymmetry in the right hemisphere, in
particular in the neighborhood of the lingual region.

A more detailed assessment of the asymmetrical behavior of
the two hemispheres is given in Figure 5, where we plot the
columns of the matrices L̂ and R̂ defined in (7). Each column
lj (rj, respectively) represents the normalized difference in time
propagation to and from the j-th region. Also in Figure 5 regions
are clustered according to lobes. We highlight for all regions
both the mean (in green) and the median (in red). We observe
that, despite the means cluster around 0, several regions feature
large variance, with differences up to 36 s in back-and-forth time
propagation.

A positive mean l̄j (respectively, r̄j) implies that the
corresponding region is, in general, behaving as a source (or a
facilitator) for the propagation of a depolarization wave, while a
negative mean implies that the region is behaving as a sink for the
propagation. In Figure 6A, we summarize in the same plot the
means l̄j and r̄j. Half of the regions appear to behave in a similar
manner in both hemispheres, while the other half shows opposite
behavior in the two hemispheres. In addition, also among regions
showing the same behavior, some feature significant differences
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FIGURE 5 | Global asymmetry per brain region. The differences in minimum activation time per brain region, i.e. the columns of matrices L̂ and R̂ defined in

(Equation 7). (A) Left hemisphere. (B) Right hemisphere. The red points denote the medians and the green ones the arithmetic means. In all the plots, the abbreviation

m.t. represents the medial temporal lobe, l.t. the lateral temporal lobe, and c.c. the cingulate cortex.

between hemispheres, like the medialorbitofrontal, where l̄j is
twice r̄j.

In Figure 6B we plot the global asymmetry index introduced
in (8), that visually highlights the behavioral differences between
homologous regions in the two hemispheres.

3.3. Residence of the Depolarization Wave:
the Retention Index
To conclude this study, we turn our attention to the individual
behavior of the regions in the anatomical decomposition. For
each region we plot the residence of the depolarization wave,
given by the columns of matrices DL and DR, defined in (9). We
also compute median and arithmetic mean of the column entries
for left and right hemisphere (Figures 7A,B). By construction,
the diagonal elements of matrices DL and DR are zero and
are once again neglected as they are not informative. Wide
varieties in the residence depolarization time hint at elongated

or very irregularly shaped regions, in terms of their curvature or
basal area. We point out that the times presented in Figure 7

(A through C) do not actually represent the duration of the
excitation of the whole regions. The excitation period for the
cortical cells after the passage of the CSD is of the order of
10 min. As a consequence, for elongated regions, repolarization
can occur before the whole region has been activated. From
Figures 7A,B we can observe that, for the cortical geometry
at hand, 8 regions in the left hemisphere and 9 in the right
hemisphere are characterized by such a feature.

In order to study the behavior of the different hemispheres, we
compare the means of the corresponding regions (Figure 7C). In
our case study we can observe a higher similarity in the behavior
between the two hemispheres with respect to the back and
forth propagation studied in the previous section. A few regions
exhibit appreciably different behavior, likely the consequence of
the lack of anatomical symmetry between the two hemispheres:
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FIGURE 6 | Global asymmetry index across brain regions. (A) Mean of the normalized differences L̂ and R̂ for the left (red dashed) and right hemisphere (blue). In

the plot, m.t. denotes the medial temporal lobe, l.t. the lateral temporal lobe, o.l. the occipital lobe, and c.c. the cingulate cortex. The regions that exhibit different

behavior in the two hemispheres are identified in boldface. (B) Brain spatial maps of the normalized global asymmetry index on the left (top row) and right hemispheres

(bottom row).

such regions are the middletemporal, the medialorbitfrontal,
the parsopercularis, the cuneus, the pericalcarine, the
lingual, the isthmuscingulate, the posteriorcingulate, the
caudalanteriorcingulate and the rostralanteriorcingulate. From
Figure 7C, we can observe that, for the cortical geometry at
hand, the major differences are localized in the occipital lobe and
in the cingulate cortex.

The Pearson correlation coefficients, introduced in (5),
highlight in both hemispheres a clear positive correlation (r =

0.9087 for the left and r = 0.9103 for the right hemisphere)
between the residence time of the depolarization wave and the
size of the corresponding region. To identify the outliers, we plot
in Figures 8A,B the robust tolerance ellipse describing the 97.5 %
quantile for the datasets of the left and right hemisphere. In
the whole Figure 8, numbers identify regions according to their
ordering described in Section 2.7. The Mahalonobis distance and

the robust distance are compared in the distance - distance plots
in Figures 8C,D. In all graphs, the 97.5% quantile of the χ2

2 -
distribution is drawn as a threshold value. The detected outliers
with respect to the two distances are identified both by their
indexes and the corresponding region names, and comparatively
collected in the table given in Figure 8E. The regions that are
rated as outliers by both methods are identified on the cortex of
our brain geometry at hand in Figure 8F.

4. DISCUSSION

We have presented a computational model of CSD and
studied how cortex geometry shapes propagation of CSD.
The realistic geometry is provided by an individual subject-
specificmesh reconstructed from high-resolution structuralMRI.
The computational CSD model is described by a PDE-ODE
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FIGURE 7 | Retention index per brain region. Duration of stay of the depolarization wave for the regions of the left (A) and right (B) hemisphere. The red markers

denote the median, the green ones the arithmetic mean. (C) Comparative plot of the mean for regions in the left (red dotted) and right (blue) hemisphere. In all the

plots, the abbreviation m.t., denotes the medial temporal lobe; l.t., the lateral temporal lobe; c.c., cingulate cortex.

system resulting from a modification of the Rogers McCulloch
variant of the FitzHugh-Nagumo model. The model features
a slow dynamic variable, representing the firing rate of the
neurons, and a recovery variable. The model is integrated by
an IMEX (IMplicit/EXplicit) finite element scheme. Resorting
to the Brodmann’s atlas, we divided each brain’s hemisphere
in 34 different anatomical regions, and we identified suitable
Quantities of Interest (QoIs) that can be computed by

postprocessing the results from the simulation of the CSD
propagation across the whole cortex.

We have studied propagation symmetries and asymmetries
by identifying them both intra and inter-hemispherically. By
introducing the global asymmetry index and the retention
index (see Methods), we have found a clear asymmetry pattern
emerging in both assessments. In particular, we observed that
the propagation speed between two non-neighboring regions i
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FIGURE 8 | Identification of outliers in the relation between retention index and region size. The tolerance ellipse of the 97.5% quantile for the robust distance

for the data form the left (A) and the right hemisphere (B). Numbers refer to the index of the datasets. The distance-distance plot of the Mahalonobis distance and the

robust distance for the left (C) and right hemisphere (D) where the red lines mark the 97.5% quantile. (E) The index and name of the outlying regions for the left and

right hemisphere detected with the Mahalonobis distance (MD) and the robust distance (RD). The checkmarks indicate that this dataset was identified as an outlier by

the corresponding method. (F) The superior, anterior and posterior view of the brain highlighting the regions detected as outliers by both MD and RD methods.

and j is not the same when comparing CSD traveling in opposite
directions. That is, the speed of a wave moving from i to j is
different from the one of a wave moving from j to i, and this
feature is common to both left and right brain hemispheres.

Neuroanatomical differences between the left and right sides
of the brain are known to exist at various scales (Toga and
Thompson, 2003); our work shows that asymmetrical evidences
also occur for the propagation of waves of electrophysiological
activity, most likely due to geometric effects (but might also
be due to differences in brain circuits within left and right
hemisphere). A recent work highlights the local influence of the
curvature of two-dimensional surfaces on properties, such as
nucleation and propagation of waves (Kneer et al., 2014); our

results investigate this relation at the scale of a whole cortical
geometry reconstructed from brain imaging.

Still, the cause of the propagation asymmetry is not completely
clear yet and is the subject of our ongoing investigation. In
particular, since geometry is expected to have a bigger impact on
the propagation on a two-dimensional surface with respect to a
three-dimensional structure, we plan to investigate the relation
between the cortex curvature and the emerging asymmetries.

We have also identified brain regions whose behavior
significantly differs from the other regions. In particular, some
regions appear to trap the propagating action potentials for a
longer time. These outliers in the relation between retention
index and region sizes are strong candidates to identify areas that
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may play a key role in the CSD propagation (and possibly be
able to stop it). Such information would be relevant to design
therapies using stereotactic cortical neuromodulation, where
target structures for modulation have to be carefully selected,
see, e.g., Dahlem et al. (2015). Implementing an individualized
computational model for CSD would improve the clinical
effectiveness of these therapies.

In this paper we have modeled the diffusion tensor as
isotropic, with all eigenvalues being equal to a constant δ.
However, diffusion tensor imaging (DTI) provides, per a given
voxel in the image, a more realistic (strongly anisotropic) tensor
for the diffusion of water molecules across white-matter tracts.
We expect that more personalized conductivity values, taking
into account information from DTI data, can provide a better
insight on the regions that are principally responsible for this lack
of symmetrical behavior.

The model can benefit from the incorporation of other
ingredients. An important limitation of our study is that the
diffusion model does not account for long-range connections.
Rather than adopting one of the many computational strategies
to model such features within a circuit (for instance, by
adding random edges between far-separated mesh nodes), we
preferred to just focus on short-range connections associated
to excitatory connectivity. In addition, we have not modeled
cortical inhibition, which is a well-known mechanism for
controlling propagation of neuronal excitability in cortical
circuits. Incorporating inhibitory neurons and long-range
connections within the diffusion model will be of special
interest for future research on CSD modeling. Indeed, long-
range inhibitory connections have been found in several sensory
cortices where they play a key role in stabilizing strong increases
of electrical activity. Notice that, the presence of inhibition, in
addition to make the model more realistic, will scale the diffusion
constants, making them several orders of magnitude higher in
order to produce CSD propagating at the macroscale with a
time duration of about 20 min. Moreover, the incorporation of
short-time synaptic plasticity, including synaptic depression and
facilitation (Markram and Tsodyks, 1996; Tsodyks and Markram,
1997) makes neural connectivity to be activity-dependent, adding
new non-linearities into the model which might strongly affect
the stability of CSD propagation (Cortes et al., 2013). Finally,
the use of a more detailed neuronal model, instead of the firing
rate slow dynamics at the basis of our analysis, would allow to

study, at the cost of increased computational effort, the impact
of channelopathies in favoring or countering the propagation
of CSD.

To conclude, some words have to be said in relation to the
disease. Based on the evidence that CSD has been proposed
to be a neural correlate of aura migraine, we have presented a
method that addresses dynamical features of CSD propagating
on a realistic (subject-specific) cortical geometry. Computational
models of migraine, in synergy with the analysis of altered
processing of sensory stimuli (de Tommaso et al., 2014), not
only provide further insight in this disease, but they are also
fundamental in constructing new interventional approaches. The
cortical data we used in this paper is coming from an healthy
brain, and can provide a baseline for the QoIs that we identified.

Whether the results shown here remain valid or not, and
asymmetries are enhanced when simulations are run on a mesh
coming from a patient suffering from aura migraine, is for us
an obligated matter for future research. The occurrence of larger
deviations from the baseline in unhealthy people, would make
the QoIs introduced in this paper able to discriminate healthy
from unhealthy patients, and, at the same time, able to identify
subjects potentially susceptible of suffering from migraine aura.
We expect further insight in this direction by the extensive
application of our analysis to a statistically significant sample of
patients.
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