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We present a phenomenological model of electrically stimulated auditory nerve fibers

(ANFs). The model reproduces the probabilistic and temporal properties of the ANF

response to both monophasic and biphasic stimuli, in isolation. The main contribution of

the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter,

and firing probability) under both monophasic and cathodic-anodic biphasic stimulation,

without changing the model’s parameters. The response statistics of the model depend

on stimulus level and duration of the stimulating pulse, reproducing trends observed

in the ANF. In the case of biphasic stimulation, the model reproduces the effects of

pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG)

of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to

ANF data using a procedure that uniquely determines each model parameter. It is thus

possible to rapidly parameterize a large population of neurons to reproduce a given set

of response statistic distributions. Our work extends the stochastic leaky integrate and

fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated

neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by

delaying the moment of spiking. During this delay, spiking may be abolished by anodic

current. By this means, the probability of the model neuron responding to a stimulus

is reduced when a trailing phase of opposite polarity is introduced. By introducing a

minimum wait period that must elapse before a spike may be emitted, the model is able

to reproduce the differences in the threshold level observed in the ANF for monophasic

and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are

reproduced correctly by this model.

Keywords: auditory nerve, electrical stimulation, cochlear implant, spike timing, computational modeling

INTRODUCTION

Cochlear implants restore the perception of sound to deafened individuals. The speech processor
maps acoustic waveforms to trains of electrical pulses at each electrode of an array inserted in the
cochlea, which directly stimulate auditory nerve fibers (ANFs). Cochlear implantees often achieve
high levels of speech understanding in quiet single-talker situations. However, they are significantly
disadvantaged compared with normal hearing and even moderately hearing impaired listeners in
complex and noisy acoustic environments (e.g., Cullington and Zeng, 2008; Wilson and Dorman,
2008; Kerber and Seeber, 2012).
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To restore hearing, the cochlear implant must convey
sufficient information about the acoustic scene to the central
auditory system. It is less clear how much information would
be required to restore “normal” levels of functionality and
how to encode information optimally given the limitations of
the electrode-nerve interface. It is clear that only some of
the normal acoustic “cues” are available with contemporary
cochlear implants. In the predominant coding strategy individual
electrodes carry discrete current pulses at a fixed rate, and the
amplitude of the current is modulated according to the extracted
envelope of sound in a fixed frequency range (Continuous
interleaved sampling strategy, CIS, Wilson et al., 1991). Fine
temporal information is removed by the speech processor and
not coded in pulse timings. This information is known to be
important for the perception of pitch and sound localization,
both of which strongly influence the process of forming discrete
perceptual acoustic objects from a mixture in normal hearing.

How the information should be encoded, given the limitations
of the devices, is a difficult question. One potential method for
manipulating ANF responses is via the shapes of electrical pulses.
When stimulated with an electrical current pulse, the ANF may
elicit an action potential after a stochastic delay. The shape of the
stimulating pulse affects the probability of the ANF eliciting an
action potential in response to it, and the temporal distribution
of the action potential, if elicited. Further, temporally-separated
pulses may interact within short time windows, blurring the
distinction between individual pulses. Current implants use only
biphasic pulses with identically shaped phases. Transforming a
cathodic monophasic pulse into a cathodic-anodic biphasic pulse
by introducing a trailing, anodic phase is necessary to achieve
charge balance, a prerequisite for long-term use in patients. The
additional anodic phase decreases the probability of the stimulus
evoking an action potential in the ANF, but less so if a delay, or
interphase gap (IPG), is introduced between the two opposite-
polarity phases (Shepherd and Javel, 1999). The requirement to
charge balance can be met by a wide range of pulse-shapes.

Future stimulation strategies might manipulate pulse-shape
to improve information transmission or to reduce power
consumption. For example, pseudomonophasic pulses with a
short cathodic stimulating phase followed by a longer anodic
phase of lower, charge-balanced amplitude are more efficient for
stimulation and yield a larger dynamic range than biphasic pulses
(Macherey et al., 2006), phase duration and interphase-gap have
a pronounced effect on loudness (Carlyon et al., 2005), and the
polarity order of multiphasic pulses can alter perceived pitch (van
Wieringen et al., 2008; Carlyon et al., 2013). Further, strategies
with novel pulse shapes have the potential to control the negative
impact of current spread, e.g., by varying interphase gap, phase
duration and the relative amplitude of the second phase, thereby
changing firing probability of neurons in a larger region around
the electrode. Moreover, when attempting to code fine temporal
information, e.g., binaural cues needed for sound localization, the
exact timing of pulses in the auditory nerve becomes crucial.

It is hard to evaluate the effectiveness of a stimulation strategy.
It would be useful to observe the responses of the individual
fibers of the stimulated auditory nerve. However, recording from
single nerve fibers is an invasive procedure that is not possible

in patients. Measures like neural response telemetry cannot be
used with regular stimulation strategies and auditory brainstem
responses cannot give insight into the responses of individual
nerve fibers. Computational neural models can help predict the
neural response when stimulating with changing pulse patterns
and shapes, and hence help with the development of future
stimulation strategies. Models could be used to find a stimulation
pattern for which the neural response matches a target response
as closely as possible, or to maximize information transmission.
To this end, we have developed a model that simulates the
auditory nerve fiber response to an electrical stimulus, which is
sensitive to pulse shape parameters.

To be useful for developing stimulation strategies that
manipulate pulse shape, a model must be capable of realistically
responding to a stimulus pulse of complex shape, with varying
phase durations and interphase gaps. One method by which to
achieve this is to directly model the biophysics of the neuron.
Biophysical models have been developed which are successful
in reproducing the response characteristics of the ANF (e.g.,
Rubinstein, 1995; Cartee, 2000; Rattay et al., 2001; Negm and
Bruce, 2008; Woo et al., 2010). However, while they have
previously been used to study the responses of large populations
of ANFs (e.g., Imennov and Rubinstein, 2009), they are difficult
to use: the parameter-space of a biophysical model is vast and
the individual parameters affect the response of the neuron
in complex ways. There has been no procedure published for
systematically parameterizing a biophysical model to reproduce
a desired set of response statistics.

Phenomenological models provide an alternative to
biophysical models. Phenomenological models reproduce
only the statistics of the response, without explicitly modeling
the biophysics of the ANF. By doing so, the parameter-space is
reduced and it is possible to directly and independently control
individual response characteristics via the model parameters.
A variety of phenomenological models have been developed to
reproduce the responses to sensory inputs or synaptic input (e.g.,
McGregor, 1987; Gerstner and Kistler, 2002; Izekevich, 2003).
They rely on the fact that many of the complexities of their
behavior, such as spike generation, are stereotypical. Perhaps the
most commonly used model is the leaky-integrate-and-fire (LIF)
model (for a review see Gerstner and Kistler, 2002). This has
linear subthreshold filtering of the inputs, a fixed spike threshold
and dispenses with all the dynamics of the spike generation.

Phenomenological models have previously been used to
model the electrically stimulated ANF (e.g., Bruce et al., 1999;
Hamacher, 2004; Carlyon et al., 2005; Chen and Zhang, 2007;
Macherey et al., 2007; Cohen, 2009a,b,c,d; Chen, 2012; Goldwyn
et al., 2012). The required constraints on these models are
different to those of other domains. Whereas models with
deterministic intrinsic properties (e.g., Rothman and Manis,
2003; Laudanski et al., 2010) are adequate to explain the
responses to intracellular current injection or synaptic input
in the auditory brainstem, and many other central neurons,
modeling ANF responses to electrical stimulation requires a
stochastic model. Models that incorporate noise into the firing
threshold (Bruce et al., 1999; Gerstner and Kistler, 2002) allow
for realistic firing probabilities for some stimulation protocols.
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However, the latency of firing does not emerge naturally in
these models, which requires still further sources of stochasticity
(Hamacher, 2004), and neither does the sensitivity to pulse shape.

The focus of this study has been to develop a model capable
of reproducing the statistics of the ANF’s response to both
monophasic and biphasic stimuli of arbitrary amplitude, phase
duration and interphase gaps. The model presented is the first
phenomenological model to respond directly to a range of
current pulse shapes and reproduce the effect that an immediate
or delayed trailing, anodic phase has on the probability of a
cathodic stimulus evoking an action potential in the ANF. The
model is computationally efficient and easily parameterized,
making it suitable for simulating the response of a large
population of fibers.

Our model is based on the stochastic leaky integrate and fire
(SLIF) neuron, a well-studied phenomenological model of the
electrically stimulated neuron. The SLIF neuron discretizes the
action potential as a single moment of spiking. In our model,
the membrane potential of the ANF is modeled by processing
the stimulus current with a leaky integrator. As in the SLIF
neuron, excitation occurs when the membrane potential exceeds
a stochastic threshold. Unlike the SLIF neuron, we add a delay
between the moment at which the membrane potential exceeds
the threshold and the moment at which the resulting spike
is emitted. This emulates the delay in the generation of the
action potential that is present in the ANF. Further, inspired
by empirical observations, we allow the spike to be canceled if
sufficient anodic stimulation occurs before the spike is emitted.
By doing so, we are able to reproduce the effect of the interphase
gap on the probability of a cathodic-anodic biphasic stimulus
evoking an action potential in the ANF.

The description of our model is split into three sections.
First, we introduce the existing SLIF neuron, describing
its parameterization and summarizing its capabilities and
limitations (Section Stochastic Leaky Integrate and Fire Neuron).
We then extend the SLIF neuron to introduce a delay between the
moment at which the membrane potential exceeds the threshold
and the moment at which the resulting spike is elicited. This
forms a self-contained model in itself, reproducing temporal
properties of the ANF’s response to a monophasic stimulus
(Section Temporal Leaky Integrate and Fire Neuron). Finally, we
further extend the model so that a spiking may be canceled by
anodic current, comparing its results against those from cat ANFs
(Section Biphasic Leaky Integrate and Fire Neuron).

STOCHASTIC LEAKY INTEGRATE AND
FIRE NEURON

The stochastic leaky integrate-and-fire (SLIF) neuron provides a
simple model of the electrically stimulated neuron. In the model,
the neural membrane is considered to be a leaky integrator of
current, with an associated membrane potential.

Model Description
The stimulus signal I(t) is processed by a leaky integrator to give
V(t), which can be interpreted as the membrane potential of the
model neuron (Abbott and Kepler, 1990; Gerstner, 1995). The

stimulus signal and the membrane potential are related by the
ordinary differential equation

τ
dV

dt
= −RI − V, (1)

where τ is the time constant of the neural membrane and R is
its resistance, arbitrarily assumed to be 1�. A spike is generated
at the moment V(t) first exceeds a threshold value θ , an event
that we refer to as threshold crossing. Throughout the paper,
we use t0 to denote the time of threshold crossing. In order to
reproduce the stochastic properties of excitation, θ is a normally-
distributed random variable with meanµ and standard deviation
σ . Bruce et al. (1999) have demonstrated that this form of
stochasticity provides for excellent fits for input-output functions
of individual nerve fibers. Integrating Equation (1) we can obtain
an expression for firing probability:

PSLIF = 8



−I
[
1− e−d/τ

]
− µ

σ


 (2)

For a cathodic pulse of a duration, d, where 8 is the cumulative
distribution function (CDF) of the Gaussian distribution. The
model was implemented in Matlab, with leaky integration
implemented via the filter function, with a sample rate of 1
MHz. Table 1 gives an overview of model parameters of the
three models presented in this article and Table 2 summarizes all
model variables.

Model Response Properties
The SLIF neuron has three parameters: µ, σ , and τ . In this
section, we show how these can be uniquely determined to
reproduce data from cat ANFs. We then outline the shortfalls of
the SLIF neuron that will be addressed by the models presented
in the remainder of the paper.

Excitation
As defined in this paper, the SLIF neuron is excited by negative,
or cathodic, current. Positive, or anodic, current hyperpolarises
the SLIF neuron, driving it further from excitation.

Input-Output Function
The input-output function of a neuron relates stimulus level to
firing probability, for some stimulus pulse of fixed duration. It has
been found that the input-output function of the ANF stimulated
with amonophasic current pulse can be well approximated by the
CDF of the Gaussian distribution (Dynes, 1996). The probability
of a stimulus of current level l evoking an action potential is thus
given by

8

(
l−m

s

)
, (3)

where 8 is the Gaussian CDF and m and s are the mean and
standard deviation of the input-output function, respectively.
The mean corresponds to the threshold level of the neuron—
the level at which the neuron responds to the stimulus with a
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TABLE 1 | Full set of model parameters and their values.

Parameter Value Models Description Cat ANF data

µ 104.5µV SLIF,

TLIF,

BLIF

Mean of θ Miller et al., 1999

σ 4.595µV SLIF,

TLIF,

BLIF

Standard deviation of θ Miller et al., 1999

τ 248.4µs SLIF,

TLIF,

BLIF

Membrane time constant van den Honert and Stypulkowski,

1984

lat (p) :

α1,

α2,

α3,

α4

(see Figure 3A)

106µV,

5.14µV,

368 µS,

472 µS

TLIF,

BLIF

Mean delay between start of action potential initiation period and spike observation,

predicted from firing probability p as

lat (p) =

(
α3

1+exp

(
α
−1
2

(µ+σφ−1(p)−α1)
)
)
+ α4,

where φ−1 is the quantile function of the standard normal distribution

Miller et al., 1999

jit (p) :

α1,

α2,

α3

(see Figure 3B)

109µV,

3.24µV,

136 µS

TLIF,

BLIF

Standard deviation of the duration of the action potential initiation period, predicted

from firing probability p as

jit (p) =

(
α3

1+exp

(
α
−1
2

(µ+σφ−1(p)−α1)
)
)
,

where φ−1 is the quantile function of the standard normal distribution

Miller et al., 1999

ϕ 37.81µs BLIF Minimum delay between t0 and t1 Shepherd and Javel, 1999

Other than as specified in Figure 10, the given values were used to generate all the figures in this paper. The third column indicates which models use the given parameter, the value

of which remains static between models. The fifth column cites the data against which the parameter was fitted.

TABLE 2 | Overview of model variables.

Variable Models Description

V SLIF, TLIF, BLIF Membrane potential of neuron

θ SLIF, TLIF, BLIF Threshold against which V is compared

t0 SLIF, TLIF, BLIF Time of threshold crossing; models the time at

which the action potential initiation period

begins

t1 TLIF, BLIF Models the time at which the action potential

initiation period ends

tspk TLIF, BLIF Models the time of action potential observation

The second column indicates which models use the given variable.

probability of 0.5. The standard deviation is a measure of the
width of the input-output function, and thus, the dynamic range
of the neuron. It is convenient to quantify the dynamic range as
the ratio of the standard deviation and the mean (Verveen, 1961),
giving relative spread (RS):

RS =
s

m
. (4)

The input-output function of the SLIF neuron (2) has the same
form as Equation (3). Thus, by equating (2) and (3) and since
l = −I,

m =
µ

1− exp
(
−d/τ

) (5)

and

s =
σ

1− exp
(
−d/τ

) , (6)

Inverting these equations gives the values for the model
parameters µ and σ that are needed for the SLIF neuron
to reproduce the input-output function of an arbitrary ANF
with threshold m and RS s/m. Increasing µ decreases the SLIF
neuron’s excitability and increasing σ increases its dynamic
range. Figure 1A shows the input-output function of the SLIF
neuron when parameterized to reproduce data for a cat ANF
(Miller et al., 1999).

In the case of a monophasic stimulus, it has been hypothesized
that the RS is a characteristic of the neuron and does not depend
on stimulus duration (Verveen and Derksen, 1965). Like the real
neuron, the RS of the SLIF neuron does not depend on stimulus
duration.

Strength-Duration Function
The threshold level of a monophasic stimulus pulse depends on
its duration, with greater durations incurring lower thresholds.
The strength-duration function relates stimulus duration to
threshold level and is often summarized by two measures:
rheobase and chronaxie. As the stimulus duration increases, the
threshold level reaches an asymptotic value—the rheobase. The

Frontiers in Computational Neuroscience | www.frontiersin.org 4 February 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Horne et al. Modeling Auditory Nerve Electrical Stimulation

FIGURE 1 | The SLIF neuron may be parameterized to quantitatively

reproduce input-output and strength-duration data. (A) The input-output

function of the SLIF neuron (solid line) fitted to data (open circles) from a cat

ANF (Miller et al., 1999). The stimulus is a monophasic pulse (40µs duration)

presented in isolation. (B) The monophasic strength-duration function of the

SLIF neuron (solid line) fitted to data (open circles) from a cat ANF (van den

Honert and Stypulkowski, 1984).

stimulus duration that has a threshold level of twice the rheobase
is the chronaxie. Measures of the chronaxie and strength-
duration functions of cat ANFs were made by van den Honert
and Stypulkowski (1984). They found that the threshold level Ithr ,
when measured in amperes, was well predicted by the equation

Ithr =
I0

1− exp(−kd)
, (7)

where d is the stimulus duration, in seconds, I0 is the rheobase,
in amperes, and log(2)/k is the chronaxie, in seconds. The form
of Equation (7) is consistent with other studies of neurons
(e.g., Lapicque, 1907; Dean and Lawrence, 1985). The strength-
duration function of the SLIF neuron has the same form, with
k = 1/τ (Hill, 1936). Inverting the equation gives the model
parameter τ in terms of the chronaxie, allowing the model
to reproduce the chronaxie of an arbitrary ANF. Figure 1B
shows the strength-duration function of the SLIF neuron when
parameterized to reproduce data from a cat ANF (den Honert
and Stypulkowski, 1984).

Temporal Response Properties
The latency of the ANF’s response to a stimulus is defined as
the delay between the onset of the stimulus and the observation
of the action potential by the recoding electrode. It is stimulus-
dependent and stochastic in nature. The jitter of the ANF’s
response is defined as the standard deviation of the latency.
Figure 2 plots mean latency (Figure 2A) and jitter (Figure 2B)
for a cat ANF’s response to a brief (40µs) monophasic stimulus
(Miller et al., 1999). Increasing stimulus level reduces both the
mean latency and the jitter of the response. Also plotted is
the mean latency and jitter of the SLIF neuron under identical
conditions. The SLIF neuron lacks the extent of temporal
stochasticity that is observed in the ANF (jitter at threshold level
is 1µs for the model and 112µs for the ANF). Further, the
mean latency is under-predicted by the SLIF neuron (latency at
threshold level is 38µs for the model and 681µs for the ANF)
and does not show the dependence on stimulus level that is
seen in the ANF. It is not possible to parameterize the SLIF
neuron to reproduce these temporal response properties whilst
simultaneously maintaining the input-output and strength-
duration functions that have already been fitted to data from
cat ANFs. These failings of the SLIF neuron have been noted
previously (Hamacher, 2004; Fredelake and Hohmann, 2012;
Goldwyn et al., 2012) and are addressed by our extension to
the SLIF neuron in Section Temporal Leaky Integrate and Fire
Neuron.

Biphasic Response Properties
The threshold level of a cathodic pulse is elevated by the inclusion
of a trailing anodic phase, transforming it into a cathodic-
anodic biphasic pulse (Gorman and Mortimer, 1983; Shepherd
and Javel, 1999; Miller et al., 2001). As the IPG is increased,
the threshold level tends toward that of the cathodic phase
alone, reaching its asymptote after ∼250µs (Shepherd and Javel,
1999). The SLIF neuron is fundamentally unable to reproduce
this increase in threshold level associated with cathodic-anodic
biphasic stimulation. A threshold crossing, if one occurs, will
always occur during the excitatory, cathodic current. If the
threshold crossing occurs, then it cannot be undone by the
trailing, anodic phase. If a threshold crossing does not occur
during the leading cathodic phase, then it cannot occur during
the trailing anodic phase. Thus, any trailing, anodic current
present in a stimulus has no effect on the threshold level of that
stimulus in the SLIF neuron.

Summary
This section has introduced the SLIF neuron and shown that
it may be analytically parameterized to reproduce the strength-
duration and input-output functions of the ANF’s response to
a monophasic stimulus. The ease with which these important
response statistics may be fitted to data makes the SLIF neuron an
attractive candidate for modeling the response of the electrically
stimulated ANF. However, we have also shown that the latency
distribution of the SLIF neuron does not reproduce that of
the ANF and that the SLIF neuron is unable to respond to a
cathodic-anodic biphasic stimulus in a way that mimics the ANF.
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FIGURE 2 | The SLIF neuron does not reproduce the temporal

response statistics of the ANF or their dependence on stimulus level.

(A) Mean latency, (B) Jitter of the responses to a monophasic stimulus (40µs

duration) for the SLIF neuron (solid lines) and a cat ANF (Miller et al., 1999;

open circles). The stimulus levels span the dynamic range of the ANF. The cat

ANF data used in Figure 1A and in this figure all come from the same ANF.

Note the change in ordinate scale.

TEMPORAL LEAKY INTEGRATE AND FIRE
NEURON

In this section, we extend the SLIF neuron to reproduce the
temporal properties of the ANF’s response to a monophasic
stimulus. We do so by introducing a stochastic delay between
the time of threshold crossing and the time of spiking. The delay
has no effect on the probability of the neuron responding to a
stimulus, which is unchanged from that of the SLIF neuron. As
such, the input-output and strength-duration functions of the
SLIF neuron are preserved. We refer to the resulting model as
the temporal LIF (TLIF) neuron.

Model Assumptions
The TLIF neuron makes a number of assumptions regarding
how the ANF responds to the stimulus. We introduce these
assumptions here, prior to providing a description of the model.

Predicting the Latency Distribution from the Firing

Probability
We assume that the latency distribution of the ANF’s response
to a stimulus is well predicted by the probability of the
stimulus obtaining a response. Thus, any changes in latency
with the stimulus follows directly from the change in firing
probability. We further assume that the latency distribution is
well approximated by a Gaussian distribution.

The Action Potential Initiation Period
When a neuron is depolarized sufficiently to evoke an
action potential, a delay occurs between the membrane being
depolarized by the stimulus and the action potential being
generated. During this delay, further stimulation can continue to
affect the time at which the action potential is generated (van den
Honert and Mortimer, 1979; Miller et al., 2001). We refer to this
delay as the action potential initiation period.We assume that the
duration of the action potential initiation period is stochastic and
stimulus-dependent, with its variability equal to the variability of
the spike timing that is observed by the recording electrode.

Model Description
Biophysically, the generation of an action potential is a
continuous process occurring over a time course of hundreds
of microseconds. Stimulation occurring during this time can
continue to affect the latency distribution of the response (van
den Honert and Mortimer, 1979). In the SLIF neuron, however,
the action potential is considered a discrete moment of threshold
crossing after which further stimulation has no effect. To allow
the stimulus to continue to affect the latency distribution of
the response after a threshold crossing, we discretize the action
potential into three epochs. The first epoch, modeled by t0,
is the moment at which the stimulus depolarizes the ANF,
opening enough sodium channels to create a self-sustaining
depolarization, so that an action potential will be generated in
the absence of further stimulation. It signifies the start of the
action potential initiation period. The second epoch, modeled
by the variable t1, is the moment at which the action potential
is irrevocably generated. This corresponds to the points at
which sufficient sodium channels are open that action potential
generation cannot be influenced by further stimulation. It
signifies the end of the action potential initiation period, which
is thus modeled by the interval [t0, t1]. After its initial generation,
the action potential is conducted centrally by the axon until it
is observed by the recording electrode, an event we refer to as
action potential observation. The third epoch, modeled by the
variable tspk, is the moment of action potential observation, when
the extracellular potential at the recording electrode exceeds the
threshold for spike detection.

As previously defined in Section Model Description, t0 is the
time at which a threshold crossing occurs in the model. Upon
a threshold crossing occurring in the TLIF neuron, a value is
generated for the variable t1 such that the duration of the delay
between t0 and t1 is exponentially distributed with a stimulus-
dependent variance. A value is then generated for the variable tspk
so that the duration of the delay between t0 and tspk has a normal
distribution with a stimulus-dependent mean and variance. The
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variance is the same as for t1, though the mean is considerably
larger so as to emulate the effects of axonal conductance on
latency.

The dependence of t1 and tspk on the stimulus is achieved
by use of two empirically-derived functions: lat(p) and jit(p),
both of which are plotted in Figure 3. lat(p) predicts the mean
delay between the start of the action potential initiation period
and the moment of action potential observation in the ANF
stimulated so as to evoke an action potential with probability
p. jit(p) is similar, but predicts the standard deviation of the
action potential initiation period. Both functions are obtained by
interpolating empirical data (Miller et al., 1999) collected from
a cat ANF. For the TLIF neuron to use these functions, it must
predict the probability of the stimulus evoking an action potential
in the ANF. The stimulus signal I may include an arbitrarily
shaped current waveform extending back in time, but in the
model the times t1 and tspk are influenced only by the current
occurring during the associated action potential initiation period,
i.e., the interval [t0, t1]. The latency of the TLIF neuron is thus a
function of the probability of the membrane potential exceeding
the threshold during the interval [t0, t1], which may be different
to the probability at t0. In the next section, we show how this
probability is derived. In the sections that follow, we show how it
is used to generate t1 and tspk.

Probability of the Membrane Potential Exceeding the

Threshold during the Interval [t0, t1]
The probability of the membrane potential exceeding the
threshold during the interval [t0, t1] is given by the probability
that V(s) > θ , where s is the time at which V is maximal within
[t0, t1]. Because the lower bound of this interval, t0, is the time of
threshold crossing, it must be the case that V(t0) is greater than
V(s), for all values of s less than t0. Therefore, the lower bound of
the interval is redundant and may be omitted without affecting
the probability.

Let the probability of the membrane potential exceeding the
threshold be:

PTLIF (t) = Pr(Vpeak > θ) = 8

(
Vpeak − µ

σ

)
, (8)

where Vpeak is the maximum voltage within the interval [0, t],
given by

Vpeak = max
s∈[0, t]

V(s), (9)

and 8 is the Gaussian CDF (recalling that θ is a normally-
distributed random variable with meanµ and standard deviation
σ ). The probability of the membrane potential exceeding the
threshold during the interval [t0, t1] is then given by PTLIF(t1).

Generation of t1, the End of the Action Potential

Initiation Period
The variable t1 models the time at which the action potential
initiation period ends. This section describes the algorithm used
by the TLIF neuron to generate a value for t1 such that the delay
between t0 and t1 has an exponential distribution with standard
deviation that approximates the jitter of the ANF’s response to

FIGURE 3 | Parameterization of the functions lat (solid line, A) and jit

(solid line, B) from empirical data. The function lat is fitted to the mean

latency of an ANF’s response to a 40µs monophasic pulse (Miller et al., 1999;

open circles, A). The action potential initiation period is assumed to begin at

the time of stimulus cessation, and so lat is chosen to under-predict the data

by 40µs. We have also plotted lat+40µs (dashed line, A) to better show the

fit to data. The function jit is fitted to the jitter of the same ANF’s response to

the same stimulus (Miller et al., 1999; open circles, B).

the same stimulus. The algorithm maintains causality so that at
simulation time t, the model only has access to the membrane
potential up until time t.

From the time of threshold crossing onwards, the TLIF
neuron generates time-varying estimates of t1. Let Y be an
exponentially-distributed (unit rate constant) random variable.
The estimate of t1 made at simulation time t is referred to as t̂1 (t)
and given by

t̂1 (t) = t0 + Y jit (PTLIF (t)) . (10)

The final value for t1 is the time at which t first reaches or exceed
t̂1 (t), at which point the action potential initiation period has
already come to an end (at time t̂1 (t)) and so its end time is
no longer in flux. The time t1 is thus a fixed point of t̂1; that is,
t̂1 (t1) = t1. Because jit(PTLIF(t)) is non-negative and increases
monotonically with t, the function t̂1 has a single, unique, fixed
point: t1. The fixed point was found by the bisection method.

Empirically, when responding to a single, brief (<100ms)
stimulus presented at a level sufficient to evoke a response with
probability p, the TLIF neuron generates values of t1 with a
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standard deviation close to jit(p), while also ensuring that any
stimulus current occurring after t1 has no effect on the value of
t1. As an example of the algorithm, Figure 4 plots the distribution
of values taken by t1 in response to a short-duration monophasic
stimulus.

Generation of tspk, the Time of Action Potential

Observation
After the action potential initiation period ends at time t1, the
TLIF neuron generates tspk, modeling the time of action potential
observation, taking into account the delay associated with axonal
conductance. The time tspk is generated so that, across repeated
trails to the same stimulus, the delay between t0 and tspk is
normally distributed with mean and standard deviation given by
lat(p) and jit(p), respectively, where p is the probability that the
membrane potential exceeds threshold during the interval [t0, t1].
Formally,

tspk = t0 + X jit
(
p
)
+ lat

(
p
)
, (11)

where p = PTLIF (t1) and X is a standard normal random
variable.

FIGURE 4 | Temporal distributions of the TLIF neuron’s response to a

threshold-level monophasic stimulus (40µs duration, 5000

presentations). Histograms show the distributions taken by model variables

t1 and tspk . Also marked is the mean value of t0 (open circle), the stimulus

pulse (solid line; arbitrary ordinate units). The model parameter ϕ, which delays

t1, is zero in the TLIF model but is shown here for consistency with the BLIF

model. The variability of t0 is small (1.2µs) and omitted from the plot for clarity.

If the model were to be further stimulated during or before the light gray region

(t1), the distribution of tspk would be affected. However, if stimulated after the

light gray region, the distribution of tspk would be unaffected.

Relationships between Model Variables
To summarize the flow of information in the TLIF neuron,
Figure 5 shows how the different model parameters, variables,
and functions are related to one another. The input to the model
is the current signal I and the final output is the time of action
potential observation, tspk.

Model Response Properties
The TLIF neuron responds to a stimulus with the same
probability as the SLIF neuron: upon a threshold crossing, both
models are guaranteed to emit a spike. Thus, the input-output
and strength-duration functions of the SLIF neuron are preserved
in the TLIF neuron, without the need to change any of the SLIF
neuron’s parameters. However, the time tspk of the spiking in
the TLIF neuron is changed so as to better reflect the latencies
observed empirically in the ANF.

Miller et al. (1999) recorded the mean latency and jitter of
the responses of an ANF to a monophasic stimulus presented
at a range of stimulus levels spanning the dynamic range of
the ANF. Their results are plotted in Figure 6, along with the
corresponding results from the TLIF neuron. The TLIF neuron
is able to quantitatively reproduce the mean latency and jitter of
the ANF at all stimulus levels. Regardless of stimulus level, the
latency distribution of the TLIF neuron is well approximated by
a Gaussian distribution, a close approximation to that of the cat
ANF (Javel and Shepherd, 2000).

FIGURE 5 | Data dependency in the TLIF neuron. The entities are the

functions, variables, and parameters of the model. Each entity points to those

on which its value depends. For example, tspk depends on t1, t0 and PTLIF .

Boxed Boxes entities with sharp edges are model variables and boxed entities

with rounded edges are functions. The unboxed entities X, Y, and Z are

random variables. The other unboxed entities are model parameters.
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FIGURE 6 | The TLIF neuron reproduces the temporal response

statistics of the ANF and their dependence on stimulus level. (A) Mean

latency (solid line). (B) Jitter (solid line) of the TLIF neuron’s responses to a

monophasic stimulus (40µs duration) presented at levels spanning the

neuron’s dynamic range. The mean latency and jitter data used in Figure 2 are

also plotted (Miller et al., 1999; open circles).

Summary
In Section Temporal Leaky Integrate and Fire Neuron, we
extended the SLIF neuron so as to model the action potential
initiation period of the ANF, resulting in the TLIF neuron.
Stimulus current occurring during the action potential initiation
period continues to affect the latency of the spike, although the
spike’s probability is unaffected. The TLIF neuron predicts the
latency distribution with which the ANF would have responded
to the stimulus by using the probability that the membrane
potential exceeds threshold during the action potential initiation
period. By doing so, the TLIF neuron is able to quantitatively
reproduce the mean and standard deviation of the latency of the
ANF’s response to a monophasic stimulus, and the dependence
of both on stimulus level.

BIPHASIC LEAKY INTEGRATE AND FIRE
NEURON

Under cathodic-anodic biphasic stimulation, the SLIF neuron is
not affected by the trailing, anodic phase of the stimulus because
any threshold crossing will always occur before the onset of

the anodic phase. The TLIF neuron models the action potential
initiation period by introducing a delay after threshold crossing
during which stimulation may continue to influence the time of
the generated spike. However, the probability of a spike being
emitted is unchanged during this delay, and so the TLIF neuron
suffers the same shortcoming in responding to a cathodic-anodic
biphasic stimulus as the SLIF neuron. In this section, we further
extend the model so that anodic current is able to affect the
probability of the spike being generated. By doing so, we are able
to reproduce the response statistics of a cathodic-anodic biphasic
stimulus, without disrupting the monophasic response statistics.
We refer to the final model as the biphasic LIF (BLIF) neuron.

Model Assumptions
We assume that spiking may be canceled by anodic current up
until the end of the action potential initiation period at time
t1. The ability for anodic currents to abolish an action potential
that would have otherwise been generated has been observed
experimentally in animal preparations (Tasaki, 1956; van den
Honert and Mortimer, 1979; Weitz et al., 2011).

Model Description
The BLIF neuron is similar to the TLIF neuron: the time course of
the action potential is modeled by the same three variables: t0, t1,
and tspk. The equations used to generate the values of t1 and tspk
are parallels to those used by the TLIF neuron. The BLIF neuron
differs from the TLIF neuron in that a spike may be canceled
after a threshold crossing occurs. A spike is canceled if sufficient
anodic charge is delivered during its associated action potential
initiation period.

Generation of t1, the End of the Action Potential

Initiation Period
The method by which the BLIF neuron generates the time t1 is
similar to that of the TLIF neuron. However, in the BLIF neuron,
it becomes useful to set a minimum possible duration for the
action potential initiation period. To do so, we introduce a new
model parameter: ϕ. The time t1 is now given by

t1 = max (ϕ, t), (12)

where t is such that t̂1 (t) = t and t̂1 is as defined previous. As
we will show when analyzing the response properties of the BLIF
neuron, increasing ϕ has the effect of decreasing the probability
of a cathodic-anodic biphasic stimulus evoking a spike.

Spike Cancelation
Given that a threshold crossing occurred at time t0 and the
corresponding action potential initiation period ends at time t1,
the impending spike is canceled if

∫ t

t0

I (s) ds > 0, for any t ∈ [t0, t1] . (13)

That is, a spike is canceled if the total charge delivered during the
action potential initiation period ever becomes positive (anodic).
In the event of spike cancelation, the model terminates as though
no threshold crossing occurred.
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Probability of Spiking in the BLIF Neuron
To determining whether a spike will occur, the same methods
as the TLIF model are used to generate t1, which depends on
PTLIF . But whether a spike actually occurs also depends on the
cancelation. This effectively modifies the observed probability
of firing away from PTLIF . In the BLIF neuron, this is given by
PBLIF(t1), the probability that the membrane potential exceeds
threshold during the interval [t0, t1] and that the resulting spike
is not subsequently canceled. This actual firing probability is
required in order to infer the latency distribution with which to
respond.

Let TQ0(t) denote the time at which the charge delivered by the
stimulus since time t first becomes positive (anodic). Given that
a threshold crossing occurs at time t0, the associated spike will
be canceled if TQ0 (t0) < t1. If Pt1 (t; t0) denotes the probability
that t1 occurs before time t, given t0, then the probability of
spike survival (i.e., no cancelation) is Pt1

(
TQ0 (t0) ; t0

)
. In a

single simulation, t0 has a fixed value. However, across repeated
simulations to the same stimulus, t0 has a degree of variability
which affects the probability of spike cancelation. Therefore, the
probability derived by Pt1 must be integrated across time to
account for the variability of t0. Formally,

PBLIF (t) =

t∫

0

P′TLIF (s) Pt1
(
TQ0 (s) ; s

)
ds, (14)

where P′TLIF denotes the derivative of PTLIF . The function TQ0 (t)
is defined as the smallest value of s for which

∫ s
t I (u) du < 0. If

no such value for s exists, then TQ0 (t) = ∞.
The general definition of Pt1 is given by

Pt1 (t; t0) =

∫ t

t0

λ(s)e−(s−t0)λ(s)ds+

∫ t

t0

(s− t0)e
−(s−t0)λ(s)λ′(s) ds,

(15)
where λ(s) = 1/jit(s) and λ′ is the derivative of λ. For
computational efficiency, it is beneficial to find a closed form
expression for Pt1 . This is made possible by noting that λ

is monotonically increasing, which allows for the simpler,
computationally efficient formulation,

Pt1 (t; s) =

{
1− exp

(
−

t−s−ϕ

jit(PTLIF(t))

)
, t ≥ s+ ϕ

0, t < s+ ϕ
. (16)

Generation of tspk, the Time of Spiking as Observed

by the Recording Electrode
The time tspk at which the spike is observed by the recording
electrode in the BLIF neuron is given by

tspk = t0 + X jit
(
p
)
+ lat

(
p
)
, (17)

where p = PBLIF (t1) and X is a standard normal random
variable. Equation (17) is identical to the corresponding Equation
(11) in the TLIF neuron, but with the function PTLIF replaced by
the function PBLIF .

Relationships between Model Variables
Figure 7 summarizes the flow of information in the BLIF neuron.
As in the TLIF neuron, the input to the model is the current
signal I. However, unlike the TLIF neuron, the BLIF neuron has
two outputs: the decision as to whether or not cancelation occurs
and the time of action potential observation, tspk. In the case of
cancelation, no value is generated for tspk.

Model Response Properties
In the absence of anodic current, the probability of a stimulus
evoking a spike in the BLIF neuron is unchanged from that
in the TLIF neuron (without any anodic current, there is no
possibility of a spike being canceled). Similarly, the latency
distribution of the BLIF neuron’s response to a monophasic
stimulus is negligibly different to that of the TLIF neuron’s (as
will be demonstrated in Section Monophasic Response Latency).
Therefore, with the exception of ϕ, which is specific to the BLIF
neuron—the parameterization of the BLIF neuron remains as it
was in the TLIF neuron and the BLIF neuron preserves the fitting
of the input-output, strength-duration, latency-level, and jitter-
level functions, in all cases reproducing empirically-derived data
from cat ANFs.

Monophasic Response Latency
If the stimulus signal I contains only excitatory, cathodic current
and ϕ = 0, then the equations defining t1 and tspk in the BLIF

FIGURE 7 | Data dependency in the BLIF neuron. The notation is as in

Figure 4. Each entity points to those on which its value depends. For

example, tspk depends on t1, t0, and PBLIF . Entities which are present in the

BLIF neuron but not the TLIF neuron are shaded gray. If the spike is to be

canceled, then no value is generated for tspk . Comparing this diagram of the

BLIF neuron against that of the TLIF neuron in Figure 5 shows the similarities

between the two models.
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neuron become equivalent to those in the TLIF neuron. In the
case of t1, this is a trivial consequence of Equation (12). The
definitions of tspk in the TLIF (11) and BLIF (17) neurons are the
equivalent if PBLIF = PTLIF . If I is a monophasic stimulus, then
TQ0(t)=∞ for all t, and so Pt1

(
TQ0 (t) ; t

)
= 1 for all t. Equation

(14) thus becomes

PBLIF (t) =

∫ t

0
P′TLIF (s) ds = PTLIF (t) , (18)

and so the definitions of tspk in the TLIF and BLIF neurons are
equivalent if I is a monophasic stimulus.

Effect of ϕ on the Latency Distribution of the

Response to a Monophasic Stimulus
We now demonstrate that even when ϕ > 0, its effect on the final
latency distribution (i.e., the distribution of tspk) is negligible.
We analyzed the latency of the response of the BLIF neuron to
a monophasic stimulus (40µs pulse duration) when ϕ = 1µs
and ϕ = 60µs, corresponding to biphasic/monophasic threshold
differences of 0.95 and 11.7 dB respectively. For both values of
ϕ, we recorded mean latency and jitter across 5 stimulus levels,
evoking spikes with probabilities between 0.05 and 0.95. The
difference in mean latency and jitter were noted for each stimulus
level. The maximum difference in mean latency was 3.3µs (2.6×
SE). The maximum difference in jitter was 1.5µs (1.4 × SE). We
therefore conclude that the effect of ϕ on the latency distribution
of the response is negligible.

Effect of ϕ on Biphasic Threshold
In the ANF, the threshold of a cathodic-anodic biphasic stimulus
is elevated relative to that of an equivalent monophasic stimulus
(Shepherd and Javel, 1999; Miller et al., 2001). Increasing the
ϕ parameter of the BLIF neuron increases the thresholds of
cathodic-anodic biphasic stimuli, while leaving the thresholds
of monophasic stimuli unchanged. Figure 8 quantifies the effect
of ϕ on the biphasic/monophasic threshold difference. To
understand why ϕ affects the threshold of a biphasic stimulus, we
note that a spike is canceled if t1 > TQ0 (t0). The effect of ϕ is to
ensure that t1 is greater than t0 + ϕ, and so increasing ϕ increases
the probability that t1>TQ0 (t0), thus increasing the probability
of spike cancelation.

Biphasic Input-Output Function
Figure 9 plots input-output functions of the BLIF neuron and a
cat ANF (Shepherd and Javel, 1999) in response to a cathodic-
anodic biphasic pulse presented at various IPGs. In both the
model and the ANF, increasing the IPG of the stimulus has the
effect of shifting the entire curve toward lower thresholds. The
model parameter ϕ was chosen so that the curves of the model
and the data overlap at the mean when the IPG is 0.

The input-output functions shown in Figure 9 are
summarized in Figure 10 by plotting the threshold (Figure 10A)
and RS (Figure 10B) with respect to IPG. The thresholds of
the ANF are quantitatively predicted by the model at all IPGs.
The RS of the model approaches its monophasic value of 5% as
the IPG increases beyond ∼100µs. However, the ANF has an
average RS of 7%, with no apparent dependence on IPG. This is
in part because the monophasic RS of the model was chosen to

FIGURE 8 | Plot showing how the threshold of a cathodic-anodic

biphasic stimulus depends on the model parameter ϕ in the BLIF

neuron. The ordinate is given in dB relative to the threshold of a monophasic

stimulus of 40µs duration. The curve is generated for a biphasic stimulus of

40µs/phase duration and zero IPG.

reproduce data from a different neuron to that being compared
presently (see Figure 1A; to our knowledge, no study has been
published that contains all the data necessary to parameterize
the model using results from only a single neuron). To show
that the BLIF neuron can exhibit larger values of RS, it was
re-parameterized (by changing σ) to respond to a monophasic
stimulus with a RS of 7%. The biphasic input-output functions
resulting from this new parameterization are summarized by
the dashed lines Figures 10A,B. Changing σ did not affect the
monophasic strength-duration function of the model, or the
mean latency or jitter of the model’s response to a monophasic
stimulus. Regardless of the monophasic RS, the model shows a
dip in RS at short IPGs (< ∼100µs), a trend that is not present
in the ANF. At its peak deviation, the RS of the model is 4/10-ths
that of the mean RS of the data.

A caveat in using the data from Shepherd and Javel (1999)
is that they were obtained with a bipolar electrode, and thus,
there is no clear definition as to which polarity of current is
anodic and which is cathodic. The model presented here is a
point-neuron model that is excited only by cathodic current.
The present data was used due to lack of availability of other
monopolar ANF data investigating the effect of the IPG on the
threshold of a cathodic-anodic biphasic stimulus. We justify our
use of the bipolar data by noting that Shepherd and Javel report
that both polarity orders produced similar results with negligible
(0.2 dB) changes in threshold. Further, the trends in the data are
comparable to those from other studies of single neurons (from
animal preparations and computer models) where monopolar,
cathodic-anodic biphasic stimulation was used (van den Honert
and Mortimer, 1979; Gorman and Mortimer, 1983; Hofmann
et al., 2011; Weitz et al., 2011, 2014).

Pseudo-Monophasic Threshold
The phases of a biphasic stimulus do not need to have
equal duration for the stimulus to be charge balanced. A
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FIGURE 9 | Input-output functions for the BLIF neuron (A) and a cat

ANF (Shepherd and Javel, 1999; B), both stimulated with a

cathodic-anodic biphasic stimulus of 100µs/phase duration at various

IPGs (dotted line: 200µs; dash-dotted line: 80µs; dashed line: 20µs;

solid line: 0µs). The means of the input-output functions of the cat ANF are

well predicted by the BLIF neuron (see Figure 10A), although the slopes are

steeper in the BLIF neuron than in the cat ANF (see Figure 10B). Stimulus

levels are given in decibels relative to the threshold of a 100µs duration

monophasic stimulus (the threshold for the ANF is projected from the available

data; see Figure 10A).

pseudo-monophasic stimulus has been proposed for use by
cochlear implants (e.g., van Wieringen et al., 2008), where the
duration of one phase, typically the second, is extended relative
to the other. The amplitude of the extended phase is reduced to
maintain charge balance.

Figure 11A plots the threshold of the BLIF neuron in response
to a cathodic-anodic pseudo-monophasic stimulus of varying
anodic-phase duration (APD, varying from 40 to 500µs). The
BLIF neuron quantitatively predicts data from a cat ANF (Miller
et al., 2001) at short APDs. However, as the APD increases
beyond ∼200µs, the BLIF neuron over-predicts threshold by a
maximum of 0.47 dB (APD = 748µs). This over-prediction is
small when compared to the 5 dB range in the threshold data.
The threshold of the BLIF neuron also returns to its monophasic
value, however the convergence becomes much slower than in
the ANF once the APD exceeds∼200µs. At an APD of 5ms, the
BLIF neuron’s threshold is 0.24 dB from its monophasic value. It
is also worth noting that phase durations longer than a few 100µs
would be very unusual in practice.

FIGURE 10 | (A) Threshold and (B) RS of the BLIF neuron (solid lines) and a

cat ANF (open circles; Shepherd and Javel, 1999) depend on the IPG of a

cathodic-anodic biphasic stimulus (100µs/phase duration). Also plotted are

the results after re-parameterizing the model to have a monophasic RS of 7%

(dashed line) by using σ = 7.315µV.

Biphasic Strength-Duration Function
The threshold of a biphasic stimulus also depends upon its overall
duration; increasing its duration—by equally increasing the
duration of both its phases—decreases its threshold. Figure 11B
plots the strength-duration functions of the BLIF neuron and a
cat ANF (Shepherd et al., 2001), each using a cathodic-anodic
biphasic pulse as the stimulus. The BLIF neuron predicts the
trend that increasing the phase duration decreases the threshold.
The BLIF neuron does not precisely predict the data, differing
with a root-mean-square deviation of 2.5 dB. This value is small
in comparison to the range in the threshold data (21.5 dB).

Temporal Response Statistics
The latency distribution of the ANF’s response to a biphasic
stimulus depends on stimulus level, with higher levels incurring
less jitter (Javel and Shepherd, 2000). The underlying assumption
of the TLIF neuron is that the latency distribution of the response
is well predicted by the firing probability alone, regardless
of the shape of the current pulse waveform (the validity of
this assumption is discussed in Section Latency Distribution’s
Dependence on Firing Probability). In Figure 12, we show that
the temporal statistics (mean latency, Figure 12A, and jitter,
Figure 12B) of the BLIF neuron’s response to a monophasic
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FIGURE 11 | The dependence of threshold on phase duration under

cathodic-anodic biphasic stimulation. (A) The effect on threshold of

increasing the anodic-phase duration in the BLIF neuron (solid line) and an

ANF (Miller et al., 2001; open circles). The stimulus is an asymmetric,

cathodic-anodic biphasic pulse (40µs leading-phase duration) of varying

anodic-phase duration. The amplitude of the anodic phase is adjusted to

maintain charge balance. (B) Strength-duration functions of the BLIF neuron

(solid line) and a cat ANF (Shepherd et al., 2001; open circles) when stimulated

with a symmetric, cathodic-anodic biphasic stimulus (0µs IPG).

stimulus and cathodic-anodic biphasic stimuli of arbitrary shape
are well predicted by firing probability, consistent with the
assumption of the TLIF neuron.

Summary
The BLIF neuron responds to a cathodic-anodic biphasic
stimulus with an increased threshold relative to that of a
monophasic stimulus. The extent of this increase in threshold can
be controlled by setting the ϕ parameter of the model. The effect
of ϕ on the monophasic response statistics is negligible.

The BLIF neuron quantitatively predicts the thresholds of
a cat ANF responding to a biphasic stimulus across a range
of IPGs between 0 and 200µs. The BLIF neuron correctly
predicts that the threshold approaches its asymptote as the
IPG extends beyond ∼200µs. Also predicted is the effect on
threshold of increasing the duration of both phases of a cathodic-
anodic biphasic stimulus. Further, the effect on threshold of only
increasing the duration of the second phase (while adjusting the
amplitude of the second phase to maintain charge balance) is also
predicted at durations below∼200µs.

FIGURE 12 | The temporal response statistics of the BLIF neuron are

well predicted by firing probability, regardless of the stimulus pulse

shape. (A) Mean latency and (B) jitter of the BLIF neuron’s response to

various configurations of a cathodic-anodic stimulus (solid lines: phase

duration: 40µs/phase, IPG: 0µs; dashed lines: phase duration: 20µs/phase,

IPG: 50µs; dash-dotted lines: phase duration: 80µs/phase, IPG: 40µs) and a

monophasic stimulus (40µs duration; dotted lines). Also plotted are the

monophasic data with which the model was parameterized (open circles;

40µs pulse duration; Miller et al., 1999).

Consistent with the assumptions of the TLIF neuron, the
latency distribution of the BLIF neuron’s response to a stimulus is
well predicted by the probability of the stimulus evoking a spike,
regardless of its shape. If the stimulus is monophasic, then the
BLIF neuron maintains the input-output and strength-duration
functions of the SLIF neuron.

DISCUSSION

In this paper, we extended the SLIF neuron so as to reproduce
the temporal response statistics of the ANF’s response to a
monophasic stimulus, resulting in the TLIF neuron. We then
further extended the TLIF neuron to realistically reproduce how
the threshold of the response to amonophasic stimulus is affected
by the introduction of a trailing, anodic phase. This resulted in
the BLIF neuron. An important property of both the TLIF and
the BLIF neuron is that they do not affect the fitted response
statistics of the models that they extend. Thus, the TLIF neuron
maintains the input-output and strength duration functions of
the SLIF neuron, and the BLIF neuron responds to a monophasic
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stimulus with the same latency distribution and firing probability
as the TLIF neuron. Further, the response of the BLIF neuron
to a biphasic stimulus has the same latency distribution as that
of the TLIF neuron’s response to a monophasic stimulus of equal
firing probability. These properties of the TLIF and BLIF neurons
makes them simple to parameterize so as to reproduce ANF data.

Latency Distribution’s Dependence on
Firing Probability
The assumption underlying both the TLIF and BLIF neurons is
that the mean latency distribution of the response to a stimulus
is well predicted by probability of that stimulus evoking a
response. If the assumption is correct, then the latency and jitter
of the responses to two distinct stimuli should be the same,
provided the stimuli are all presented at threshold level. We
assess the validity of the assumption by comparing the mean
latencies and jitters of the responses of cat ANFs stimulated by
monophasic and biphasic stimuli presented at threshold level,
using data collected by Miller et al. (2001). The mean latency
of the responses to the biphasic stimulus was 88% that of the
responses to the monophasic stimulus. The difference in jitter
of the responses to the monophasic and biphasic stimuli was
not statistically significant. The difference in threshold between
the monophasic and biphasic stimuli was 4 dB, or 3.5 times the
monophasic dynamic range (measured as the increase in stimulus
level required to increase the probability of firing from 10 to
90%). While the assumption mispredicts the mean latency data
by 12%, it correctly predicts the jitter data.

Comparison to Previous Models
The TLIF and BLIF neurons are extensions to the well-studied
leaky integrate and fire (LIF) neuron, which has formed the
basis of many models of the electrically stimulated ANF (Stocks
et al., 2002; Hamacher, 2004; Chen and Zhang, 2007; Chen,
2012; Goldwyn et al., 2012). Of these models, only the Hamacher
model reproduces the temporal response statistics (mean latency
and jitter) of the auditory nerve fiber, and their dependence on
stimulus level. However, in the Hamacher model, the stimulus
is half-wave rectified (Fredelake and Hohmann, 2012), and thus,
it cannot reproduce the dependence of the threshold or the
temporal response statistics on the IPG and IPD.

The TLIF neuron bears similarities to the Hamacher model.
Both models use the probability of a spike being emitted to
derive a latency distribution with which to respond. However, the
TLIF neuron and the Hamacher model differ in how they predict
the probability of the stimulus evoking a response. The TLIF
neuron uses the probability of the membrane potential exceeding
threshold at any time during the action potential initiation
period. The Hamacher model, however, uses the membrane
potential at the moment the excitatory phase of the stimulus
ceases. This requires knowledge of the time of cessation, and
so affects its ability to respond to more complex stimuli, for
example a pulse train where each individual pulse is of a level
insufficient to evoke a response in isolation. Due to temporal
facilitation, the pulse train will evoke a response with high
probability. In such a case, the time of stimulus cessation is
no longer clearly defined. Further, pulses occurring during the

action potential initiation period will bring forward the time of
spiking while simultaneously reducing its temporal variability
(supporting evidence: Figure 6; Heffer et al., 2010). For this
reason, we were motivated to develop a model which would not
require direct information about the stimulus (such as the time
of excitatory-phase cessation), and which would allow the timing
of the response to be continuously affected by stimulation after
threshold crossing, during the action potential initiation period.

The model by Goldwyn et al. (2012) is a point-process
model that processes the membrane potential of the leaky
integrate and fire (LIF) neuron with a non-linearity to introduce
stochasticity to its input-output function. The resulting signal
can be interpreted as the probability density function of the
time of spiking, and is processed by a linear filter to introduce
temporal stochasticity. The model parameters are functions of
the time since last spiking, allowing refractory effects to be
modeled. While Goldwyn et al. only parameterize the jitter for
a stimulus presented at threshold level, they find empirically
that the stimulus level affects the jitter of the model similarly
to the jitter of the ANF. However, the mean latency of the
ANF’s response, and its dependence on stimulus level, is not
modeled.

The model of Goldwyn et al. may be parameterized to
quantitatively reproduce the response statistics of a range of
biphasic stimulus shapes. However, we found that once fitted
to a cathodic-anodic biphasic stimulus, increasing the IPG
above∼30µs had very little effect on the threshold of the model.
This is in contrast to the ANF, which is sensitive to changes in
IPG up to ∼250µs. The reason for the Goldwyn et al. model’s
rapid convergence to monophasic threshold is the same as the
reason for the SLIF neuron’s rapid convergence: the decision
as to whether or not a spike will be emitted occurs before the
trailing phase of the stimulus can have an effect on the firing
probability. It is in this respect that the BLIF neuron differs from
the previous phenomenological models that we are aware of: the
BLIF neuron introduces the possibility of spike cancelation after
spike initiation, allowing the trailing phase of a cathodic-anodic
biphasic stimulus to continue to affect the firing probability of the
response for much longer durations.

Spike Cancelation via Current Integration
The BLIF neuron is based on the assumption that a delay exists
between the initial depolarization of the ANF and the moment
at which the action potential is generated. During this delay, it
is assumed that the action potential may be canceled by anodic
current. By thismeans, the biphasic threshold is increased relative
to the monophasic threshold. This assumption is consistent
with a study by van den Honert and Mortimer (1979), who
propose that there exists a delay, the vulnerable period, between
the depolarization of the neural membrane and the opening
of the sodium ion channels. During the vulnerable period,
the activation of the sodium ion channels may be prevented
by anodic current, resulting in the abolishment of the action
potential. This view is later reaffirmed with reference to the cat
ANF by Miller et al. (2001), who propose that the continued
integration of the current during the vulnerable period results
in the increased threshold of biphasic stimuli. This is consistent

Frontiers in Computational Neuroscience | www.frontiersin.org 14 February 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Horne et al. Modeling Auditory Nerve Electrical Stimulation

with the BLIF neuron integrating the stimulus current during the
action potential initiation period and canceling the spike if the
net charge is negative.

There is one aspect of this mechanism which it not consistent
with the empirical data. Whilst RS does not vary with pulse
duration for monophasic stimuli (Verveen and Derksen, 1965),
it does for biphasic stimuli (Bruce et al., 1999). The BLIF inherits
this aspect of the response from the TLIF model. This means
that the model will fail to predict any variation in dynamic
range afforded by varying pulse duration. Although it is unclear
whether this would seriously limit the evaluation of different
stimulation strategies, this limitation should be borne in mind.
We note that RS varies relatively little over phase durations
typically used in CIs, and below a few 100µs. It is not clear
how the model could be modified to reproduce this. It may
indicate that the linear integration of current for the cancelation
mechanism is not correct. Nor is it clear why this is observed in
the data. Bruce et al. speculated that this could be due to the level
of noise at the initial site increasing with pulse width, or that the
site of action-potential initiation depends on pulse width in a way
that does not occur with monophasic stimuli.

Effect of Order on Biphasic Stimulation
It has previously been observed that the ANF responds with
similar threshold levels to biphasic stimuli, regardless of the
order of the opposite-polarity phases (Macherey et al., 2006),
and that the threshold of a biphasic stimulus depends on IPG
similarly, regardless of the phase order (Shepherd and Javel,
1999). This suggests that excitation by a biphasic stimulus occurs
similarly, regardless of the phase order. Supporting evidence for
this hypothesis can be found in Carlyon et al. (2005), where a
filter-basedmodel is used to predict human thresholds for stimuli
of varying IPG. The model predicts the same threshold for a train
of cathodic-anodic pulses as it does for a train of anodic-cathodic
pulses.

The BLIF neuron is formed around the hypothesis that spike
cancelation is responsible for the increased threshold of cathodic-
anodic biphasic stimuli. In the BLIF neuron, this hypothesis
is fundamentally only applicable if the excitatory, cathodic,
phase is leading, and so appears to be at odds with the results
from the literature. Here we outline how the hypothesis behind
the BLIF neuron may be consistent with the results from the
literature.

In an idealized axon, cathodic currents depolarize the
nodes of Ranvier proximal to the electrode, whereas anodic
current depolarize those distal to the electrode (Ranck, 1975;
Rattay, 1986). Depolarization due to cathodic current is more
efficient than depolarization due to anodic current. With this in
mind, a cathodic-anodic biphasic stimulus will depolarize-then-
hyperpolarize the nodes of Ranvier proximal to the electrode,
whereas an anodic-cathodic biphasic stimulus will depolarize-
then-hyperpolarize the nodes of Ranvier distal to the electrode—
but with less efficiency. Therefore, it could be the case that a
biphasic stimulus always excites the neuron by first depolarizing
the excited node of Ranvier (which may be distal or proximal to
the electrode), regardless of the order of the opposite-polarity
phases. If this is the case, the threshold differences between

cathodic-anodic and anodic-cathodic biphasic stimuli should be
well predicted by the threshold differences between cathodic and
anodic monophasic stimuli.

Pulse Train Response
This paper only considers the response of the neuron to a single,
brief, stimulus pulse. To be useful, the model must be capable
of responding to trains of pulses, such as those generated by
cochlear implants. There is no limiting factor preventing the
model from responding with a train of spikes. The model makes
no assumptions about the pulse shape, and after spiking or spike
cancelation, the model can be reset. The threshold of the model
can be elevated after spiking to emulate the relative refractory
period using a method similar to that described by Goldwyn et al.
(2012) and Hamacher (2004).
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