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After the discovery of grid cells, which are an essential component to understand how

the mammalian brain encodes spatial information, three main classes of computational

models were proposed in order to explain their working principles. Amongst them, the

one based on continuous attractor networks (CAN), is promising in terms of biological

plausibility and suitable for robotic applications. However, in its current formulation, it

is unable to reproduce important electrophysiological findings and cannot be used to

perform path integration for long periods of time. In fact, in absence of an appropriate

resetting mechanism, the accumulation of errors over time due to the noise intrinsic

in velocity estimation and neural computation prevents CAN models to reproduce

stable spatial grid patterns. In this paper, we propose an extension of the CAN model

using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To

validate our approach we used as input to the neural simulations both artificial data

and real data recorded from a robotic setup. The additional neural mechanism can

not only anchor grid patterns to external sensory cues but also recall grid patterns

generated in previously explored environments. These results might be instrumental for

next generation bio-inspired robotic navigation algorithms that take advantage of neural

computation in order to cope with complex and dynamic environments.

Keywords: grid cells, grid realignment, spatial information processing, continuous attractor network, sensory

integration

INTRODUCTION

Since the discovery of grid cells in the medial entorhinal cortex (MEC) in 2005 (Hafting et al. 2005),
three main classes of computational models were proposed in order to explain the underlying
neural mechanisms in this area of the brain. The oscillatory interference model is based on the
interaction of periodical theta rhythms that interfere with each other (Burgess et al., 2007). The
continuous attractor network (CAN) model relies on recurrent connectivity, which is able to
generate periodical bumps of activity on a 2D neuronal sheet that shift depending on the rat
velocity (Fuhs and Touretzky, 2006). A third class of models is based on self-organizing principles
to generate grid-like activity (Gorchetchnikov and Grossberg, 2007; Kropff and Treves, 2008).
All models are supported by experimental evidence, but at the same time fail to predict other
specific characteristics. As a consequence, the choice of a specific model directly depends on which
experimental evidence is considered the most important.
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In this work we focus on CAN models because they perform
path integration, as suggested by experimental evidence
(McNaughton et al., 2006) and do not require the generation
of precise velocity-controlled oscillators, whose biological
plausibility is still a matter of debate (Yartsev et al., 2011).
However, two important electrophysiological observations
highlight the limits of these models. First, CAN models are
currently unable to generate grids aligned with landmarks in
the environment. Experiments with rats exploring an arena
show that in different sessions the activity of a specific grid
cell produces the same spatial grid pattern in terms of spacing,
orientation, and phase (Hafting et al., 2005). CAN models can
generate grids with a constant spacing but their orientations
and phases depend on the initialization of the simulation and
not on specific features of the environment. Second, CAN
models perform path integration based on velocity signals. As a
consequence, the accumulation of errors in the velocity estimates
makes it impossible to reproduce a stable grid pattern in space
over long periods of time in absence of a corrective mechanism
(Burak and Fiete, 2009; Hardcastle et al., 2015).

According to experimental evidence, environmental
landmarks might be instrumental to anchor grid cell activity in
space (Derdikman et al., 2009). In principle, grid cell models
that perform path integration can exploit sensory information to
reset the accumulated error due to inaccurate velocity estimates
(Biegler, 2000). A possibility is that plastic connections from
sensory areas are continuously involved in this corrective action.
However, how exactly grid cells can align themselves with
external sensory cues is still an open question (Moser et al.,
2014). Hebbian learning was already used to successfully prevent
drifts of the activity bumps in a model of head direction cells
based on a 1-dimensional CAN (Skaggs et al., 1995). In this
model so called visual cells provided the necessary excitation
to appropriately affect the network activity and push it toward
the right configuration. More recently, Hardcastle et al. (2015)
showed that it is possible to stabilize the activity of grid cells
in a continuous attractor model by introducing border cells to
provide corrective spatial information. However, in this model
the strength of excitation is computed a priori depending on the
amount of grid network activity corresponding to the borders of
the arena. In this paper, we asked if it is possible to combine the
two approaches by using Hebbian plasticity and location specific
sensory information to stabilize the activity of grid cells in a
CAN model.

In order to test this hypothesis we implemented a minimal
neural model composed of a grid cell network and a sensory
map connected by plastic excitatory connections. From an
anatomical point of view, the sensory information encoded by
the sensory map plausibly originates from the lateral entorhinal
cortex (LEC) that directly projects on to the hippocampus. In
turn, the hippocampus could possibly provide grid cells with
the sensory information necessary for correcting their activity
(Bonnevie et al., 2013). However, for the purposes of this
work we chose not to model the complex and still not fully
understood interactions between grid cells inMEC and place cells
in the hippocampus. As in Skaggs et al. (1995) and Hardcastle
et al. (2015), we took advantage of the dynamic properties

of continuous attractors to push the activity bumps toward
the right configuration. The correction is applied by excitatory
connections projecting on to grid cells from sensory units that
encode for the presence of visible landmarks. These connections
are strengthened depending on the coactivation of grid cells and
sensory units.

Our simulations show that a Hebbian plasticity-based
correction mechanism is not only able to stabilize spatial grid
patterns for periods of time comparable with the duration
of experimental sessions, but also to associate the same grid
pattern to a specific environment. In addition to increasing
the biological plausibility of our model, the main advantage
of using Hebbian plasticity instead of a predefined stimulation
rule is that any location specific sensory information can be
used to realign grid cell networks. Given its capability to
generate stronger connections between neural areas that are
more durably associated, Hebbian learning can automatically
assess over time the stability of external sensory information
that encode for environmental landmarks. This turns out to
be a crucial feature that can potentially improve robotic spatial
navigation in complex and dynamic environments. Because
of the important implications that this neural mechanism
can have on robotic navigation, we validated our model not
only with simulations but also with a more realistic robotic
scenario.

MATERIALS AND METHODS

Neural Modeling
Our neural model consists of two main components, a grid
network and a sensory map interacting as shown in Figure 1.
The grid network module is responsible for storing information
about the position of the robot and receives information about
its linear velocity and orientation. In order to evaluate the
effectiveness of Hebbian plasticity to prevent the accumulation
of path integration errors, we used both artificial and real data as
input. In the real case scenario velocity information is estimated
based on the robot trajectory as it is recorded by an external
tracking system. In the simulated case it is computed based on
the simulated trajectory of the robot. In both cases, the grid
network receives excitatory plastic projections from the sensory
map module, whose activation directly reflects the position of
markers in the field of view of the camera (real or simulated). The
sensory map is organized in a topographic way, thus preserving
spatial correlations in the sensory stream.

The grid cell network module stores and computes spatial
information by performing path integration on the robot
velocity. Its implementation is based on the CAN model
described by Burak and Fiete (2009) using leaky integrate and fire
neurons instead of Poisson neurons. The model consists of four
2-dimensional networks of 64× 64 neurons. Equation (1) shows
the differential equation we used at every iteration (iteration
step of 1ms) to update the membrane potential um for all grid
cells.

τm
dum

dt
= −um (t) + urest + RmI (t) (1)
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FIGURE 1 | Neural simulation modules. The Grid Network receives robot

velocity information from a tracking system. In addition it receives sensory

information from the Sensory Map by means of excitatory plastic projections.

The activation of the Sensory Map units depends on visual information

provided by a camera on board the mobile robot.

TABLE 1 | List of neural model parameters.

Parameter name Value

Membrane time constant (τm) 10ms

Membrane resistance (Rm) 10 �

Resting membrane potential (urest ) −65mV

Threshold potential (uth) −63mV

Reset potential (ureset ) −67mV

Refractory period (τref ) 5ms

Baseline current (Ib) 2mA

Whenever um exceeds the threshold potential uth an action
potential is fired and propagated to all postsynaptic neurons with
a delay ranging from 1 to 5ms. In addition, we set um equal to
ureset for the whole duration of the refractory period τref . Table 1
lists the values of the biophysical parameters we used in our
simulations.

As Equation (2) illustrates, the current I in input to each
neuron is the sum of the baseline current Ib, the sensory current
Is, and the robot velocity-dependent current Iv.

I (t) = Ib + Is (t) + Iv (t) (2)

The baseline current Ib is an unspecific global constant excitation
that is necessary to elicit network spontaneous activity even in
absence of any other excitatory input (Bonnevie et al., 2013).
The sensory current Is, computed according to Equation (7),
depends on the activation of the sensory map and on the plastic
connectivity between grid cells and sensory units. In addition,
all neurons of each of the four 64 × 64 networks of the model
receive an excitatory input current Iv that is proportional to the
robot velocity component in one of the four possible directions
in a 2D space (i.e., N, W, S, and E). Equation (3) shows how we
computed Iv as a function of the robot forward velocity v and the
robot orientation ϑ .

Iv (t) = γ v (t) cos (ϑ (t) − θ) (3)

We tuned the velocity-dependent current gain γ in order to
balance the excitation levels in the grid network. θ is a network
constant parameter that can assume one of four values (0◦, 90◦,
180◦, 270◦), corresponding to the four spatial directions.

FIGURE 2 | Encoding of sensory information. (A) Example of sensory map

activation when the robot is moving toward marker #9. (B) Spatial activation (in

red) for the sensory unit that encodes the distance between the robot and

marker #9 approximately equal to 0.45m.

The CAN model described by Burak and Fiete (2009) is
based on recurrent connectivity to work. Each neuron inhibits
all neighboring neurons inside a circular area. The center of
the inhibition circle is shifted in the same direction θ as
the robot velocity that modulates the neuronal input current.
At the beginning of each simulation session neuronal state
variables and parameters (e.g., membrane potentials um and
transmission delays) are initialized with random values sampled
from physiological ranges.

The sensory map module consists of a 2-dimensional matrix
of units that can assume a continuous value of activation between
0 and 1. It encodes location-specific sensory information with
unique patterns of activation as shown, as an example, in
Figure 2A. Each sensory unit sm,d encodes for the presence of
a specific digital marker m on the ceiling at a specific distance
d from the visual field center of the robot camera, which is
pointing upwards with a field of view radius rfov equal to 0.75m.
Equation (4) shows the rule we defined to update the activation
of sensory unit sm,d, where dm is the distance between the robot
and the marker m, and n (= 5) is the number of bins we
chose to discretize the field of view. The two time constants
τactive and τinactive both equal to 50ms control the activation and
inactivation rates. In practice, when the robot is in the area of
activation of a sensory unit (shown in red in Figure 2B as an
example) the activation of the sensory unit will asymptotically
converge to 1, whereas it will decay to 0 otherwise.

sm,d =







(

1− 1
τactive

)

sm,d +
1

τactive
,

∣

∣dm − d
∣

∣ ≤
rfov
2n

(

1− 1
τinactive

)

sm,d,
∣

∣dm − d
∣

∣ >
rfov
2n

(4)

We used 26 different digital markers and distances were
discretized using five bins in order to test our stabilization
mechanism in presence of coarse location specific information.
This resulted in a localization accuracy of 48 pixels on the
camera image and correspondingly to 13.2 cm on the ceiling
where the markers were attached. Given that the sensory map
encodes distances from the center of the camera’s field of view,
its activation pattern is theoretically invariant to rotations of the
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camera itself. However, in a real robotic setup slight inclination
of the camera on the robotic frame resulted in slightly different
sensory activation patterns for the same location depending on
the orientation of the robot.

The connectivity between the grid network and the sensory
map is based on a rate-based Hebbian plasticity rule, which is
applied at every iteration of the simulation (time bin △t equal
to 1ms). Using Equation (5) we first compute the coactivation αij

between the sensory unit i, with activation si (0≤ si ≤ 1), and
the grid cell j, with instantaneous firing rate rj. The variable rmax

is the maximum instantaneous firing rate recorded in the grid
cell network for the current iteration and αth is a coactivation
threshold parameter set to 0.05.

αij = si ·
rj

rmax
− αth (5)

We then compute the change rate of the synaptic weight wij

for the projection between sensory unit i and grid cell j using
Equation (6), where we set the time constant τ to 10 s and we
update the synaptic weight only if the coactivation αij is positive.

dwij

dt
=

{

0, αij ≤ 0
αij − wij

τ
, αij > 0

(6)

This formulation of Hebbian plasticity makes the synaptic
weights of the sensory projections asymptotically converge to
the average coactivation between the corresponding sensory map
unit i and grid cell j. We used Equation (7) to compute the
amount of excitatory sensory current Is injected in grid cell j at
every iteration. k is a constant parameter (sensory current gain)
equal to 0.05 that we tuned to balance sensory currents with
velocity-dependent currents.

Is = k
∑

i

wij · αij (7)

In order to set critical parameters of the neural model (listed
in Table 2), which, to the best of our knowledge, do not have
a clear biological plausible value, we performed a brute-force
parameter search running in parallel multiple simulations. We
first set grid cell network parameters (e.g., recurrent connectivity
radius and recurrent connection synaptic weights) to generate
spatial grids with the highest gridness score for short simulated
times. Next, we set Hebbian plasticity parameters (e.g., plasticity
time constant τ and coactivation threshold αth) to have the
best stabilization performance over longer simulation times.
We found that some parameters are particularly critical for
the proper working of Hebbian plasticity, as, for example, the
plasticity time constant τ of Equation (6). On the one hand, too
short time constants make the corrective mechanism interfere
with the path integration of the grid network by preventing
the continuous attractor to shift depending on the velocity-
dependent currents. On the other hand, too long time constants
make the stabilization mechanism too weak to prevent the
accumulation of path integration errors.

The connectivity matrix between sensory map and grid cell
network was initialized either to zero if the robot explored an

unfamiliar environment or to a previously learned connectivity
matrix if the robot explored a familiar environment. In this work
we do not take into account the exploration of the robot of
multiple environments.

Robotic Experiment Simulation
To simulate robotic data we modeled the most important aspects
of the experiments we performed using a real mobile robot. We
intentionally did not model any source of noise that could make
the simulation more realistic because the simulated data were
intended to be used to validate our stabilization mechanism in
ideal conditions. Figure 3 illustrates the main elements of the
robotic experiment included in our simulation. Virtual markers,
which cover the ceiling of the room containing the circular
arena, are arranged in a rectangular grid and are equidistant
(contiguous markers are 0.5m apart). A virtual camera placed
on top of the robot records their positions with a visual field
equal to 1.25m. The trajectory of the robot, modeled as a
mobile point, is randomly generated within the boundaries of
a circular arena (1.6m diameter). We simulated the random
trajectory of the robot so that it resembles the trajectory of a
rat exploring a circular arena of the same size. Figure 4 shows
that the two trajectories are similar in terms of distribution
of velocity (top row: average rat velocity = 0.22 ± 0.13 m/s
(mean ± s.d.), middle row: average simulated robot velocity =

0.22 ± 0.13 m/s) and the directions of movement are uniformly
distributed.

Robotic Data Acquisition
Robotic Setup
To perform the experiments we used a mobile robot (240mm
diameter) that moves in a circular empty arena (1.6m diameter).
The robot, shown in Figure 5A, is equipped with three
omnidirectional wheels located at the vertices of an equilateral
triangle and has 360◦ range of movement. However, we limited
its movements to make its trajectory more comparable to the
one followed by rats while exploring a similar environment.
More precisely, we controlled only its linear velocity in the
forward direction and its angular velocity. The communication

FIGURE 3 | Simulation of robotic experiments. The trajectory of the robot

is randomly generated within the boundaries of a circular arena. A virtual

camera on top of the robot records the relative position within its field of view

of virtual markers arranged in a rectangular grid.
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TABLE 2 | List of model parameters tuned with a brute-force search approach.

Parameter name Value Description

Recurrent connectivity radius 8 Radius of the inhibitory recurrent connectivity for each grid cell in the CAN

Recurrent connectivity shift 2 Shift in each of the four spatial directions of the recurrent connectivity of the CAN

Recurrent synaptic weight −0.2 Synaptic weight of all recurrent connections between grid cells

Grid network baseline current (Ib) 2.0mA Excitatory current injected at every iteration in each grid cell

Velocity-dependent current gain (γ ) 0.02 Gain that controls the amount of velocity-dependent currents injected in each grid cell

Plasticity time constant (τ ) 10000 s Time constant that controls the weight change rate of a sensory synapse

Coactivation threshold (αth) 0.05 Minimum level of coactivation necessary to induce a plastic change in a sensory synapse

Sensory current gain (k) 0.05 Gain that controls the amount of sensory currents injected in each grid cell

Maximum sensory synaptic weight 0.5 Maximum allowable weight for a sensory synapse

FIGURE 4 | Comparison of trajectories. The trajectory, the distribution of velocities and the distribution of orientations are shown for a rat (top row), for a simulated

robot (middle row), and for a real robot (bottom row) while exploring for 300 s a circular arena of the same size (diameter equal to 1.6m). The simulated and real

robot trajectories resemble the trajectory of a rat with different degrees of approximation (Experimental rat data adapted from Hafting et al., 2005).

with the robot to send motor commands is made via a wireless
connection.

In order to track the trajectory of the robot we used a 3D
tracking system1 consisting of eight overhead cameras. The
position and orientation of the robot can be estimated from the
positions of three reflective markers (10mm diameter) placed
on top of its upper cover (Figure 5A). The tracking system can
localize the robot with an accuracy of ∼10mm at a sampling
frequency of 120Hz.

1“OptiTrak Tracking System,” website: http://www.optitrack.com

An on-board wireless camera acquires visual information with
a resolution of 640 × 480 pixels at a frame rate of 17.5Hz
(Figure 5B). The center of the camera’s field of view is aligned
with the robot center and the camera points in direction of the
ceiling, which is covered by markers. The square markers have
a dimension of 0.16m and form a regular grid with an inter-
node distance of 0.5m. Each marker is a 5× 5 binary matrix and
encodes 10 bits of information. The remaining 15 bits are used for
code correction and make it possible to recognize each marker in
a reliable way.We used the softwareAruco (Garrido-Jurado et al.,
2014) to decode the identifier associated with each marker.
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Data Recording Software
We used two distinct programs to perform the robotic
experiments. The first one allowed us to control the robot, to
record its trajectory and to acquire its sensory information. The
second program executed offline neural simulations using the
recorded data as input. The programs were written in C++ and
executed on a Ubuntu Linux platform. To record trajectory
and sensory data, we used an Intel Core i5-2500 quad-core

FIGURE 5 | Components of the robotic setup. (A) Mobile robotic platform

used to record sensory data during the exploration of a circular arena. A

wireless camera pointing to the ceiling is mounted on top of the robot. Three

reflective markers fixed on the robot frame are used by the tracking system to

estimate the velocity and orientation of the robot. (B) The field of view of the

camera mounted on top of the robot. The center of the camera’s field of view

is aligned with the center of the robot. The visible markers, arranged on a

regular grid on the ceiling, are detected and decoded by the software Aruco

(Garrido-Jurado et al., 2014).

processor at 3.3 GHz with 16 GB of RAM. For the neural
simulations we used a computer equipped with 4 AMD Opteron
6380 processors (64 cores in total) at 2.5 GHz and 128 GB
of RAM.

The data recorder program constantly controls both the
linear and angular velocity of the robot in order to follow a
predefined randomly generated trajectory that uniformly covers
the whole area of the circular arena. In order for the robot
to accurately follow the predefined trajectory we limited its
speed at ∼50mm/s. The recorded speed data of the robot
was multiplied by a factor of 4 and was used as input of
the neural simulations. In this way, the average speed of the
robot is comparable with the average speed of a rat exploring a
similar environment as shown in Figure 4 [top row: average rat
velocity = 0.22 ± 0.13 m/s, bottom row: average robot velocity
(multiplied by a factor of 4) = 0.21 ± 0.08 m/s]. However,
the distributions of velocities differ due to different dynamic
characteristics of the robot (e.g., inertia, angular momentum),
that make it difficult to precisely reproduce the kinematics
of a rat.

In parallel with the control of the robot the on-board camera
on top of the robot acquires pictures of the ceiling. The images
are processed online to extract information about the positions of
the markers. The positions of the markers expressed as 2D image
coordinates and the position and orientation of the robot as it is
estimated by the tracking system are stored to be used as input
for offline neural simulations.

FIGURE 6 | The activation of the stabilization mechanism prevents the drift of spatial grid patterns. (A) Spiking activity of a simulated grid cell without

stabilization mechanism while a simulated robot explores a circular arena for 120 s (spiking activity in red, simulated trajectory in gray). (B) Spiking activity of the same

cell of panel (A) after 10min (spiking activity in blue). (C) The activities shown in panels (A,B) Do not overlap due to the accumulation of path integration errors. (D)

Spiking activity of a simulated grid cell while a simulated robot explores a circular arena for 120 s with the activation of the stabilization mechanism. (E) Spiking activity

of the same cell of panel (D) after 10min. (F) The activities shown in panels (D,E) Overlap due to the Hebbian plasticity-based stabilization mechanism.
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RESULTS

Grid Stabilization in Unfamiliar
Environments
In order to validate our Hebbian plasticity-based realignment
mechanism we first tested our extended CAN model with input
data generated by a simulated robot that could move freely in
a circular arena for 30min. In one control condition the grid
network performed path integration using only robot velocity
information as input. In the other condition, the network activity
not only performed path integration but it was also stabilized by
sensory information recorded by a virtual camera on top of the
robot. The distance of the markers from the robot was used to
activate the corresponding units of the sensory map.

Top panels of Figure 6 show the activity of the cell at the
center of the grid network when the stabilization mechanism
was disabled. Figures 6A,B show grid-like patterns generated
during short periods of exploration time (120 s) at two distinct
times of the experimental session 10min apart. The two grids
have comparable gridness scores (0.725 and 0.736 respectively,
computed as in Sargolini et al., 2006, where positive values
indicate grid-like patterns). However, as shown in Figure 6C,
the two grid patterns do not overlap due to the accumulation
of path integration errors. Conversely, when the stabilization
mechanism is enabled there is far greater overlap between the
two grids of Figures 6D,E (gridness scores: 0.597 and 0.635
respectively) as shown in Figure 6F because the stabilization
mechanism continuously corrects for the accumulation of errors
in the path integration.

The stabilization effect can be observed even more clearly
in Figure 7. This shows two representative examples of spatial
grid patterns obtained in both conditions considering 30min of
spiking activity of a cell located at the center of the grid network.
As shown in Figure 7A, without the activation of the realignment
mechanism a hexagonal grid pattern is not visible anymore due
to the drift of the grid activity. However, with the activation of the
realignment mechanism the cell fires only in localized regions of
the arena in line with the behavior of biological grid cells.

The stabilization mechanism is based on excitatory currents
that depend at any given time on both the learned connections
(between the grid network and the sensory map) and the current
configuration of the sensory map. Figure 8A shows an example
of excitatory currents due to such a learned connectivity after
30min of exploration of the arena. The modulation of the
excitatory sensory currents are closely related in terms of spacing
and orientation to the firing rate map of the network, shown in
Figure 8B.

In order to confirm the stabilization effect of the learned
connections, we analyzed the gridness score of spatial grid
patterns generated by 100 grid cells during 30min of simulated
time with both the Hebbian plasticity mechanism enabled and
disabled. The left side of Figure 9 shows a comparison of
the average gridness score for both conditions with simulated
data as input. A test of significance (ANOVA with Bonferroni
correction, p < 0.01) confirmed the efficacy of Hebbian
plasticity as a stabilization mechanism. On average, when the
stabilization mechanism was disabled, the gridness score was

FIGURE 7 | Comparison of grid cell activity with and without

stabilization mechanism for grid cell simulations with simulated data in

input. The spiking activities (red dots) of representative simulated grid cells are

shown in correspondence to the position of a virtual robot (gray trace) while

exploring for 30min a circular arena without (A) and with (B) realignment

mechanism (gridness scores: -0.063 for A, 0.797 for B). The activation of this

plasticity-based stabilization mechanism successfully anchors the neural

activity of grid cells to external sensory cues. This results in a well-defined grid

pattern in space over long periods of neural simulation.

FIGURE 8 | Excitatory sensory currents push the activity of grid

network toward the right configuration. (A) Example of excitatory currents

due to learned projections from the sensory map units to the grid cells after

30min of robotic exploration of the arena: the bumps of excitation are

arranged in a grid similar to that of the grid network activity (shown in B) but

are not so well-defined. (B) Example of firing rate map for a network of grid

cells. The spacing of the bumps in the grid network activity is related but not

equal to the spacing of the grid pattern generated in space.

equal to −0.056 ± 0.004 (mean ± s.e.m.) and the spatial pattern
was similar to the one shown in Figure 7A. Conversely, when
the stabilization mechanism was enabled, the gridness score was
equal to 0.808 ± 0.036 and the grid pattern was similar to that
given in Figure 7B.

In addition, we tested our stabilization mechanism using
real sensory data as input to the grid cell network simulation.
More precisely, we estimated the robot velocity and orientation
based on data recorded from a tracking system and the
position of landmarks by processing the camera video stream.
Notwithstanding the inaccuracy of the input data, the Hebbian
plasticity mechanism was still able to stabilize the grid cell
network activity. Figure 10 shows two representative examples of
spatial grid patterns obtained when the stabilization mechanism
was disabled (Figure 10A) andwhen it was enabled (Figure 10B).
As previously shown for the simulated case (Figure 7), even
in the presence of noisy inputs Hebbian plasticity was able to
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FIGURE 9 | Gridness score average with and without stabilization

mechanism for grid cell simulations with simulated (left) and real data

(right) in input. For each experimental session we considered the activity of

one single grid cell in the middle of the network. In both simulated and real

conditions there is a significant difference in the average gridness score

[one-way ANOVA, F(3, 396) = 234.8 with Bonferroni correction, **p < 0.01].

FIGURE 10 | Comparison of grid cell activity with and without

stabilization mechanism for grid cell simulations with real data in

input. The spiking activities (red dots) of representative simulated grid cells are

shown in correspondence to the position of a real robot (gray trace) while

exploring for 30min a circular arena without (A) and with (B) realignment

mechanism (gridness scores: −0.043 for A, 0.577 for B). The activation of this

plasticity-based stabilization mechanism successfully anchors the neural

activity of grid cells to external sensory cues despite the additional noise

introduced by imprecise velocity and landmark position estimates.

prevent the spatial grid pattern from drifting. We also analyzed
the gridness score of spatial grid patterns generated by 100
simulated grid cells with real data in input. The right side
of Figure 9 shows a comparison of the average gridness score
between neural simulations with and without the stabilization
mechanism. Similarly to the simulated case, there is a significant
difference between the gridness of the two conditions (−0.101±
0.007 for plasticity disabled, 0.449± 0.043 for plasticity enabled).
The smaller gridness score average obtained with real instead
of simulated data in input reflects the inaccurate sensory
information provided by the robotic setup sensors.

Both the velocity-dependent currents Iv and the sensory
currents Is are necessary for the CAN model to generate stable

FIGURE 11 | Gridness score average as a function of (A) sensory

current gain and (B) average number of visible markers. The shadow

areas represent the standard error of the mean. (A) The stabilization

mechanism works best if velocity-dependent currents and sensory currents

are balanced. (B) The optimal current sensory gain k depends on the average

number of visible markers. The stabilization performance gets worse when the

current sensory gain is constant (blue line) than when it is inversely

proportional to the average number of visible markers (red line).

spatial grids over time. In fact, we tuned the respective gains
with a brute-force approach to balance them and maximize
stabilization performance. In order to clarify how critical the
parameter tuning is for the stabilization we analyzed the gridness
score of grid cell activity as a function of sensory current gain k.
Figure 11A shows that there is an optimal value of k that yields
the best stabilization results. If the sensory currents are either
too small or too large the stabilization mechanism performed
worse or did not work at all (negative gridness score). As a
consequence, a balance between velocity-dependent currents and
sensory currents seems necessary for the proper formation of the
sensory connectivity.

In addition to the balance of input currents, our stabilization
mechanism critically depends on the availability of a sufficient
amount of sensory information. In principle, a robot needs
to estimate the distances of only three markers in order to
localize itself in space without ambiguity. Nonetheless, to test
our stabilization mechanism we provided an average of visible
markers equal to 6.3 ± 1.0 (mean ± standard deviation).
Figure 11B shows the stabilization performance as a function
of the average number of visible markers. We first varied
the aperture diameter of the on-board camera from 0 to 1.5
m, while keeping all other simulation parameters constant
(blue line). In this case, good stabilization performance (i.e.,
gridness score >0.5) was achieved with approximately more
than five visible markers on average. However, in order to
compensate for the decrease of sensory currents due to a
fewer number of visible markers we also analyzed the gridness
score adjusting the sensory current gain k according to the
formula:

k =
0.32

n
(8)

where n is the average number of visible markers (red line
in Figure 11B). In this other case, the stabilization mechanism
performs well even with only about 1.5 visible markers on
average.
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Grid Realignment in Familiar Environments
According to experimental evidence the spiking activity of a
grid cell recorded during different sessions but in the same
environment generates spatial grid patterns with similar features
in terms of spacing, orientation and spatial phase (Hafting
et al., 2005). In contrast, the neural simulations presented so
far generated spatial patterns with similar spacing, but random
orientations and phases. This is due to the fact that the very
first stable configuration of the grid network activity depends
on the initialization of the cell membrane potentials, which are
randomly set at the beginning of the simulations. Given that
Hebbian plasticity can stabilize grid patterns in space by affecting
the overall activity of the grid networks, we asked if the excitation
provided by the sensory connectivity learned in a previous
exploration of the arena would be also effective to realign the grid
spatial pattern in order to match the first generated one.

We simulated 100 grid networks for 30min of simulated
time after initializing the connectivity WSG between the sensory
map and the grid network with the connectivity learned in
a previous simulation session that obtained a gridness score
close to the average. As previously done for the tests in
unfamiliar environments we considered neural simulations with
both simulated and real data in input and for each simulation
we analyzed only the spiking activity of the grid cell at the
center of the network. Figure 12 shows the distributions of
grid orientations and normalized spatial phases of grid patterns
with positive gridness scores for both the case in which the
connectivity between sensory map and grid network was initially
set to a zero matrix (histograms in blue) and the case in which
the connectivity was set to a previously learned connectivity
(histograms in red). In both simulated and real conditions the
previously learned connectivity drastically reduced the available
orientations and phases and, as expected, the most frequent
ones corresponded to those of the previously generated spatial
grid. However, it is worth noting that the initialization of a
simulation with a previously learned connectivity reduced the
number of well-defined spatial grids. In both simulated and real
data conditions the percentage drastically decreased (from 92 to
32% for the simulated data, from 76 to 22% for the real data). A
plausible explanation is that the learned connectivity can correct
the current grid network activity only if it does not already differ
too much from the correct one.

DISCUSSION

Three main computational models based on different neural
mechanisms are available to reproduce the most remarkable
feature that distinguishes grid cells, i.e., the periodic hexagonal
pattern defined in space by their spiking activity. As a
consequence, in order to clarify the real biological mechanism
behind grid cells, it is necessary to take into consideration further
experimental evidence. One of the most important aspects to
consider is how spatial grid patterns relate with the features of
the surrounding environment. Electrophysiological experiments
with rats exploring an arena showed that grid patterns are not
only stable over time but also present non-random orientations
and spatial phases. In fact, the same grid cell generates the

same spatial grid pattern in different experimental sessions as
long as the environment does not change. For this reason,
neuroscientists hypothesized that the most salient sensory cues
of the environment are used by grid networks in order to
both stabilize and realign themselves. In this context Hebbian
plasticity might be involved by establishing associations between
grid configurations and environmental landmarks. However,
how exactly this might work is still unclear.

In this work we considered a spiking model of grid cells
based on continuous attractors, and we investigated how to
stabilize and realign the network activity with location specific
visual cues using Hebbian plasticity. Given that CAN models
perform path integration based on estimates of the robot velocity
that are affected by noise, they can reproduce spatial grids only
for short periods of time because the accumulation of errors
results in drift of the grid pattern. However, even with perfectly
accurate, noise-free velocity input data the inherent stochastic
computation of spiking neurons inevitably introduces errors in
the processing of velocity information. Therefore, a stabilization
mechanism is needed to periodically reset the accumulation
of path integration errors. We implemented such stabilization
mechanism by exploiting the capability of excitatory currents to
affect the configuration of a CANmodel of grid cells. The injected
sensory currents push the current stable configuration of the
CAN toward the correct one that is stored in plastic connections.
This online learning mechanism relies on the relative stability
of the spatial grids for sufficiently long periods of time, which
is necessary for Hebbian plasticity to durably associate sensory
information with grid cell activity.

We validated our Hebbian plasticity-based stabilization
mechanism using simulated as well as real data. Our results
show that Hebbian plasticity is effective at stabilizing the activity
of grid cells even in the presence of noise. Excitatory plastic
connections encoding sensory information about environmental
landmarks continuously correct the activity of grid cells to
prevent the drift of the spatial patterns. In this work we used
a regular grid of visual markers to provide location specific
sensory information to a robot. The regularity of the markers
arrangement assures that there are always at least three markers
visible to the robot at any given time. Indeed three markers are
sufficient to resolve the robot positional ambiguity due to sensory
information depending only on distances. However, the precise
position of eachmarker does not have any influence on the spatial
features of the hexagonal grid pattern generated by grid cells.
In fact, we obtained very similar results for experiments with
different marker distributions (e.g., with a sensory map encoding
the distances of the corners of a square arena, or encoding both
distance and direction of a single visual cue, data not shown).

In addition to stabilizing, the connectivity generated by
Hebbian plasticity is also effective at realigning grid cell activity
or, in other words, at recalling a previously generated spatial
grid pattern in terms of spacing, orientation and spatial phase.
However, in order for this stabilization mechanism to work, it
is necessary to precisely define many biophysical parameters of
our neural simulations. A careful parameter tuning is important
for the grid cell model to reproduce spatial grid patterns even
for short periods of time, regardless of the accumulation of
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FIGURE 12 | Distribution of grid orientations and normalized spatial phases for spatial grids (with gridness score >0) generated by grid cells at the

center of each simulated network. Distributions refer to both simulated (top panels) and real data (bottom panels) in input, initializing the connectivity from the

sensory map to the grid network to a zero matrix (in blue) and to a previously learned connectivity (in red). In both simulated and real conditions the previously learned

connectivity drastically reduced the possible grid orientations and phases.

path integration errors. In biological neural systems, critical
biophysical parameters might have been fine-tuned over the
course of evolution. Alternatively, a fine-tuning of parameters
might be necessary in our simulations to provide for the lack of
unknown homeostatic mechanisms that are not captured by the
CAN model of grid cells.

Our validation tests with input data generated by a robotic
setup helped us to better understand the limitations of using
simulated data to investigate neural computation. Even if it is
theoretically possible to accurately simulate real input data, it
is difficult to predict a priori which deviations from ideality
are important to include in the model to make the simulation
more realistic. A substantial part of our work consisted in
understanding how exactly real data differed from simulated one.
For example, we found that the velocity of the robot should be
greater than a certain threshold in order for the spiking CAN
model to properly integrate velocity signals. As a consequence,
electrophysiological experiments that systematically investigate
the non-linear effect of low speeds on the gridness of spatial grid
patterns might provide useful data to validate different models
of grid cells. A second example occurred due to the specific
geometry of our robotic experimental setup. An unnoticeable
tilt of the on-board camera (about 4◦) resulted in variations
of marker localization estimates up to 0.4m that made it
more difficult for Hebbian plasticity to work as a stabilization
mechanism. A more accurate set up of the camera on the
mobile robot frame was necessary to fix the problem. Even if
this problem was specific for our robotic setup, it stresses the
importance of a more sophisticated preprocessing of sensory
information adaptable to the configuration of the robot’s sensors
in order to provide more accurate estimates of the position of
landmarks in the surrounding environment.

As our results show, Hebbian plasticity can be used to
integrate robot velocity signals with sensory information in

a neural system. Therefore, simultaneous localization and
mapping algorithms can take advantage of neural computation
to solve the loop closure problem, i.e., to recognize the same
location after having traveled for a long path. In fact, the
stability of a grid pattern in space is direct evidence that our
stabilization mechanism makes a CAN model reliably store
spatial information for longer periods of time. In principle,
a robot can localize itself based only on sensory information.
Nevertheless, in a real environment the position of landmarks is
known with finite precision. As a consequence, combining two
independent sources of information on the robot position (i.e.,
path integration and sensory-based position estimation) can not
only increase the accuracy of the localization but also potentially
make it more robust to sensory variability. However, as the
results shown in Figure 11 suggest, the optimal combination of
these sources of information requires a critical balance between
velocity-dependent currents and sensory currents. In more
realistic scenarios, when sensory information is not uniformly
distributed as in our robotic setup, this balance might require
adaptable current gains dynamically depending on the stream of
sensory information in input.

In order for a robot to be autonomous, velocity information
should be estimated based on on-board sensors instead of
using an external tracking system. In this regard an accurate
estimate of the orientation of the robot using biologically
plausible methods could be possible by introducing an additional
CAN model of head direction cells. As shown already by
Skaggs et al. (1995) a similar Hebbian plasticity mechanism
can stabilize and realign the activity of head direction networks
as well.

We showed that Hebbian plasticity can account for
experimental evidence that is not possible to get reproduced
with a basic CAN model of grid cells, such as the stability of
the spatial grid over time and its realignment in previously
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explored environments. By using more complex and dynamic
environments we will assess the capability of Hebbian plasticity
to account for other experimental observations such as the
deformation of grid patterns in stretched environments
(Barry et al., 2007) or the merging of two grid patterns
after the removal of a separation between two contiguous
environments (Carpenter et al., 2015). However, there are other
electrophysiological observations that at the moment cannot be
explained by our current extension of the model. As an example,
possible orientations of a spatial grid seem to be distributed in
discrete steps of 7.5◦ with respect to environmental landmarks
(Stensola et al., 2012). Further refinements of the existing models
are then required to fully clarify the neural mechanisms behind
grid cells.
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