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Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents

from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic

currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought

to be also adaptive, embedding interesting properties in the framework of accurate

movements. We show that distributed spike-timing-dependent plasticity mechanisms

(STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers

to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells)

in close-loop simulations provide an explanation for the complex learning properties of

the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar

spiking model. In this newmodel, deep cerebellar nuclei embed a dual functionality: deep

cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow

memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping

the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep

cerebellar nuclei afferents allows the accommodation of synaptic memories that were

formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers

to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to

modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward

optimizing its working range).

Keywords: cerebellar nuclei, spike-timing-dependent plasticity, motor learning consolidation, cerebellar

modeling, cerebellar motor control

INTRODUCTION

Since Marr (1969) and Albus (1971), the cerebellar loop has been extensively modeled providing
smart explanations on how the forward-controller operations in biological systems seem to work.
The classic long-term synaptic plasticity between parallel fibers (PF) and Purkinje cells (PC) [driven
by the inferior olive (IO) action] stands at the core of those processes related to sensorimotor
adaptation and motor control. However, this adaptation mechanism can be enhanced with

Abbreviations: PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule cell; GoC, Golgi cell; PC, Purkinje cell;

DCN, deep cerebellar nuclei; IO, inferior olive; MLI, molecular layer interneuron; MAE, mean average error; EBCC, eye blink

classical conditioning; VOR, vestibulo-ocular reflex.
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complementary plasticity sites at the cerebellar circuit.
Particularly, in this work we explore how STDP at Deep
Cerebellar Nuclei efficiently complements the classical PF–PC
long-term plasticity as an efficient adaptive gain term and
memory consolidation resource.

Plasticity in Deep Cerebellar Nuclei
It is worth revisiting the original theories based on the structural
analysis of cerebellar connectivity (Eccles, 1967; Eccles et al.,
1967; Marr, 1969; Albus, 1971; Fujita, 1982). In those theories,
the cerebellum was proposed to act as a timing and learning
machine. The granular layer was hypothesized to recode the
input spatiotemporal activity into sparse somatosensory activity.
Then, only the relevant patterns were learnt and stored at
PF–PC synapses under the supervised control of the teaching
signal supplied by climbing fibers (CF). In light of different
electrophysiological findings, it has been suggested that the CFs
convey sensory feedback from comparing proprioceptive and
predicted signals. CFs could indeed provide quantitative error
estimation (Bazzigaluppi et al., 2012; De Gruijl et al., 2012) that,
in turn, would be able to improve motor performance through
specifically depressing the PF (PF–LTD) synapses that are more
correlated to motor errors.

Although since the early 70s, plasticity in the cerebellar cortex
was widely accepted and established, demonstrations of synaptic
plasticity in cerebellar learning at cerebellar nucleus cells were
studied significantly later. It was at the end of the 1990s when
the analysis of the circuit-cerebellar basis for learning eye-
movement yielded insight into a plausible two-state learning
mechanism (Shadmehr and Brashers-Krug, 1997; Shadmehr
and Holcomb, 1997). That is, whilst a fast learning process
occurs in the cerebellar cortex (granular and molecular layer,
involving PF–PC plasticity), a slow consolidation process occurs
in deeper structures (possibly, at the deep cerebellar nuclei, DCN;
Shadmehr and Brashers-Krug, 1997; Shadmehr and Holcomb,
1997; Medina and Mauk, 2000; Ohyama et al., 2006).

The main idea behind this speculative scheme lies on
assuming that PF and PC outcomes are mediated by upstream-
processing-nervous centers and, in turn, PC outcome shapes
the output of its corresponding DCN-target neurons (Miles and
Lisberger, 1981; Zhang and Linden, 2006; Zheng and Raman,
2010). This two-state learning mechanism was motivated by the
fact that DCN neurons are innervated by excitatory synapses
from mossy fibers (MFs) as well as by inhibitory synapses
from PCs. The interplay between these excitatory and inhibitory
connections has not been well-established yet. However, evidence
of synaptic-plasticity traces at MFs (Racine et al., 1986; Medina
and Mauk, 1999; Ohyama et al., 2006; Pugh and Raman, 2006;
Zhang and Linden, 2006; Yang and Lisberger, 2014) and at PC
synapses (Morishita and Sastry, 1996; Aizenman et al., 1998;
Ouardouz and Sastry, 2000; Masuda and Amari, 2008) in the
cerebellar nuclei and their vestibular nucleus (VN) counterparts
has recently been encountered. This motivates the development
of an adequate mechanistic model toward better understanding
the potential of the DCN plasticity role.

Deep nucleus plasticity is assumed to be supervised and,
according to different hypotheses, it is thought to be responsible

for storing granular layer patterns that are correlated with the
teaching signal generated by PCs (Hansel et al., 2001; Boyden
et al., 2004; Gao et al., 2012). This plasticity comprises several
mechanisms generating LTP and LTD at MF–DCN (Bagnall and
du Lac, 2006; Pugh and Raman, 2006) and PC–DCN synapses
(Morishita and Sastry, 1996; Aizenman et al., 1998; Ouardouz
and Sastry, 2000). MF–DCN and PF–DCN plasticity are indeed
thought to be important in controlling cerebellar learning in
the context of the eye-blink classic conditioning (EBCC; Medina
and Mauk, 1999, 2000). The equivalent forms of plasticity in the
VN are also important in controlling cerebellar learning in the
vestibulo-ocular reflex (VOR; Masuda and Amari, 2008).

Recent works based on a simplistic cerebellar model have
proposed that the MF–DCN and PC–DCN synaptic plasticity
mechanisms are an adaptive cerebellar-gain control (Garrido
et al., 2013a; Luque et al., 2014b). Nevertheless, those works were
focused just on the functional role of these DCN learning rules,
without answering the question of how these learning rules may
take place as STDPmechanisms. Twomain issues were addressed
within these computational approaches:

• Firstly, the proposed adaptive gain controller (Garrido et al.,
2013a; Luque et al., 2014b) at the cerebellum was equipped
with suitable learning and memory mechanisms whose nature
is still under debate (Carey, 2011; Yang and Lisberger, 2014).

• Secondly, the gain-control system involving the cerebellum
was capable of optimizing its performance within wider
operative ranges; concretely, keeping PF–PC adaptation
mechanisms within their optimal working range.

Conversely, these approaches still lack two key features that are
addressed in the present work in a more realistic and biologically
plausible scenario:

i. Whilst MF–DCN and PC–DCN plasticity played a key role
in generating the gain controller, the way through which the
slow learning consolidation process occurred was still missing.
The level of detail of those previous computational approaches
prevented this feature from being properly addressed.

ii. It was not clear how to implement the analog conceptual
model of these previous approaches into a spiking-based
model compatible with spiking signal processing and then
endowed with long-term spike-timing-dependent plasticity
mechanisms.

Now, in this work, we have studied the impact of distributed
cerebellar spike-time synaptic plasticity on both gain adaptation
and learning consolidation when performing a manipulating
task. To that purpose, we have used a cerebellar spiking-
based model embedded in closed loops. The working hypothesis
assumes that there exist three learning sites; one located in
the cerebellar cortex (PF–PC) and the other two located at the
DCN innervations (MF–DCN and PC–DCN), all including LTP
and LTD (Figure 1A). We found that our simulations captured
the adaptive features proposed in the analog models regarding
self-adaptive-gain control recalibration over a broad dynamic
range involving manipulation of a heavy mass. Furthermore,
we confirmed how MF–DCN innervations broadly stored what
was already learnt at PF–PC. PC–DCN was also revealed as a
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FIGURE 1 | Schematic representation of the main cerebellar layers, cerebellar cells and connections, as well as plasticity sites considered. Working

hypothesis of cerebellar learning in a manipulation task. (A) Cerebellar architecture. Colored representation indicates signals from different sources such as different

cuneate receptive fields or proprioceptors. Pathways involved in long-term synaptic plasticity for DCN and PC afferents are indicated with two colored symbols;

long-term potentiation in blue and long-term depression in magenta. PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule cell; PC, Purkinje cell; DCN,

deep cerebellar nuclei. (B) Conceptual cerebellar block-diagram. Each cerebellar layer is put in relation to its functionality according to the cerebellar model hypothesis

being adopted. MF input layer conveys sequences of spikes acting as time-evolving states (raw state generator) which present a constant firing rate, thus supplying

the excitatory activity required by the DCN to start operating. The cerebellar granular layer operates as a state generator that is reinitialized with the onset of a new

trial. The PC function acts as a state-error correlator; each state is correlated with the error signal that reaches the PCs through the CFs and represents the difference

between the controlled variable (actual cerebellar output value) and the reference variable (set point). By repeating pairings of PF states and CF error signals, trial after

trial, an association between these two sets is formed thanks to the PF–PC long-term plasticity action driven by the activity at CFs (supervised learning). A learnt

corrective action is therefore deployed to anticipate the incoming error. This association implies either a reduction or increase of PC firing at different step times. Finally,

the temporally correlated signals from PCs are inverted (due to the inhibitory nature of the PC–DCN connection) and conveyed to the DCN which, in turn, receives

inputs coming from MF afferents (excitatory). The DCN operates like an adder/subtractor able to adaptively modulate the output DCN gain which enables learning

consolidation (adapted from Garrido et al., 2013a). (C) During each manipulation trial, the onset of the movement makes MFs convey sequences of spikes that

present a constant firing rate and time-evolving states simultaneously. This MF constant firing-rate initialization, in turn, allows PFs to start generating a non-recurrent

sequence of firing states (Yamazaki and Tanaka, 2007b, 2009). To that aim, groups of non-overlapped MFs are correlatively activated during the simulation. Each

colored MF group represents a certain state able to determine univocally a certain time-period within the simulation (D) The figure presents the GC coding

(Continued)
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FIGURE 1 | Continued

strategy: in our model, the states correspond directly to non-overlapped GCs activated at each time-step simulation. Each PF group represents a certain state able to

determine univocally a certain simulation step-time within the simulation (E) Each CF carries the teaching spikes. CF cell response follows a probabilistic Poisson

process. A single spike reports time-information regarding the instantaneous error and the probabilistic spike sampling of the error ensures that the whole error region

is accurately represented over trials (F) The generated DCN spike train is translated into meaningful analog output signals by using a Finite Impulse Response filter

(FIR).

fundamental plasticity site in charge of adapting the DCN-output
firing rate.

MATERIALS AND METHODS

Within this section, the working principles of the proposed
mechanistic spiking cerebellar model are described.
Furthermore, the major functional hypotheses related to
the granular layer, PC layer, and DCN are linked to the cerebellar
underlying structure (Figure 1B). The section is also divided into
two main blocks. The first block describes the cerebellar topology
to be used and the implemented spike-timing-dependent
plasticity mechanisms. The second block consists of two case
studies: Case study A uses a simplified cerebellar control loop
seeking to reveal the functional interplay amongst distributed
plasticity cerebellar sites, whereas Case study B uses a cerebellar
control loop designed to operate a simulated robotic arm (able to
manipulate heavy masses) that can exploit the potential of using
distributed cerebellar plasticity in quantitative and qualitative
evaluation experiments.

Cerebellar Computational Model
Considerations
A cerebellar spiking model was implemented using the EDLUT
simulator (http://edlut.googlecode.com; Ros et al., 2006;
Naveros et al., 2015). This model intended to capture the
essence of the main properties of synaptic cerebellar topology
and its neuronal elements. This work aimed to investigate
the synaptic-weight plasticity at multiple connections. The
simulations were done using leaky integrate-and-fire (LIF) neural
models whereas synapses were simplified using conductance
based exponential models (Gerstner and Kistler, 2002). The
work was focused on the IO–PC–DCN subcircuit, thus the
granular layer was also simplified. That is, the granular
layer was implemented as a state generator following the
liquid-state-machine principles (Yamazaki and Tanaka, 2007a,
2009; see the Cerebellar-Network Organization Section).
All the implemented code is at the disposal of the reader
at http://www.ugr.es/∼nluque/restringido/CODE.rar (user:
REVIEWER, password REVIEWER).

Cerebellar Network Organization
The connectivity and topology of the cerebellar network sought
to abstract the general cerebellar principles taking inspiration
from Eccles et al. (1967), Ito (1984), Voogd and Glickstein
(1998) andMedina andMauk (1999, 2000). Our cerebellar model
consisted of four main layers (Figure 1A) connected as indicated
in Table 1:

• Mossy fibers (MFs): (100) MFs were modeled as leaky I&F
neurons. According to existing models of eyelid-conditioning
cerebellar control (Medina and Mauk, 1999; Yamazaki and
Tanaka, 2007b, 2009), MFs are hypothesized to convey
sequences of spikes which present a constant firing rate
during the conditioned-stimulus-presentation phase. In our
simplified model, MFs were correlatively activated in non-
overlapped and equally-sized neural clusters ensuring a
constant firing rate during the execution of each learning trial
whilst they remained silent when the learning trial came to its
end. The learning trial start was defined by the onset of MF
activity thus forcing the granular layer to generate its state
sequence, and supplying the base-line excitatory activity that
DCN needed to start operating (Figure 1C).

• Granular cells (GCs): (2000) similarly to other models
(Yamazaki and Tanaka, 2005, 2007a, 2009; Honda et al., 2011),
the granular layer was implemented as a state generator, that
is, the granular layer generated a sequence of active neuron
populations without recurrence. The sequential activation of
these neuron populations was able to represent the passage
of time. When the learning process began, the granular layer
produced non-overlapped time patterns that were repeatedly
activated in the same sequence during each learning trial (1
s; Figures 1C,D). Having 1 s learning process in a 2ms time-
step simulation demanded 500 different states, which involved
four non-overlapped GCs activated per time-step simulation.
PF–PC synaptic conductances were set to an initial value (5
nS) at the beginning of the simulation, and were modified by
the STDP mechanism during the training process. Note that
the whole model aims to adopt cell realistic ratios, although
the actual number of simulated neurons is much smaller than
a full size rat model. A reduced version of the cerebellum (2000
GCs) where each PC just received activity from 2000 PFs was
modeled. Since in a full model of the cerebellum, each PC
should receive activity from about 150,000 PFs (Brunel et al.,
2004), PF–PC weight values were scaled to obtain a similar
relative PC excitation.

• Purkinje Cells (PCs): We have defined two case studies: (20)
Purkinje cells in case study A, (60) Purkinje cells in case
study B.

Case study A; the cerebellar circuit was modeled as a closed
loop able to supply a corrective signal to counterbalance
the existing difference between a controlled variable (actual
cerebellar output value) and a demanding reference variable
(set point). This was equivalent to a cerebellar model
compensating the error that one degree-of-freedom (DoF)
manipulator could undergo (see Control Loop Section and
Figure 3A). Within this loop, 20 PCs inhibited two DCNs
that, in turn, counterbalanced the error curve. CFs (2) were
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TABLE 1 | Summary of cerebellar cells and synapses implemented in Case A and Case B simulations.

Case A Case B

Presynaptic cell (number) Postsynaptic cell Number of synapses Presynaptic cell (number) Postsynaptic cell Number of synapses

Mossy Fibers(100) Granular Cells 8000 Mossy Fibers(100) Granular Cells 8000

Deep Cerebellar Nuclei 200 Deep Cerebellar Nuclei 600

Climbing Fibers(2) Purkinje Cells 20 Climbing Fibers(6) Purkinje Cells 60

Granular Cells(1000) Purkinje Cells 40,000 Granular Cells(1000) Purkinje Cells 120,000

Purkinje cell(20) Deep Cerebellar Nuclei 20 Purkinje cell(60) Deep Cerebellar Nuclei 60

Deep Cerebellar Nuclei(2) – – Deep Cerebellar Nuclei(6) – –

assumed to transmit the difference between the set point
curve and the actual one. CFs closed the loop providing
input to the PCs. This layer was divided into two groups
of 10 Purkinje cells each all receiving activity through each
granular layer cell. One group was in charge of correcting the
negative errors (providing activity toward enhancing output
cerebellar corrective activity) and the other group was in
charge of corrective positive errors. This set up mimics the
existing interplay between agonist and antagonist muscles
at biological systems. Each 10 PC group was innervated by
its corresponding CF that, in turn, was also in charge of
carrying the teaching signal corresponding to the negative
or the positive part of the error being estimated. Every
subgroup of PCs finally inhibited a cell of the DCN that, again,
counterbalanced the negative or the positive part of the error
curve.

Case study B; the cerebellar circuit was modeled within a
closed loop designed to operate a simulated robotic arm of
3 DoFs (see Control Loop Section and Figure 3B). In this
set up, we scaled up the cerebellar model. Within this loop,
60 PCs inhibited six DCN that, in turn, counterbalanced the
error undergone by the simulated robotic arm. CFs (6) were
assumed to transmit the difference between the simulated
robotic arm desired-trajectory curves and the actual ones.
CFs closed the loop providing teaching input to the PCs.
The PC layer was divided into three groups of 20 PC cells
each that were in charge of correcting their corresponding
simulated robotic arm DoF. Each group was also subdivided
into two groups of 10 Purkinje cells and innervated by each
granular layer cell. Each subgroup of the PCs was aimed to
provide the positive or negative necessary corrections. Each
PC subgroup was innervated by its corresponding CF which,
in turn, carried the teaching signal corresponding to either the
negative or the positive part of the actual error at each DoF.
Every group of PCs finally inhibited a cell of the DCN that,
again, counterbalanced the negative or the positive part of the
actual error.

• Climbing fibers (CFs): (2) Climbing fibers in case study A.
(6) Climbing fibers in case study B. Each CF carried the
teaching spikes (obtained from error signals) from the IO
to a PC subgroup. CF cell response followed a probabilistic
Poisson process. Given the normalized error signal ε(t) and a
random number η(t) between 0 and 1, the cell fired a spike

if ε(t) > η(t); otherwise, it remained silent (Boucheny et al.,
2005; Luque et al., 2011a). In this way, a single spike reported
accurately timed information regarding the instantaneous
error; furthermore, the probabilistic spike sampling of the
error ensured that the whole error region was accurately
represented over trials with a constrained CF activity below
10 spikes per second, per fiber. Hence, the error evolution is
accurately sampled even at a low frequency (Carrillo et al.,
2008; Luque et al., 2011a). This firing behavior is similar to the
ones obtained in physiological recordings (Kuroda et al., 2001;
Figure 1E).

• Deep Cerebellar Nuclei (DCN): (2) Deep Cerebellar Nucleus
cells in case study A, (6) Deep Cerebellar Nucleus cells in
case study B. The generated DCN spike train is translated into
meaningful analog output signals by using a Finite Impulse
Response filter (FIR). We adopted this mathematical approach
(Schrauwen and van Campenhout, 2003) because we assumed,
at this stage, that the goal is to decode rather than to analyze
the behavior of biological neurons.

Defining the spike train as x(t) =
∑N

j=t δ(t − tj), where tj
stands for the set of firing times of the corresponding neuron,
N is the number of events in the spike train, and being the FIR
response defined as h(t), then the stimulus can be written as
follows (Equation 1):

stimulus (t) =
(

h ∗ x
)

(t) =
∑N

j= t
h

(

t − tj
)

j = 1 to N

(1)
Despite the widespread use of FIR filters for such purpose, an
undesired delay is introduced in the generated analog signal.
This delay is strongly related to the number of filter coefficients
and to the shape of the filter kernel. In order to mitigate
this effect and to make the conversion more efficient, an
exponentially-decaying kernel is implemented Equation (2).
At each time step, the output signal value only depends on
its previous value and on the input spikes in the same time
step and, therefore, this filter is implemented by recursively
updating the last value of the output signal. Actually, the
choice of such exponential kernel is double folded. The
kernel is able to mitigate the delay problem and bears a
strong resemblance to postsynaptic currents (van Rossum,
2001; Victor, 2005), thus facilitating a biological interpretation.
Furthermore, as demonstrated in Luque et al. (2014a), this FIR
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filter is equivalent to an integrative neuron (Figure 1F).

Kernel = e−
M
τ , whereM = 1 (2)

where M is the number of filter taps (one-tap per integration
step 0.002 s) and τ is the decaying factor.

In case study A, the cerebellum output was generated
by a single group of these DCN cells; one of the cells
handled positive error corrections whereas the other one
handled negative error corrections. Each DCN neuron
received excitation from every MF and inhibition from its
corresponding 10 PC group. In this way, the sub-circuit PC–
DCN–IO was organized in a single microzone.

In case study B, the cerebellum output was generated by
three groups of these cells. The cerebellar corrective output
(torque) for each DoF was encoded by a group of these cells
(two subgroups per DoF) whose activity provided corrective
actions to the specified robot-arm commands. Each neuron
group in the DCN received excitation from every MF and
inhibition from its corresponding PC group. In this way, the
sub-circuit PC–DCN–IO was organized in three microzones.

In both cases, DCN synaptic conductances were set to
initial values of 0 nS at the beginning of the simulation, and
were modified by the STDP mechanisms during the training
process.

Synaptic Plasticity
The impact of distributed cerebellar synaptic plasticity on
gain adaptation and learning consolidation using close-loop
experiments has been explored. It has been assumed that there
are at least three learning sites, one in the cerebellar cortex
(PF–PC) and two at the DCN (MF–DCN and PC–DCN),
all of them generating LTP and/or LTD. Unlike the previous
analog cerebellar model (Garrido et al., 2013a; Luque et al.,
2014b), where each cerebellar layer was implemented as a set
of parameter values corresponding to the firing rate of the
neural population, the spiking model presented here preserves
the timing information of the elicited spikes at each cerebellar
layer and the adaptation mechanisms are based on Spike Time
Dependent Synaptic Plasticity (STDP). Now we summarize these
multiple forms of synaptic plasticity.

PF–PC Synaptic Plasticity
This is, by far, the most widely investigated cerebellar plasticity
mechanism as evidenced by the vast number of studies
supporting the existence of multiple forms of LTD (Ito and
Kano, 1982; Boyden et al., 2004; Coesmans et al., 2004) and LTP
(Hansel et al., 2001; Boyden et al., 2004; Coesmans et al., 2004)
plasticity mechanisms. Two important features were considered
when implementing this synaptic plasticity mechanism:

i. The synaptic efficacy change for each PF connection had to
be driven by pre-synaptic activity (spike-timing-dependent
plasticity) and had to be instantaneous.

ii. Since the sensorimotor pathway delay is roughly ∼100ms,
the learning mechanism had to learn to provide corrective
predictions to compensate this inner sensorimotor delay
(Figure 2A).

To this aim, this plasticity mechanism was implemented
including LTD and LTP as follows (Luque et al., 2011a):

• LTD produced a synaptic efficacy decrease when a spike from
the IO reached the target PC through the CF. The amount
of the weight decrement depended on the previous activity
arrived through the PF. This previous activity was convolved
with an integrative kernel as defined by Equation (3).

k (x) = e−x · sin (x)20 (3)

where x is used as intermediate variable to get a compacted
definition of the kernel, x is then substituted in Equation (4)
by the independent variable t.

This mainly took into account those PF spikes which
arrived 100ms before the CF spike arrival. This correction was
facilitated by a time-logged “eligibility trace,” which evaluated
the past activity of the afferent PF (Sutton and Barto, 1981;
Barto et al., 1983; Kettner et al., 1997; Boucheny et al., 2005).
This trace aimed to calculate the correspondence in time
between spikes from the IO (error-related activity) and the
previous activity of the PF that was temporally correlated
to this error signal. The eligibility trace idea stemmed from
experimental evidence showing that a spike in the climbing
fiber afferent to a Purkinje cell was more likely to depress a PF–
PC synapse if the corresponding PF had been firing between 50
and 150ms before the IO spike (through CF) arrived at the PC
(Kettner et al., 1997; Boucheny et al., 2005; Ros et al., 2006).

• LTP produced a fixed increase in synaptic efficacy each time
a spike arrived through a PF to the corresponding targeted
PC as defined by Equation (4). This mechanism allowed us to
capture how the LTD process could be inverted when the PF
stimulation was followed by spikes from the IO or by a strong
depression of the Purkinje cell membrane potential (according
to neurophysiologists studies; Lev-Ram et al., 2003).

The chosen mathematical-model kernel allowed accumulative
computation in an event-driven simulation scheme as adopted
by the EDLUT simulator (Ros et al., 2006; Luque et al., 2011a,b).
This avoids the necessity of integrating the whole correlation
kernel upon each new arrival of a spike. This correlation kernel,
despite being computationally efficient, suffered from a second
marginal peak whose impact could be considered to be negligible
(<5% of the main peak height). This is indicated in the following
Equation (4).

LTD.△WPFj−PCi (t) =

∫ IOspike

−∞

k

(

t − tIOspike

τLTD

)

· δGCspike
(t) · dt

if PFj is active at t

LTP.△WPFj−PCi
(t) = α Const. otherwise (4)

where 1WPFj−PCi(t) represents the weight change between the

jth PF and the target ith PC. τLTD stands for the time constant that
compensates the sensorimotor delay and δGC stands for the delta
Dirac function defining a GC spike. For an in-depth review of the
inner features of this kind of kernel (see Ros et al., 2006; Luque
et al., 2011a).
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FIGURE 2 | Spike-timing–dependent learning rules at PF–PC, MF–DCN, and PC–DCN synapses. (A) Representation of PF–PC LTD correlation kernel. A

synaptic efficacy decrease occurs at PF–PC innervations when a spike from the IO reaches a target PC through a CF. The weight decrement percentage depends on

the previous activity arrived through the corresponding PF (100ms before the CF spike arrival) in order to compensate the sensorimotor pathway. The PF–PC

LTP—synaptic-efficacy increase is considered to remain constant. (B) Representation of MF–DCN LTD correlation kernel. A synaptic efficacy decrease occurs at

MF–DCN innervations when a spike from the PC reaches a target DCN. Near-coincident pre- and post-synaptic MF–DCN spikes which arrive close to PC–DCN spike

arrival cause a depression at MF excitatory synapses. MF–DCN LTP-synaptic-efficacy increase is also considered to remain constant. (C) Representation of two

PC–DCN alternative correlation kernels. Classical inhibitory STDP modifies the synapse efficacy at PC–DCN innervations depending on DCN activity. Near-coincident

pre-synaptic PC–DCN spikes before post-synaptic DCN-action potentials cause long-term potentiation action whereas PC–DCN spike arrivals after post-synaptic

DCN-action potentials cause long-term depression action. The second inhibitory-STDP kernel potentiates the synapse efficacy at PC–DCN innervations after a

DCN-action potential each time a near-coincident pre- and postsynaptic PC-spike arrives whereas every presynaptic PC spike leads to synaptic depression.

MF–DCN Synaptic Plasticity
MF–DCN synaptic plasticity has been reported to depend on the
intensity of the DCN cell excitation (Racine et al., 1986; Medina
and Mauk, 1999; Bastian, 2006; Pugh and Raman, 2006; Zhang
and Linden, 2006; Figure 2B). It has been implemented bymeans
of a mathematical kernel defined by Equation (5):

k (x) = e−|x·β| · cos (x)2 (5)

where x is used as intermediate variable to get a compacted
definition of the kernel, x is then substituted in Equation (6)
by the independent variable t. β is a constant factor used
for mitigating the impact of the second marginal peak that
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this kernel suffers.

LTD.△WMFj−DCNi (t) =

∫ +∞

−∞

k

(

t − tPCspike

σMF−DCN

)

· δMFspike (t)

·dt if PCj is active at t

LTP.△WMFj−DCNi
(t) = α Const. otherwise (6)

where 1WMFj−DCNi(t) denotes the weight change between

the jth MF and the target ith DCN, σMF−DCN stands for the
window-time width of the kernel, and δMF stands for the delta
Dirac function that defines a MF spike. As evidenced, there is
no need to compensate the sensorimotor pathway delay at this
plastic site since it is already compensated by the PF–PC kernel.
LTD and LTP actions are then characterized as follows:

• LTD produced a synaptic efficacy decrease when a spike from
the PC reached a targeted DCN. The amount of the weight
decrement depended on the activity arrived through the MFs.
This activity was convolved with the integrative kernel defined
in Equation (5). This mainly considered those MF spikes
that arrived after/before the PC–DCN spike arrival within the
window-time-width defined by the kernel.

• LTP produced a fixed increase in synaptic efficacy each time
a spike arrived through an MF to the corresponding targeted
DCN as defined by Equation (6). This mechanism allowed the
compensation of the LTD if necessary and prevents any weight
saturation as proven in Luque et al. (2011a).

Despite the fact that this MF–DCN synaptic-plasticity
mechanism looks very much like the mathematical expression
given by PF–PC synaptic plasticity, it presents two significant
differences:

i. The first one lies on the reduced capability of MFs, compared
to PFs, to generate sequences of non-recurrent states. As
aforementioned, the MF–DCN activity compared to the
analog approaches described at Garrido et al. (2013a) and
Luque et al. (2014b) is now capable of codifying the passage
of time. It does so by using groups of active mossy neurons
that are sequentially activated. However, it uses a significantly
lower number of consecutive non-recurrent time stamps than
the 500 able to be generated by the granular layer (Yamazaki
and Tanaka, 2007b, 2009; Yamazaki and Nagao, 2012).

In Garrido et al. (2013a) and Luque et al. (2014b), the
MF–DCN connection was implemented as a state generator
able of generating only one state; the amplitude at this state
was equivalent to the base current able to excite DCN cells.
Plasticity at this site was capable of varying the amount
of injected current that operated DCN by modifying the
amount of excitation that DCN received at this connection
(gain controller). However, a single-state generator was not
able to generate the mentioned 500 time stamps (PF–PC).
Nevertheless, having a state generator made out of clusters
of non-overlapped neurons at MF–DCN allows us to roughly
store or “translate” the timing sequence that is generated by
a state generator holding 500 states. Given the fact that the
cerebellar networks holds 2000 GCs, the simulation step-size
is 2ms, and the trajectory time is 1 s; 500 different states

are, therefore, generated by groups of four non-overlapped
neurons at PF–PC level. The 100 MFs have been clustered in
groups of four non-overlapped neurons obtaining 25 states at
MF–DCN level to roughly store the PF–PC synaptic weight
distribution facilitated by those 500 different states.

ii. The second main difference concerns the connection driving
LTD and LTP. Whilst the PF–PC plasticity was driven by
the CF activity, the MF–DCN plasticity was driven by the
PC activity. This mechanism optimized the activity range
in the whole inhibitory pathway comprising MF–PF–PC–
DCN connections: high PC activity caused MF–DCN LTD,
whilst low PC activity causedMF–DCN LTP. This mechanism
implemented an effective cerebellar gain controller able to
adapt its output activity to minimize the amount of inhibition
generated in the MF–PF–PC–DCN inhibitory loop.

PC–DCN Synaptic Plasticity
PC–DCN synaptic plasticity was reported to depend on the
intensity of DCN and PC cells (Morishita and Sastry, 1996;
Aizenman et al., 1998; Ouardouz and Sastry, 2000; Masuda and
Amari, 2008). Moreover, plasticity at inhibitory synapses was
revealed as a fundamental homeostatic mechanism in balancing
the excitatory and inhibitory cell inputs (Medina and Mauk,
1999; Kleberg et al., 2014) at DCNs capable of conforming
synaptic memories related to activity patterns (Vogels et al.,
2011). Taking inspiration from (Medina and Mauk, 1999) and
recent studies (Vogels et al., 2011; Kleberg et al., 2014), the
synaptic plasticity mechanism was implemented following two
possible valid kernels (Figure 2C):

i. A classical inhibitory-STDP learning rule (iSTDP; Equation 7)

LTP.△WPCj−DCNi
(t) = e

−

(

tDCNpost
−tDCNpre
τ1

)

if tDCNpost > tDCNpre

LTD.△WPCj−DCNi
(t) = e

−

(

tDCNpre−tDCNpost
τ2

)

if tDCNpre > tDCNpost (7)

where 1WPCj−DCNi(t) is the weight change between the jth PC

and the target ith DCN. τ1 stands for the time constant for
the LTP expression and τ2 stands for the time constant for the
LTD expression.

ii. An inhibitory-STDP learning rule based on near-coincident
pre and postsynaptic spikes able to potentiate inhibitory
synapses, whereas every presynaptic spike causes synaptic
depression (Equation 10).

△WPCj−DCNi
(t) =

∫ +∞

−∞



LTPmax · e
−

∣

∣

∣

∣

tDCNpost
−tDCNpre

σPC−DCN

∣

∣

∣

∣

·

cos

(

tDCNpost − tDCNpre

σPC−DCN

)2

− LTDmax

)

· dt

(8)
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where 1WPCj−DCNi(t) is the weight change between the jth

PC and the target ith DCN, σPC−DCN stands for window-
time width of the kernel, and LTPmax/LTPmax stand for
the maximum weight depression or potentiation change per
simulation step.

These two plausible kernels mainly consider those spikes
received by DCN through PC innervation within the window-
time-width defined per each kernel.

Cerebellar Control Loop
Case study A (Figure 3A)
The adopted control loop for the cerebellar architecture of
Case-study-A was based on the traditional forward cerebellar
control architecture. Within this architecture, the cerebellum
attempted to minimize the existing difference between the
controlled variable (actual cerebellar output value) and the
reference variable (set point) via manipulation of the controlled
variable. The reference variable (Equation 9) was a 1-s curve
(2ms time-step simulation) made out of Gaussian functions that
was repeatedly iteratively presented to the cerebellar model.

reference variable (t) = e
−

(

t− T
4

)2

σ2
ref − e

−

(

t− 3·T
4

)2

σ2
ref (9)

where σref stands for the Gaussian standard deviation and T
stands for the time period.

This curve (Equation 9) changed its direction and module
from the minimum possible value (normalized) to its maximum

possible value twice per period. The cerebellar output action
demanded a fine balance between the negative/positive output
micro-complex actions to match the reference variable. It is
worth mentioning that the IO frequency ranged between 1
and 10Hz. Thus, according to the network already presented,
each IO codified whether the error was positive or negative
during 0.5 s (depending on the activated CF). Hence, no more
than five spikes per IO and period (1 s) were obtained in the
worst possible scenario. These directional and module changes
combined with the IO biological low rate sampling constraint
made the cerebellum operate at the limits of its learning
performance.

Case study B (Figure 3B)
The adopted control loop was based on the traditional feed-
forward architecture along with a crude inverse dynamic model
of the simulated robotic arm. An inverse kinematic module
translated the desired trajectory into arm-joint coordinates
and fed an inverse dynamic module based on a recursive
Newton-Euler algorithm. This algorithm generated crude step-
by-step motor commands (torques) corresponding to the desired
trajectory.

In light of some studies, the central nervous system has been
suggested to plan and execute sequentially voluntary movements.
In accordance to this hypothesis, the brain might first plan the
optimal trajectory in task-space coordinates, translate them into
intrinsic-body coordinates, and finally, generate the necessary
motor commands (Houk et al., 1996; Nakano et al., 1999;

FIGURE 3 | Case study cerebellar control loops. (A) Case study A, the adaptive cerebellar module embedded in a control loop delivers corrective actions to

compensate the existing difference between a controlled variable [actual cerebellar output value y(t)] and a demanding reference variable [set point x(t)]. (B) Case

study B, the adaptive cerebellar module embedded in a feed forward control loop delivers corrective torque values (τcorrective) to compensate for deviations in the

crude inverse dynamic module when manipulating an object of significant weight along an eight-like trajectory. In this feed-forward control loop, the cerebellum

receives a teaching error-dependent signal and the desired arm state (Qd , Q̇d , Q̈d ) so as to produce the adaptive corrective actions.
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Todorov, 2004; Hwang and Shadmehr, 2005; Izawa et al., 2012;
Passot et al., 2013). According to these studies, the association
cortex would be in charge of providing the desired trajectory in
body coordinates and conveying them to the motor cortex which,
in turn, would generate the optimal motor commands to operate
our limbs. On the one hand, the spinocerebellum–magnocellular
red nucleus system is thought to hold an internal neural accurate
model of the musculoskeletal body dynamics learnt through
sensing voluntary movements (Kawato et al., 1987). On the other
hand, the cerebrocerebellum–parvocellular red nucleus system is
thought to provide a crude internal neural model of the inverse-
dynamics of the musculoskeletal system (Kawato et al., 1987).
The crude inverse-dynamic model shall work conjointly with the
dynamic model (given by the spinocerebellum–magnocellular
red nucleus system) in order to get the ongoingmotor commands
updated to match a possible predictable error when executing a
movement.

Together with the feed forward control loop, a simulated-
light-weight robot (LWR) arm was integrated. The simulated-
robot-plant physical characteristics can be dynamically modified
to manipulate different payloads (punctual masses). This LWR
(Hirzinger et al., 2000; Albu-Schäffer et al., 2007) model is
a 7-DOF arm robot consisting of revolute joints where only
the first (labeled as Q1), second (Q2), and fifth joint (Q3)
were operated in our experiments while maintaining the others
fixed (rigid).

Similarly to Case study A, the main aim when selecting a
benchmark trajectory was to challenge the cerebellar learning
limits. Case study B needed to reveal the dynamic properties of
a simulated-robot-plant. Choosing fast movements in a smooth
pursuit task consisting of vertical and horizontal sinusoidal
components (Kettner et al., 1997; van Der Smagt, 2000; 1 s for
the whole target trajectory) allowed us to study how inertial
components (when manipulating objects) were inferred by the
cerebellar architecture (Luque et al., 2014b). The selected target
trajectory described an “8-shape” defined by Equation (12) in
joint coordinates.

Qn (t) = An · sin
((

−4 · π · t3 + 6 · π · t2
)

+ Cn

)

where n =
{

1, · · · , number of links
}

(10)

where An and Cn = n·π /4 represent the amplitude and phase
of each robot joint. The followed trajectory is based on cubic
spline technique so as to provide continuity and a zero initial
velocity per link, which fulfills the implementation requirements
of a physical robot controller. This trajectory is easy to perform
despite the non-linearity in the robot joint angles, since joint
velocities and accelerations are constricted to small bounds
depending on the amplitude and phase. To finally quantify
and evaluate the movement performance in terms of accuracy,
the average of the Mean Absolute Error (MAE) per robot
joint was calculated. The estimation of this measurement was
monitored in each trial, thus allowing the quantification
of the global-movement accuracy evolution during the
learning process.

RESULTS

We tested the hypothesis of cerebellar gain-controller operation
assuming that the MF–DCN synaptic weights were capable
of obtaining the maximum corrective cerebellar values whilst
the difference between the maximum and minimum corrective
cerebellar values were supplied by PC–DCN synaptic weights.
We also tested the learning consolidation hypothesis by
endowing these two connectivity sites with plasticity, thereby
generating an internal adaptive gain controller fully compatible
with the two-state learning mechanism proposed by Shadmehr
and Brashers-Krug (1997), Shadmehr and Holcomb (1997),
Medina and Mauk (2000), and Ohyama et al. (2006). Whilst case
study A, due to its inherent simplicity, helped to demonstrate
and validate our premises, case study B helped to extrapolate
our premises to a more demanding scenario where the cerebellar
model delivered to a simulated-robotic arm the corrective actions
needed to compensate for dynamic deviations produced when
manipulating heavy point masses. Furthermore, case B also
helped to evaluate how the distributed learning scheme was
scalable in terms of joints.

Illustrative movies of learning simulations for case study A
and case study B during the manipulation of a 6-kg load are
available in the Supplemental Material.

MF–DCN STDP Allows Learning
Consolidation
In order to determine the impact of MF–DCN STDP in
learning consolidation, in case-study-A, the cerebellar network
was equipped with plasticity at PF–PC and MF–DCN synapses.
Our first simulation was carried out to demonstrate not just, how
MF–DCN could implement a gain-controller, but also how the
PF–PC learning was transferred into MF–DCN synapses.

Within the feed-forward control loop, the cerebellum in case
study A, attempted to minimize the existing difference between
the controlled variable (current cerebellar output) and the
reference variable (following the 1-s curve made out of Gaussian
functions; Figure 4C). The reference variable was iteratively
presented over 2500 iterations. PF–PC synaptic conductances
were set to an initial value of 5 nS, MF–DCN initial conditions
started from zero, and PC–DCN synaptic weights were fixed
with pre-calculated values that ensured a proper inhibitory PC–
DCN action. In order to better discern the synaptic weight
distribution shape that was transferred from PF–PC synapses
into MF–DCN, the initial synaptic weights at those synaptic sites
were set to equal values. This set-up configuration facilitated
the perception at a glance of a continuous surface representing
PF–PC synaptic distribution copying the reference variable. We
also made simulations with random initialization of synaptic
weights leading us to similar results but in these simulations,
it was difficult to obtain a visual verification of the learning
consolidation process (see Supplementary Material).

As evidenced, the reference variable changed its direction
and module from the minimum possible value (normalized)
to its maximum possible value twice each period, which
required a fine balance between the cerebellar micro-complex
negative/positive output (Figure 4C). Despite this demanding
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FIGURE 4 | PF–PC and MF–DCN learning rule interplay: learning consolidation. Case study A. PF–PC and MF–DCN synaptic weight distribution at the end of

the learning process. The cerebellum tries to counterbalance the existing mismatch between the actual cerebellar output and the reference variable; a 1-s curve made

out of Gaussian functions which is iteratively presented to the cerebellum over 2500 iterations. The exponential weight distribution at PF–PC shows that the corrective

action is properly stored at these afferents. Learning rule at PC–DCN connections is deactivated. Synaptic weights are fixed with pre-calculated values ensuring a

proper inhibitory PC–DCN action. (A) Two micro-complexes that are conformed by 10 PCs each and innervated, in turn, by 2000 PFs. These micro-complexes are

responsible for the correct balance between the negative and the positive cerebellar correction. One micro-complex is in charge of delivering the positive corrective

action whilst the other one delivers the negative corrective action. Each of the two output DCN cells is, in turn, innervated by one of the two micro-complexes. (B) The

Gaussian-like weight distribution at PF–PC is transferred in counter phase to MF–DCN synapses. The reduced MF number of non-recurrent states enables learning

consolidation; however, the obtained synaptic weight-distribution shape adopts a discretized version of the PF–PC weight-distribution shape. (C) The injected error is

properly counterbalanced thanks to the action of these two learning laws. DCN output activity (spikes in black) is transformed into its proportional analog value (in red)

and, later on, subtracted from the reference variable (in blue).

scenario, after the synaptic weight adaptation process at PF–
PC connections (Figures 4A,B), the Gaussian shape that the
reference variable presented, was copied and stored at PF–PC
synaptic weights, thus constituting the first learning stage needed

to deliver the cerebellar corrective action. Then, PF–PC learning
triggered MF–DCN learning process which was able to lead MF–
DCN synaptic weights to their local maximum values allowing
plasticity to store temporally correlated information (the weight
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distribution at PF–PC was inversely copied at MF–DCN;
Figure 4D).

The constrained capability of MFs, compared to PFs, when
generating sequences of non-recurrent states was immediately
reflected in the MF–DCN synaptic weight shape (Figure 4B).
Although the reduced MF number of non-recurrent states
enabled learning consolidation, the obtained synaptic weight-
distribution shape, through the adaptation process at this site,
was forced to adopt an inverse discretized version of the PF–PC
weight-distribution shape.

MF–DCN and PC–DCN STDP Interplay
toward Adaptive Gain Controller
In order to evaluate the existing interplay amongst different
forms of plasticity at PF–PC, MF–DCN, and PC–DCN synapses,
respectively, case-study-A cerebellar network was sequentially
added with the aforementioned adaptive mechanisms (Equations
3, 5, and 7). In previous works, we demonstrated that plasticity
at PF–PC synapses could not account for preventing PC activity
saturation per se (Garrido et al., 2013a; Luque et al., 2014b). To
circumvent this limitation, MF–DCN and PC–DCN plasticity
mechanisms were implemented, thus allowing PC activity to keep
on operating within its optimal working range. Nevertheless,
how such analog plasticity mechanisms would be re-designed
and counterbalanced to take into account the spiking cerebellar
nature remained an open issue.

This has motivated the work presented here. Case-study-A
cerebellar network attempted to minimize the existing difference
between the controlled variable and the reference variable (1 s
duration) over 5000 iterations (Figure 5C). PF–PC synaptic
conductances were set to an initial value of 5 nS, MF–DCN initial
conditions started from zero (Figure 5D), and PC–DCN synaptic
weights were set to either zero initial values, random values, or
higher values than needed (Figures 5E,F). As expected, the STDP
learning rule located at this site was able to self-regulate PC-DCN
synaptic weights in order to adequate the optimal working range
demanded by both DCN and PC (Figures 5E,F).

Whilst the consolidation process was settling down (what was
learnt at PF–PC synapses (Figure 5A) was transferred in counter
phase to MF–DCN synapses; Figure 5B), it was possible to
verify the double-learning time-scale behavior already indicated
in recent behavioral and computational studies (Shadmehr and
Brashers-Krug, 1997; Shadmehr andHolcomb, 1997;Medina and
Mauk, 2000; Ohyama et al., 2006; Garrido et al., 2013a; Luque
et al., 2014b; Movies S1, S2 in Supplementary Material). MF–
DCN and PC–DCN averaged synaptic weights (averaged gains)
stabilized slower than those at PF–PC synapses, since learning at
MF–DCN and PC–DCN synapses depended on the PC activity.
As shown in Movies S1, S2, there was a fast learning process, in
which temporal information was inferred and stored at PF–PC
synapses. Meanwhile, there also was a slow learning process, in
which the adaptation of cerebellar excitatory and inhibitory gain
values in the DCN took place. This second slow learning process
could be, in turn, split into two components related to the MF–
DCN and PF–PC connections with time-constants of 750–2500
trials and 2500–5000 trials, respectively. Figures 5D,E.

iSTDP Shape Impacts on PC–DCN
Synapses
Within the case-study-A cerebellar configuration, PC–DCN
iSTDP remains as the only inhibitory pathway to the cerebellar
nuclei, and therefore, the only mechanism capable of reducing
the cerebellar output and preventing MF–DCN from saturation.
iSTDP is known to act as a fundamental mechanism in both;
balancing the excitatory and inhibitory DCN inputs (Medina
and Mauk, 1999; Kleberg et al., 2014), and conforming synaptic
memories related to activity patterns (Vogels et al., 2011).
Nevertheless, the shape held by the iSTDP at PC–DCN synapses
is not yet well-known (the exact adaptation mechanism remains
an open issue).

In order to identify the influence that the iSTDP shape may
exert on the cerebellar output, two biologically plausible learning
kernels were tested. The first one was implemented following
the traditional STDP Hebbian kernel shape (Equation 7) whereas
the second one was implemented following Medina and Mauk
approach (Medina and Mauk, 1999), also adopted in recent
studies (Vogels et al., 2011; Kleberg et al., 2014; Equation 10).
The first step that needed to be proven was the robustness of
the shape of these two kernels. Based on Vogels et al. (2011),
these two kernels suited well our experimental test-bench, since
both fulfilled two main conditions: the postsynaptic activity
potentiated the activated inhibitory synapses together with the
fact that in absence of postsynaptic firing, the inhibitory synapses
decayed.

Case-study-A was used for a comparative study of both
approaches. Again, the cerebellar network attempted tominimize
the existing difference between the controlled variable and the
reference variable (1-s duration) over 10,000 iterations. PF–
PC synaptic conductances were set to an initial value of 5 nS,
MF–DCN initial conditions started from zero (Figure 7A), and
PC–DCN synaptic weights were set to a zero initial value as
well (Figure 7B). As expected, according to the aforementioned
premises, both kernels showed a similar ability to correlate (more
concretely, to reverse-correlate) the activity arriving from PCs
with DCN output activity (Figure 6B). Both kernels did indeed
obtain a similar behavior in terms of maximal reverse-correlation
values and speed of convergence (Figure 6A).

Nevertheless, the second kernel exhibited a better
performance in terms of stability and overall gain value
(Figure 7C) but at the cost of a lower convergence speed
(Figure 7E). Due to the initial conditions for DCN innervations
were set initially to zero, a post-synaptic spike scenario
dominated during the learning process, thus making the
Hebbian approach faster than the symmetric kernel in terms
of convergence speed (see Figure 2C). STDP Hebbian kernel
shape has been traditionally used for spatiotemporal detection
and learning of hidden spike patterns from a neural activity
background by correlating post-synaptic and pre-synaptic
activity (Masquelier et al., 2009). However, an inhibitory-STDP
learning kernel based on near-coincident pre and post-synaptic
spike seemed to be more useful for balancing the DCN excitation
and inhibition inputs (Figures 7B,C) and for selectively
propagating the correlated spiking activity from PC to DCN
(Figure 7D).
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FIGURE 5 | MF–DCN and PC–DCN STDP learning rules working conjointly as an adjustable gain controller. Case study A. (A) PF–PC synaptic weight

distribution at the end of the learning process. The cerebellum counterbalances the existing difference between the actual cerebellar output and the reference curve

which is iteratively presented to the cerebellum over 5000 iterations. The Gaussian-like weight distribution at PF–PC synapses shows that the corrective action is

properly stored at these afferents. (B) Two micro-complexes that are conformed by 10 PCs each and innervated, in turn, by 2000 PFs are responsible for managing

the trade-off between the negative and the positive cerebellar corrective action. The Gaussian-like weight distribution at PFs is inversely transferred at MF–DCN

synapses. (C) The reference curve acting as an error is counterbalanced. DCN output activity is transformed into its proportional analog value (in red) and, later on,

subtracted from the reference variable (in blue). (D,E) The initial conditions established for synaptic weights at MF–DCN start from zero whilst PC–DCN innervations

start from either a higher or lower value than needed. MF–DCN and PC–DCN averaged synaptic weights (averaged gains) get stabilized more slowly than those at

PF–PC synapses, since learning at MF–DCN and PC–DCN synapses depended on the PC activity. MF–DCN and PC–DCN averaged synaptic weights (averaged

gains) are modified when PF–PC weights tend to be saturated. This learning process at MF–DCN and PC–DCN connection can be split into two components with

time-constants of 750–2500 trials and 2500–5000 trials, respectively. (F) The initial conditions established for synaptic weights at MF–DCN start from zero whilst

PC–DCN innervations start from random values. Red and gray shaded areas delimit the synaptic weight space in which the synaptic PC–DCN synaptic values evolve

during the learning process for each micro-complex. Dotted lines indicate the averaged PC–DCN synaptic weight value obtained per micro-complex. The learning rule

at PC–DCN self-regulates the synaptic weights obtaining the optimal firing rate demanded by both DCN and PC.
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FIGURE 6 | Inhibitory plasticity at PC–DCN synapses with two possible STDP kernels, Classic i-STDP Hebbian rule, or Symmetric i-STDP. Case study A.

(A) Reverse cross-correlation evolution at PC–DCN synapses. Since the postsynaptic activity potentiates the activated inhibitory synapses and the inhibitory synapses

decay in the absence of postsynaptic activity in both kernels, they obtain a similar performance in terms of maximal reverse correlation values and convergence speed

(Vogels et al., 2011). (B) Distribution of the reverse cross-correlation between spike trains from PC output and DCN output. For the sake of simplicity, only the Classic

i-STDP Hebbian rule is shown. Three consecutive snapshots of the DCN input/output activity are shown, where the way in which a PC is able to modulate the DCN

activity can be seen.

Testing Distributed Cerebellar Plasticity in
a Robotic Manipulation Task
In order to quantify and extrapolate the aforementioned
STDP distributed plasticity features, case-study B cerebellar
network was faced with a more demanding scenario. Our
last simulation was intended to show how the self-regulation
of MF–DCN and PC–DCN synapses by means of STDP
learning rules is able to deliver to a simulated-robotic arm
the corrective actions needed to compensate for dynamic
deviations produced when manipulating heavy point masses
(6 kg).

Within the feed forward control architecture presented by
case-study-B, the cerebellum attempted to minimize the existing
difference between the controlled variable (current cerebellar
output) and the reference variable (1 s eight-like trajectory to be
followed by the robotic manipulator) during a manipulation task
repeated 10,000 trials (Figure 8). PF–PC synaptic conductances
were set to an initial value of 5 nS, MF–DCN initial conditions
started from zero (Figure 8D), and PC–DCN synaptic weights
were set to a zero initial value as well (Figure 8E). After DCN
synaptic weight adaptation (Figures 8D,E), the cerebellum was
able to deliver proper corrective torques reducing the error
of the robot-arm movement (Figures 8F,G). Once the synaptic
weights were stabilized, both PC and DCN neurons exploited

their dynamic gain adaptation range (Figures 8D,E) allowing the
cerebellum to operate near its optimal performance.

The cerebellum exhibited its ability to act as both an adaptive
gain-controller (Figures 8D,E) and a distributed-learning storage
architecture (what was learned at PF–PC synapses (Figure 8A)
was then transferred in counter phase to MF–DCN synapses;
Figures 8B,C). However, the difference between controlled and
reference variable was not directly related because the cerebellar
corrective action was delivered in torque commands (Figure 3B)
and the proprioception state estimations were acquired in joint-
angle coordinates.

It should be clarified that the proposed STDP mechanisms,
and therefore their involvements, are not restricted to any specific
test-bed framework, and could be extrapolated to other common
but simpler test-bed frameworks such as EBCC and VOR.

DISCUSSION

This work presents a mechanistic spiking cerebellar model
endowed with several STDP learning rules located at
different synaptic sites. They are tested embedded in close-
loop simulations. These close-loop simulations challenge
the cerebellum with two tasks with different degrees of
complexity. However, the main observation regarding the
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FIGURE 7 | Inhibitory plasticity at PC–DCN synapses. Kernel shape impact. Classic i-STDP Hebbian rule vs. Symmetric i-STDP. Case study A. (A,B) Whilst

MF–DCN averaged synaptic weights (averaged gains) exhibit a similar behavior in both configurations (Classic i-STDP Hebbian and Symmetric i-STDP), PC–DCN

averaged synaptic weights (averaged gains) differ. (C) The second kernel presents a better performance in terms of gain stability and global gain (a lower global gain

value obtains the same correction action). (D) The symmetric i-STDP kernel achieves a better balance for the DCN excitation and inhibition inputs. Symmetric i-STDP

better propagates selectively the correlated spiking activity from PC to DCN. Symmetric i-STDP always leads to higher maximal-spiking reverse-correlation values

between PC afferent and DCN output for the two DCN cells. (E) Averaged Convergence Speed for Classic i-STDP Hebbian kernel is higher than Symmetric i-STDP.

Hebbian kernel converges faster at the cost of a lower gain stability and global gain.

learning mechanisms at DCN synapses remains valid in all of
them:

i. Plasticity at DCN synapses is double-folded:

• It is able to operate as a gain adaptation mechanism

allowing the PFs to prevent saturation, thus making the

learning mechanisms between PFs and PCs more accurate
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FIGURE 8 | Functionality of PF–PC, MF–DCN, and PC–DCN learning rules working conjointly in a manipulating robotic task. Case B. (A) Cross-sections

of the synaptic weight distribution surface at PF–PC connections at the end of the learning process. There are two cross-sections per articulated robotic joint; purple

and blue cross-sections correspond to the first joint, red and orange to the second joint, and black and gray to the third one. The weight distribution at PF–PC shows

that the corrective action is properly stored at these afferents. Each of the six micro-complexes is formed by 10 PCs and innervated, in turn; by 2000 PFs. (B,C) Each

pair of micro-complexes is in charge for the correct balance between the negative and the positive cerebellar correction per each operated robot joint. One

micro-complex of each pair delivers the positive corrective action per joint whilst the other one delivers the negative corrective action per joint. The weight distribution

at PF–PC is transferred in counter phase to MF–DCN. Despite the reduced MF number of non-recurrent states, MF–DCN synapses are able to consolidate the

learning. The obtained synaptic weight-distribution shape adopts a discretized version of the PF–PC weight-distribution shape. Since the error to be corrected at the

(Continued)
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FIGURE 8 | Continued

second and third joint is unidirectional (always negative), only the antagonist correction action is delivered. (D,E) MF–DCN and PC–DCN averaged synaptic weights

(averaged gains) are stabilized more slowly than those at PF–PC synapses. MF–DCN and PC–DCN synapses depended on PC activity and are modified when some

PF–PC weights tend to be saturated. Since PCs corresponding to the first joint are operating in their proper range, there is almost no need for gain regulation (not the

case of consolidation) (F) Medium Average Error (MAE) evolution. The error curve to be corrected is the difference between controlled (robot actual position and

velocities) and reference variables (desired position and velocities Figure 3B). Controlled and reference variables are not directly related (or in the same; representation

space) to cerebellar corrective actions since corrective actions are delivered in torque values whilst controlled and reference variables are taken in joint values. Despite

this demanding scenario, the cerebellum is able to supply corrective torque values which decrease the error up to 77, 8% in a 6 kg manipulation task (almost max

robot load) when all the learning rules are active. (G) Robotic joint angle corrections obtained at the end of the learning process.

(keeping their plasticity capability within their working
range).

• DCN has also proven to be fundamental for the slow
memory consolidation process. A plausible two-state
learning mechanism (Shadmehr and Brashers-Krug, 1997;
Shadmehr and Holcomb, 1997) based on STDP has
been shown. According to several evidences (Shadmehr
and Brashers-Krug, 1997; Shadmehr and Holcomb, 1997;
Medina and Mauk, 2000; Ohyama et al., 2006), the
cerebellar cortex seems to undergo a fast learning process
at initial learning stages while the consolidation process
seems to occur in deeper structures (more likely at DCN
innervations).

ii Inhibitory-STDP learning kernel based on near-coincident
pre and post-synaptic spike has proven to be rather efficient
for balancing the DCN excitation and inhibition inputs and
for selectively propagating the correlated spiking activity from
PCs to DCN. Nevertheless, it has been shown that the shape
of the learning kernel at this site (as concluded also in Vogels
et al., 2011) remains valid upon two related conditions:

• Postsynaptic activity shall potentiate those activated
inhibitory synapses.

• In absence of postsynaptic firing, the inhibitory synapses
shall decay.

Biological Realism and Model Limitations
Some simplifications and assumptions have been made to
generate a mathematically tractable cerebellar model that is
biologically realistic as well. The limitations imposed were
profusely discussed in Garrido et al. (2013a) and Luque et al.
(2014b); however, in light of new spiking features held by our
approach, those limitations are here revisited:

(a) The main assumption at granular layer level is its
functionality as a state generator. The state generator model
is grounded in neurophysiologic observations of granule
cell connectivity. Granule cells are comprised in a recurrent
inhibitory network with Golgi cells, thus pointing to the
fact that the input layer of the cerebellum may act as a
recurrent circuit. The state-generatormodel has revealed that
modeled granule cells present a randomly repetitive behavior
in active/inactive state transitions (Yamazaki and Tanaka,
2009). Furthermore, this model has also shown that the
sparse population of active cells changes with the passage of
the time (POT) and no recurrence of active cell populations

is exhibited. Consequently, a specific time interval can be
univocally represented by means of a sequence of active
cells belonging to a certain population. In other words,
the state-generator model is able to represent the POT by
means of a sparse-population coding scheme, thus allowing
the cerebellum to operate like a liquid state machine (LSM;
Maass et al., 2002; Yamazaki and Tanaka, 2007a) or an
Echo state network (Jaeger, 2007). The cerebellar granule
cell layer can be seen as an LSM; each LSM neuron receives
time varying inputs from external sources (as the cerebellum
receives varying sensorimotor inputs through mossy fibers)
and from other neurons as well (this role is played in the
cerebellum by different interneurons such as Golgi cells,
Lugaro cells, unipolar brush cells, etc.). These LSM neurons
are randomly connected to each other (as Granule cells
are interconnected via Golgi cells in a recurrent loop).
This structural analogy leads us to think that the recurrent
nature of both neural networks, cerebellar granule layer and
LSM, may operate in a similar manner. That is, the time
varying inputs are turned into spatio-temporal patterns of
neural activations; the granular layer acts as the reservoir
of interacting spiking neurons within a recurrent topology,
whilst Purkinje cells act as readout neurons. The strength of
the cerebellum acting like an LSM lies in the possibility of
obtaining whichever needed mathematical operation so as to
perform a certain task such as eyelid conditioning or motor
control tasks.

Since the exact function of the granular layer is not fully
resolved, an assessment of its involvements remains to be
established besides a biologically precise representation of
plasticity mechanisms underneath (i.e., Solinas et al., 2010)
that could substantially modify the core conclusion of this
model.

(b) MF input layer was assumed to maintain not only a constant
firing rate, but also time-evolving states simultaneously (25
different states with four non-overlapped MFs activated per
state). Making use of time-evolving states at MF layer level
has, within this article, proven to be vital for the learning
consolidation process. Despite this, it was assumed that the
granular layer circuit was also capable of generating time-
evolving states even in the presence of a constant MF input
thanks to its inner dynamics (Fujita, 1982; Yamazaki and
Tanaka, 2007a). DCN activity has, indeed, been traditionally
related with both the excitatory-activity integration coming
from MFs and the inhibitory-activity integration from PCs.
The number of MFs and CFs in comparison to granule
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cells (GCs) is very low. Thus, these fibers (MFs and CFs)
are very limited for generating a sparse representation of
different cerebellar states. In fact, even though MFs in our
model were able to generate 25 different states, their role
could be understood more as a baseline global activity or
bias term provider per generated state rather than a proper
state generator that is more the role of the granular-cell-layer.
This fact pointed out that the reported synaptic plasticity at
MF–DCN synapses (Racine et al., 1986; Medina and Mauk,
1999; Pugh and Raman, 2006; Zhang and Linden, 2006) could
induce the adjustment of gain control through plasticity at
DCN synapses whilst the learning consolidation was roughly
preserved at these MF–DCN synapses.

(c) Cerebellar feedback is needed to minimize the existing
difference between the controlled variable (actual cerebellar
output value) and the reference variable (set point) via
manipulation of the controlled variable. We assumed the
teaching signal to come only through the CFs; however,
there is no general agreement regarding neither the type of
information conveyed by CFs nor their potential role (Ito,
2013; Luque et al., 2014b). Furthermore, there exist evidences
pointing to the fact that cerebellar feedback is bounced back
toward the motor cortex (Kawato et al., 1987; Siciliano and
Khatib, 2008) together with the teaching signal, which is also
received and correlated at a granular layer level (Krichmar
et al., 1997; Kistler and Leo van Hemmen, 1999; Anastasio,
2001; Rothganger and Anastasio, 2009). Incorporating these
elements is thought to further enhance the level of flexibility
and accuracy in motor control and learning.

(d) We have included within the model what is, to our
knowledge, the most complex set of STDP plasticity
mechanisms interacting with each other within the cerebellar
network. Nevertheless, there are multiple sub-forms of
plasticity which are still missing such as plasticity at MF–
GC, GO–GC, MF–GO connections, etc., as well as PC and
GC intrinsic excitability (Hansel et al., 2001; Gao et al., 2012;
Garrido et al., 2013b).

(e) The theoretical network here presented is rather
oversimplified compared to the real cerebellar network.
The physiological implications may have been overlooked
but must not be ignored. As an example, the role of
the inhibitory PC collaterals, the complex structure of
the PC dendritic tree, the operation of DCN cells with
their characteristic postsynaptic rebounds, or the theta
oscillations and resonance in the granular layer, amongst
many other physiological evidences, shall need to be
fully addressed. Nevertheless, the way in which all these
physiology implications interact, how they reciprocally
improve their operations, and how they are understandable
in the framework of a complex cerebellar operation remains
a future challenge.

(f) MF–DCN and PC–DCN STDP plasticity mechanisms were
implemented according to some principles suggested by
Medina and Mauk (2000), Masuda and Amari (2008), and
Vogels et al. (2011), where DCN played the role of a
further cerebellar learning vessel besides PF–PC synapses.
However, the underlying mechanism that the cerebellar
nuclei may experience in cerebellar learning has only been

suggested at experimental single-cell level and supported by
behavioral observations (EBCC and VOR). MF–DCN and
PC–DCN STDP plasticity mechanisms therefore still have to
be specifically demonstrated and characterized.

CONCLUSION

Our results propose an explanation for the existing interplay
between the excitatory and inhibitory synapses at DCN afferents
by means of STDP mechanisms. This balance allows the PC
outcome to shape the output of its corresponding DCN-
target neuron which may effectively implement a cerebellar
gain control fully compatible with the two-state learning
mechanism suggested by Shadmehr and Brashers-Krug (1997),
Shadmehr and Holcomb (1997), and Shadmehr and Mussa-
Ivaldi (2012). Moreover, those STDP assemblies at MF–DCN
and PC–DCN synapses have proven to be effective to explain
how long-term memories can be transferred and stored from
PF–PC to MF–DCN synapses. In fact, the experimentation
revealed how MF–DCN synapses could effectively copy a
discretized version of the PF–PC weight distribution shape
in counter-phase. This learning consolidation process operated
much as was demonstrated in Vogels et al. (2011); that is,
PC, MF, or DCN cells do not compete with each other,
exhibiting a winner-take-all behavior. On the contrary, the
cerebellar PC–DCN, MF–DCN innervations stay inactive until
PC activity starts modulating MF–DCN connections (thus
favoring excitation), whilst DCN activity is able to self-
modulate PC–DCN innervations (thus favoring inhibition).
STDP learning rule at inhibitory synapses facilitates a self-
organized balance of excitation and inhibition at DCN
innervations.

Our results also suggest that the understanding of STDP
mechanisms in motor learning requires not only studying their
molecular basis. Rather, they show that this understanding
must be accompanied by parallel insights regarding how the
interactions amongst these plasticity mechanisms and the
different cerebellar sub-circuitries allow distributed learning and
neural homeostatic balance.
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Movie S1 | Learning simulation. Synaptic weight evolution during Case A study

is plotted. Simulations were run using plasticity mechanisms at PF–PC, MF-DCN,

and PC-DCN along 6000 trials. PF–PC synaptic conductances were set to an

initial value of 5 nS; MF-DCN and PC-DCN initial conditions started from zero. Only

one every 100 trials is shown. (Top left) 3D view of the synaptic weight distribution

at PF–PC synapses. (Top right) Sagittal axis of the synaptic weight distribution at

MF-DCN synapses. (Second right) The cerebellum counterbalances the existing

difference between the actual cerebellar output (in red) and the reference curve (in

blue) which is iteratively presented to the cerebellum over 5000 iterations. (First

and second plot of the bottom row). Evolution of the averaged gain at MF-DCN

and PC-DCN synaptic weights at first and second micro-complexes which supply

agonist (red line) or antagonist (black line) cerebellar corrective actions.

Movie S2 | Learning simulation. Synaptic weight evolution during Case A study

is plotted. Simulations were run using plasticity mechanisms at PF–PC, MF-DCN,

and PC-DCN along 10,000 trials. PF–PC synaptic conductances were set to an

initial value of 5 nS, MF-DCN initial conditions started from zero whilst PC-DCN

initial conditions were set to a higher value than demanded. Only one every 100

trials is shown. (Top left) 3D view of the synaptic weight distribution at PF–PC

synapses. (Top right) Sagittal axis of the synaptic weight distribution at MF-DCN

synapses. (Second right) The cerebellum counterbalances the existing difference

between the actual cerebellar output (in red) and the reference curve (in blue)

which is iteratively presented to the cerebellum over 10,000 iterations. (First and

second plot of the bottom row). Evolution of the averaged gain at MF-DCN and

PC-DCN synaptic weights at the first and second micro-complexes which supply

an agonist (red line) or antagonist (black line) cerebellar corrective action.

Movie S3 | Learning simulation. Synaptic weight evolution during Case B study

is plotted. Simulations were run using plasticity mechanisms at PF–PC, MF-DCN,

and PC-DCN along 10,000 trials. PF–PC synaptic conductances were set to an

initial value of 5 nS, MF-DCN and PC-DCN initial conditions started from zero.

Only one every 100 trials is shown. (Top left) Sagittal axis 3D view of the synaptic

weight distribution at PF–PC synapses. (Top right) Sagittal axis 3D view of the

synaptic weight distribution at MF-DCN synapses. (Second row plots) Evolution of

the averaged gains at MF-DCN synaptic weights from the first to sixth

micro-complex. Each micro-complex supplies an agonist (red line) or antagonist

(black line) cerebellar corrective action in each robot joint. The error curve to be

corrected is the difference between controlled (robot actual position and velocities)

and reference variables (desired position and velocities). (Third row plots) Evolution

of the averaged gain at PC-DCN synaptic weights from the first to sixth

micro-complexes. Each micro-complex supplies an agonist (red line) or antagonist

(black line) cerebellar corrective action at its corresponding robot

joint.

Figure S1 | (A) PF–PC synaptic weight distribution at the beginning of the

learning process at 1, 15, and 25 s (CASE A). The exponential weight distribution

at PF–PC shows that the corrective action is properly stored at these afferents.

Synaptic weights at PF–PC synapses are randomly initialized unlike in previous

experimentations, where these weights were set to equal values in order to better

perceive at a glance the shape of the synaptic weight distribution at this site. (B)

MF-DCN averaged gains for 2, 3, 6, 8, and 10 kg, respectively, when the learning

process has settled down (CASE B). MF-DCN synapses depended on PC activity

and are modified when some PF–PC weights tend to be saturated. The heavier

the payload to be manipulated by the lightweight robot, the more cerebellar gain is

demanded for counterbalancing the dynamic existing mismatch between the

crude inverse controller and the robot plant. Since the error is unidirectional in

joints 2 and 3, the gain is unidirectional as well. In joint 1, the error to be

compensated is bidirectional, and therefore, the gain has to be

bidirectional.
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APPENDIX: NEURAL AND SYNAPSE
MODELS

Neuron models were implemented using slightly modified
versions of the LIF model (Gerstner and Kistler, 2002). In the
LIF model, the neural state is characterized by the membrane
potential (Vm−c) defined by the differential equation (Equation
A1). This equation includes the effect of chemical synapses [α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
gamma-aminobutyric acid (GABA) receptors] and the resting
conductance (Grest),

Cm ·
dVm−c

dt
= gAMPA (t) · (EAMPA − Vm−c) +

+ gGABA (t) · (EGABA − Vm−c) + Grest · (Erest − Vm−c) (A1)

where Cm denotes the membrane capacitance, EAMPA and EGABA
stand for the reversal potential of each synaptic conductance,
and Erest represents the resting potential (with Grest being the
conductance responsible for the passive decay term toward the
resting potential). Conductances gAMPA and gGABA integrate all

TABLE A1 | Parameters of the cell types.

Parameter Granule cell Purkinje cell DCN cell

Refractory period (ms) 1 2 1

Membrane capacitance (pF) 2 400 2

∗Total excitatory peak conductance 1 nS·100 1.3 nS·175,000·10%* 1 nS·7

Total inhibitory peak conductance 1 nS·200 3 nS·150 30 nS·1

Threshold (mV) −40 −52 −40

Resting potential (mV) −70 −70 −70

Resting conductance (nS) 0.2 16 0.2

Resting time constant (τrest; ms) 10 25 10

Excitatory-synapse time constant (τAMPA; ms) 0.5 0.5 0.5

Inhibitory-synapse time constant (τGABA; ms) 10 1.6 10

Parameters obtained from the following papers:

Granule cell (GC; Silver et al., 1996; Tia et al., 1996; Nusser et al., 1997; D’Angelo et al., 1998; Rossi and Hamann, 1998) and Purkinje cell (PC; D’Angelo et al., 1993, 1998, 2001;

Nieus et al., 2006). DCN data were extracted from unpublished material from Prof. D’Angelo’s lab.

*Where 10% means the ratio of active connections PF–PC (out of the total 175,000 PFs).

the contributions received by each receptor type (AMPA and
GABA) through individual synapses and are defined as decaying
exponential functions which provide reasonable accuracy at a low
computational cost (Gerstner and Kistler, 2002; Ros et al., 2006;
Equation A2).

gAMPA (t) =

{

0, t ≤ t0
gAMPA (t0) · e

−(t−t0)/τAMPA , t > t0

gGABA (t) =

{

0, t ≤ t0
gGABA (t0) · e

−(t−t0)/τGABA , t > t0
(A2)

where t represents the simulation time whilst t0 denotes
the arrival instant of an input spike. gAMPA stands for the
AMPA receptor which provides excitation, and gGABA stands
for the GABA receptor-mediated conductance, which provides
inhibition. Finally, τAMPA and τGABA are the decaying time
constants of each receptor type. The parameters defining each
cell type and synaptic receptor that have been chosen to model
granule cell, Purkinje cell, and deep nucleus dynamics are
included in Table A1.

Frontiers in Computational Neuroscience | www.frontiersin.org 22 March 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model
	Introduction
	Plasticity in Deep Cerebellar Nuclei

	Materials and Methods
	Cerebellar Computational Model Considerations
	Cerebellar Network Organization
	Synaptic Plasticity
	PF–PC Synaptic Plasticity
	MF–DCN Synaptic Plasticity
	PC–DCN Synaptic Plasticity

	Cerebellar Control Loop
	Case study A (fig3Figure 3A)
	Case study B (fig3Figure 3B)


	Results
	MF–DCN STDP Allows Learning Consolidation
	MF–DCN and PC–DCN STDP Interplay toward Adaptive Gain Controller
	iSTDP Shape Impacts on PC–DCN Synapses
	Testing Distributed Cerebellar Plasticity in a Robotic Manipulation Task

	Discussion
	Biological Realism and Model Limitations

	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References
	Appendix: Neural and synapse models




