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Spatial navigation in mammals is based on building a mental representation of their

environment—a cognitive map. However, both the nature of this cognitive map and

its underpinning in neural structures and activity remains vague. A key difficulty is

that these maps are collective, emergent phenomena that cannot be reduced to a

simple combination of inputs provided by individual neurons. In this paper we suggest

computational frameworks for integrating the spiking signals of individual cells into a

spatial map, which we call schemas. We provide examples of four schemas defined by

different types of topological relations that may be neurophysiologically encoded in the

brain and demonstrate that each schema provides its own large-scale characteristics

of the environment—the schema integrals. Moreover, we find that, in all cases, these

integrals are learned at a rate which is faster than the rate of complete training of neural

networks. Thus, the proposed schema framework differentiates between the cognitive

aspect of spatial learning and the physiological aspect at the neural network level.

Keywords: hippocampus, learning and memory, topological analysis, mathematical concepts, theoretical

neuroscience

1. INTRODUCTION

In the 1940’s, Tolman proposed that animals build an internal representation—a cognitive map—
of their environment and that this map allows the animal to perform space-dependent tasks
such as navigating paths, finding shortcuts, and remembering the location of their nest or
food source (Tolman, 1948). Three decades later, O’Keefe and Dostrovsky discovered pyramidal
neurons in the hippocampus, named place cells, that become active only in a particular region
of the environment—their respective place fields (Best et al., 2001) (Figure 1A). The striking
spatial selectivity of these place cells led O’Keefe and Nadel (1978) to suggest that they form a
neuronal basis of Tolman’s cognitive map, thus providing this abstract concept with a concrete
neurophysiological basis. In the ensuing decades, it was realized that there are many brain regions
involved in cognitive mapping of the environment (Redish, 1997), yet there is still no consensus on
either the physiological mechanisms of this phenomenon or the theoretical principles that explain
them (McNaughton et al., 2006). Overall, it is believed that individual cells encode elements of the
cognitive map, much like contributing pieces to a jigsaw puzzle. However, this analogy is not direct:
the spiking activity of each separate neuron has no intrinsic spatial or geometrical properties—these
properties appear only at the population level, emerging from the synchronous spiking activity of
large neuronal ensembles (Eichenbaum, 1999; Pouget, 2000). The mechanism of this phenomenon
remains unknown, i.e., there exists a disconnect between the level of individual neurons fromwhich
the preponderance of neurophysiological data is acquired and the level of neuronal ensembles
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FIGURE 1 | Physiological components of the schema. (A) The simulated trajectory in a 1× 1 m environment (left) and 200 randomly scattered place fields

(clusters of colored dots) produced by place cells with a mean firing rate f = 12 Hz and a mean place field size s = 20 cm. (B) Schematic representation of three

overlapping assemblies of place cells (shown by black dots) that project synaptically onto their respective readout neurons (blue pentagons). The active place cells

(black dots with red centers) of the ignited cell assembly (in the middle of the figure) produce spike trains that drive the spiking activity of the readout neuron (blue

pentagon with the red center).

where the large-scale representations of space are believed to
emerge (Harnad, 1994).

In a recently proposed a model of spatial learning (Dabaghian
et al., 2012; Arai, 2014), we attempted to bridge this gulf
by combining recent experimental results pointing out the
topological nature of the hippocampal map (Shapiro et al.,
1997; Poucet and Herrmann, 2001; Alvernhe et al., 2011, 2012;
Chen et al., 2012; Dabaghian et al., 2014; Wu and Foster,
2014) and methods of Algebraic Topology. This model allowed
demonstrating that place cell activity can encode an accurate
topological map of the environment and estimating the time
needed to accumulate the required connectivity information.
Further analyses of the model suggested to us that it is indicative
of a more general theoretical framework that may lead to a
systematic understanding of how spiking activity of neurons
can be integrated to produce large-scale characteristics of space.
In this paper, we outline the general principle and provide
four specific models, which we call schemas, of integrating the
activity of simulated neurons into a coherent representation of
the explored environment. For each schema we find that a large-
scale spatial map is produced within a short, biologically plausible
period, which could be used to estimate the spatial learning time
in different environments.

2. THEORETICAL FRAMEWORK

2.1. The Model
A schema model of a cognitive map contains the following three
key components:

2.1.1. An Abstract Schema
An abstract schema S(R, PS) represents the spatial information
contained in the map at any given time. It consists of a set of
formal regions R = {r1, r2, ..., rN} and a set of relationships, PS =
{ρ1, ρ2, ..., ρM}, that express how these regions combine. We
presume that each region ri in the schema can be related to any
other region rj through a chain of relationships with intermediate
regions ρα(ri, rk), ρβ (rk, rl, rm),..., ργ (rn, rj). A specific selection
of the relationships included in PS determines the type of spatial

information encoded in the schema and the global arrangement
of the encoded regions, which is crucial both for the properties of
the resulting map as well as for the information encoded in it.

2.1.2. The Neural Implementation
The neural implementation,NS, is a neural network that encodes
the schema S . For the sake of simplicity, we model NS using
a basic, two layer, feed-forward neural network inspired by cell
assembly theory (Buzsaki, 2010), which consists of a layer of
cells that represent regions of space and another layer of readout
neurons that represent the relationships between these regions
(Figure 1B). When a cell ci fires a spike, we say that the region ri
is “active”; otherwise it is “latent” (Russell, 1921). When a readout
neuron fires a spike, we say that the corresponding relationship is
“instantiated.” Thus, by construction, the relationships between
regions are represented via temporal relationships between the
spike trains and by the parameters of synaptic connections
between the two layers inNS.

2.1.3. The Spatial Map and the Representing Space
The goal of introducing schemas is to model the assemblage of
the cognitive maps from the cells’ spiking activity. However, in
absence of a mechanism explaining how spatial representations
emerge from the spike trains, this task remains undefined.
Statements such as “a given place cell’s activity encodes a region”
or “the coactivity of a set of place cells represents a spatial
overlap between the encoded regions” require an interpretation.
In the analysis of electrophysiological data, this interpretation
is acquired by mapping the neuronal activity into an auxiliary,
external spaceX which is selected according to the experimenters’
best judgment. For example, constructing the place fields by
ascribing Cartesian x − y coordinates to the place cells’ spikes
and identifying the areas where the spikes cluster is one attempt
to map the unobservable formal regions encoded in the cognitive
map into observable regions of the spatial environment (Barbieri
et al., 2004). In the following discussion, we will refer to this
algorithm as to standard place field mapping. Spaces that have
been used to interpret the activity of place cells and other cells
include Euclidean domains in one (Frank et al., 2004; Diba
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and Buzsaki, 2008) and in three dimensions (Hayman et al.,
2011; Yartsev and Ulanovsky, 2013); circles (Taube, 2011), tori
(Finkelstein et al., 2015), spheres (Chen et al., 2011), and even
Klein bottles (Swindale, 1996). To capture this aspect of cognitive
map analysis, we define a spatial mapping from the schema S to
a representing space X,

f : S → X (1)

in which the formal regions of S are mapped into the “concrete”
regions of X, xk = f (rk). We will refer to xk as the X-
representations of the formal region rk and to the resulting layout
of the representing regions in X as the spatialmap of the schema,
MX(S).

Although the representing regions are selected to reproduce
the relationships between the formal regions as well as possible,
the resulting map does not always capture the structure of
the original schema: some relationships may be lost in the
mapping or the mapping may produce relationships between the
representing regions that are not encoded in S . For example, the
place field maps are believed to reflect an animal’s cognitive map’s
structure but their faithfulness has not been established or even
addressed in the neurophysiological literature. In the case when
the set of relationships between the regions xk (PX) matches the
schematic relationships exactly, so that PX = PS, the mapping
will be referred to as faithful. The corresponding spatial map may
then be viewed as a model of S , i.e., the structure of S can be
deduced from the layout of the representing regions.

Thus, each specific schema model includes these three
components—the abstract schema S , its neuronal network
implementation NS and the spatial mapping (1) into a
representing space X. For brevity, we will refer to this triad as
to “schema,” when no ambiguities can arise.

2.2. Spatial Learning
A key property of our approach, crucial for modeling spatial
learning, is that schemas are dynamic objects. As an animal
explores a novel environment, new regions become represented
by the activity of place cells and new relationships are inferred
from the spike trains’ temporal patterns (Dabaghian et al., 2012;
Arai, 2014). According to the standard approach of neural
network theory, the process of learning a schema may be viewed
as the process of training the readout neurons to represent the set
PS by detecting repetitive patterns in the incoming spike trains.
From this perspective, a schema is learned after its network is
trained, i.e., after the readout neurons stop adopting their spiking
responses to the patterns of the incoming spike trains.

On the other hand, from a cognitive perspective, the
purpose of spatial learning is to acquire qualitative, large-
scale characteristics of the environment, which enable spatial
planning, spatial navigation and spatial reasoning, such as path
connectivity, shortcuts and obstacles, geometric and topological
properties, global symmetries and so forth. Such large-scale
characteristics of the environment that are captured through
the relationships of a given schema will be referred to as
schema integrals, IS . Below we demonstrate that the minimal
time Tmin required for the schema’s integrals to emerge is

typically shorter than the time, TN , required to train all readout
neurons, i.e., large-scale information can be extracted from a
partially trained network. Thus, the schema approach captures
two complementary aspects of spatial learning: physiological
learning—the process of forming and training the cell assembly
network and schematic or cognitive learning—the emergence of
information about the global structure of space, expressed as the
corresponding production of schema integrals.

2.3. Topological Schemas
What aspect of space is represented in the hippocampalmap? The
answer to this question depends on the information captured by
the readout neurons in the hippocampal cell assemblies. Since
correlating neuronal spiking with geometrical properties of the
representing space sometimes produces useful interpretations of
electrophysiological data, most authors assume that the spiking
patterns of place cells encode geometric properties of space
(O’Keefe and Burgess, 1996; Barry and Burgess, 2007). For
example, it has been shown that combining the spiking activity
of a relatively small number of place cells with the information
about the sizes, shapes, and locations of their respective place
fields allows a reconstruction of the animal’s trajectory in a typical
experimental enclosure on a moment-to-moment basis (Brown
et al., 1998; Guger et al., 2011).

However, the read-out neurons have access only to the place
cells’ spikes, and not to their respective place fields. Obtaining
the shape and size of any given place field, which is nothing but
a cumulative spatial histogram of spikes used for illustrational
purposes, requires accumulating a substantial number of spikes
from the corresponding place cell. Yet the spike trains produced
during the activity period of a given place cell are short—
typically hundreds of milliseconds in duration—and highly
variable, not only because of the animal’s movements, but also
because of the intrinsic stochasticity of neuronal spiking (Fenton
and Muller, 1998). Thus, the spike trains of place cells contain
little information about a place field, such as its shape, location
and other computationally expensive parameters. Furthermore,
recent experimental studies point out that these spike trains
do not provide the geometric information on the synaptic
integration timescale of seconds or fractions of a second (Diba
and Buzsaki, 2008; Cheng and Ji, 2013; Dabaghian et al., 2014).

Since the temporal pattern of place cell firing is the only
information available to downstream neurons, a physiologically
adequate class of schemas of the hippocampal map may
be constructed based on capturing qualitative, topological
relationships between regions, e.g., overlap, adjacency, ordering
and containment, from the temporal relationships between the
spike trains (Dabaghian et al., 2011; Chen et al., 2012). The
resulting maps will then produce a topological representation
of space rather than a geometrical one (Stella et al., 2013; Chen
et al., 2014), in which the relative arrangement of the locations is
more important than mapping the precise positions. Topological
schemas have several advantages over the more precise geometric
schemas, e.g., higher stability (e.g., faithfulness of a topological
map is not destroyed under continuous deformations of the
representing space) and lower computational cost, which may
make them biologically more viable (see Section 4).
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There remain many possibilities in which to read out
qualitative information about the spike trains and thus there
are many topological schemas. In this perspective, a particular
readout mechanism, which responds to specific patterns of place
cell coactivity, defines the type of spatial information encoded
in the schema. The following discussion presents four different
topological schemas based on different qualitative relations
between regions and the rate at which these schemas are acquired.

3. RESULTS

3.1. Graph Schema G
The simplest topological schema is based on binary connections:
its set of relationships consists of pairs of connected regions,
PG = {(ri, rj), (ri, rk), (rm, rn), ...}. Such schema can be viewed as
a graph, G, whose vertices are linked if the corresponding regions
are related according to PG (Figure 2). The corresponding
neuronal implementation is produced by training the pair-
coactivity detector readout neurons to respond to nearly
simultaneous spiking of their respective pair of presynaptic cells
(Katz et al., 2007; Brette, 2012). In other words, physiological
learning of a graph schema G amounts to detecting pairs of cells
that exhibit frequent coactivity (Muller et al., 1996).

We modeled this process by simulating place cell spiking
activity induced by a rat’s movements across a place field map
in a small environment (Figure 1B). To simplify the analyses, we
assume that as soon as the coactivity occurs, the corresponding
connection is immediately “learned,” i.e., incorporated into the
schema. As a result, at every moment of time t, the connectivity
matrix of the graph is defined by the coactivity observed prior
to that moment. Thus, Cij = 1 if cells ci and cj cofired before t
and Cij = 0 otherwise. Figure 3A shows that the number of links
in the graph, which is the number of recruited pair-coincidence
detectors, grows as the schema is learned and saturates at ca.
TN = 5 mins, i.e., after this time new incoming spike trains do
not produce new connections inNG.

The saturation of the schema could be a trivial result if
the graph becomes fully connected or remains mostly empty.
A simple characteristic capturing the efficiency of G, which
generalizes to other schemas in a natural way is its entropy

(Mowshowitz, 1968; Dehmer andMowshowitz, 2011). This is the
specific entropy of the readout neurons,

HG = −pc log2(pc)− pd log2(pd),

where pc and pd = 1 − pc are the fractions of the connected
and disconnected vertex pairs in the graph. For a fully discrete
(pc = 0) or a fully connected graph (pc = 1) the entropy vanishes
and maximal entropy HG = 1 is achieved for pc = 1/2 (in
which case the absence of a link is as informative as its presence).
Figure 3B demonstrates that for the place cell ensemble used
in our simulations (see below, see Methods), the entropy of
the graph schema asymptotically approaches a maximal value of
aboutHG ≈ 0.8 in about 5 min, a value implying that the schema
networkNG is neither underloaded nor oversaturated.

To quantify the correspondence between the schema G and
its place field map MX(G), we calculated the entropy HX , of
the occurrences of place field pairwise overlaps across time
and compared HX to HG. Figure 3B demonstrates that both
entropies remain close throughout the entire learning period,
indicating that the complexity of the place field layout remains
similar to the complexity of the encoded relationships at all
times. In addition to this correspondence we also computed the
mutual information (MI, see Methods) between the place field
overlap and place cell coactivities, which also grows with the rat’s
navigational experience (Figure 3B). Thus, we have convergent
lines of evidence indicating efficient spatial learning captured by
the graph schema.

As a cognitive map model, the graph schema G provides
a stratum for implementing graph-theoretical navigation
algorithms, that is, for establishing paths connecting spatial
locations (Trullier and Meyer, 2000; Chrastil and Warren,
2014). Its integrals IG are the global characteristics of the
region-to-region connectivity graph, e.g., its partitioning, the
colorability of its vertexes and edges (Berge, 1982), its planarity,
and the existence of a path between two given vertexes. As an
example of such large-scale characteristics we identified the
shortest paths connecting pairs of the most distant vertexes
and computed the time required to establish these connections.
The results shown in Figure 3C demonstrate that the animal

FIGURE 2 | Graph schema. (A) A schematic illustration of the spike trains produced by seven place cells whose coactivity is indicated by the dashed rectangles

connecting the spike trains. (B) The corresponding seven place fields traversed by the animal’s trajectory (dashed line). (C) The corresponding graph schema, the

seven vertexes of which correspond to seven formal regions encoded by the active place cells. The edges mark the relationships encoded in the schema, e.g., the

connection (r4, r5 ) is in the schema, but (r5, r1 ) is not.
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FIGURE 3 | Spatial learning based on the graph schema. (A) The number of links in the graph schema as a function of time, computed for a simulated ensemble

of 200 place cells with randomly scattered place fields (see Section 5). The blue line represents the mean and the red lines show the error margins. (B) Graph schema

entropy (blue) and place field map entropy (red) as a function of time. The green line shows the mutual information between the map and the schema. Both entropies

and the mutual information saturate at the time when the number of links saturates. (C) The probability of establishing a maximal length connection in the graph

schema stabilizes in about 2.2 min, when only 50% of connections appeared.

establishes connections between the most distant locations in
the graph in about Tmin = 2.2 min, a time when only about 50%
of the readout neurons are trained. Similarly, emergence of the
information required to establish existence of a circuit of the
graph which traverses each edge exactly once, called an Eulerian
path, takes about 2.2 min, while the correct number of cliques in
G, which are sets of pairwise connected vertices, can be deduced
within 2 min. These observations suggest that the emergence of
schema integrals before the network is trained may be a general
phenomenon.

3.2. Higher-Order Overlap (Simplicial)
Schema T
A topological schema may be based on representing not only
binary, but also ternary, quaternary and other higher-order
connectivity relations between spatial domains. For example, a
schema may represent the overlaps between regions, including
triple, quadruple, etc., overlaps. The key property of the overlap
relation is that if k regions, r1, r2, ..., rk, have a common
intersection, then so does any subcollection of them. The simplest
mathematical object that is closed under the operation of taking
non-empty subsets is an abstract simplex, which can be viewed
as a list of k elements (Aleksandrov, 1965). Hence, a (k + 1)-
order overlap relationship ρ(r0, r1, ..., rk) may be represented by
a k-dimensional simplex σ = [r1, r2, ..., rk]. A set of overlap
relationships therefore forms an abstract simplicial complex, T ,
and we will hence refer to a higher order overlap schema as to
simplicial schema.

Under the standard mapping of the place cell spiking activity
into the environment, the simplicial schemas’ relationships, PT ,
represent the overlaps between the place fields. For example,
the place field map shown in Figure 2B can be faithfully
encoded by a simplicial schema with four 3d order relationships
P3 = {(r6, r1, r7), (r7, r1, r2), (r1, r2, r4), (r2, r3, r4)} and an
additional binary relation (r4, r5), as shown in Figure 4. The
neuronal marker of these overlaps is the spiking coactivity: if
the animal enters a location where several place fields overlap,
their respective place cells produce (with a certain probability)
temporally overlapping spike trains. Hence the neural network

implementation of a simplicial schema, NT , should be built to
detect the coactivity events, using coincidence detector readout
neurons [which, in fact, corresponds to the current view on the
hippocampal cell assembly network organization (Harris et al.,
2003; Harris, 2005; Buzsaki, 2010; Babichev et al., 2015)].

Physiological learning of a simplicial schema hence amounts
to training the readout neurons to detect place cell coactivities.
Our learning algorithm (see Section 5) ensures that, at every
stage of learning, only the highest order relationships are kept
while the redundant lower-order relationships are eliminated.
For example, pairwise connections between three neurons
become redundant after a triple coactivity between them is
detected, at which point the three pair-detector readout neurons
can be replaced with a single triple-coincidence detector.
Numerical simulations demonstrate that, as the rat explores the
environment, the more probable, lower-order coactivity events
are captured first and the less probable higher order coactivities
accumulate more slowly (Figure 5A). Moreover, although rapid
changes of the readout neurons’ order stops after 5 or 6 min,
slow regroupings continue during the entire navigation period,
T = 25 min. Thus, unlike the pairwise overlaps in G that can be
instantly identified, the orders of the readout neurons cannot be
deduced from a single coactivity event. In this sense, the orders
of the readout neurons are integral characteristics of place cells’
spiking activity, and therefore may be viewed as integrals of the
simplicial schema.

There exists an additional important set of T -integrals, which
capture the topology of the representing space. This property of
the simplicial schemas can be illustrated using the Čech theorem,
which states that the pattern of overlaps between regions U1,
U2, ..., Un, covering a topological space X = ∪iUi, encodes
homological invariants of X, provided that every intersection
Ui ∩ Uj ∩ ... ∩ Uk is contractible (Dubrovin et al., 1992;
Hatcher, 2002). The proof is based on building the “nerve” of the
covering—a simplicial complex, the d-dimensional simplexes of
which correspond to the (d + 1)-fold overlaps between covering
regions, and showing that it is topologically equivalent to X
(Figure 4C). This theorem implies that the spatial map of a
sufficiently rich simplicial schema may encode the topology of
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FIGURE 4 | Simplicial schema. (A) schematic representation of the connections between the vertexes associated with the seven place cells and their spatial map

shown on Figure 1B. (B) The existence of the two-dimensional simplexes, corresponding to higher order coactivity relationships, permits the links to be deformed.

This is illustrated for paths γ1 and γ2: the transformation can be visualized by slipping one path across the two-dimensional facets, thus demonstrating the topological

equivalence between paths γ1 and γ2. (C) The nerve of the map shown on Figure 1B matches the simplicial schema.

FIGURE 5 | Learning the simplicial schema. (A) The development of the population of readout neurons as a function of time. The typical order of co-activity is

about 20, the highest order is 33. The population of the high order readout neurons (order above 11) increases through the entire duration of the experiment (over 20

min). Other populations reach a stable plateau (e.g., orders 9 and 10) or reach a maximum and then drop (e.g., order under 8). The decrease of the number of the low

order relationships after an initial increase indicates the elimination of redundant information. (B) The development of the overlap relationships between the standard

representing regions as a function of time. The typical overlap order is about 20, the highest order is 35. As in the case with the readout neurons, the number of

high-order overlaps (order above 17) saturates on the rise, unlike the lower order overlaps. (C) The entropy of the dimensions of registered simplexes (red) is similar to

the entropy of the orders of the overlaps of the concrete regions xk (blue). The mutual information between these two variables is computed along the trajectory (green).

the space navigated by the rat, and suggests that if this map is
faithful, i.e., if the nerve of the spatial map matches the schema’s
relationship set PT exactly, then the schema also captures the
large-scale topological representation of the space.

To study the correspondence between the simplicial schema
and its map, we compared the schema’s entropy HT , defined
by the probabilities for a readout neuron to become a kth-
order co-activity detector, to the entropy HX of the place field
map MX(T ), defined via the probabilities of producing a kth-
order overlap between the place fields (Figure 5B). As shown on
Figure 5C, both entropies closely follow one another: they both
grow initially and reach similar asymptotes in approximately 4
min. However, the mutual information between these two series
of events decreases with time. The reason for this effect lies in the
idealized nature of the representing regions xk, built as convex
hulls of the spike clusters in the two-dimensional environment
(for other place field construction algorithms see Muller et al.,
1987; Maurer et al., 2006). The xk’s crisp boundaries produce
high-order overlaps, which are not captured by the place cell
coactivity and hence by the schema—compare the orders of the
readout neurons on Figure 5Awith the orders of overlap between
the corresponding representing regions xk in Figure 5B.

This result can be viewed from several perspectives. First,
it illustrates that the scope of reliable information that can
be drawn from the spatial map is limited: only sufficiently
robust, qualitative aspects of the place field map, such as low
dimensional overlaps, can be trusted. Second, the regions ri that
were originally introduced as “formal,” that is, devoid of intrinsic
properties, should fundamentally be viewed as “fuzzy” and not as
Euclidean domains with crisp boundaries (Liu and Luo, 1997).

Direct computations show that the coactivity complexes
do, in fact, capture the topology of the representing space,
provided that the place cells’ spiking parameters fall into
the biological domain (Curto and Itskov, 2008; Dabaghian
et al., 2012; Arai, 2014; Babichev et al., 2015), and hence
that simplicial schemas provide a framework for representing
topological information. For example, cell assemblies ignited
along the physical paths traversed by the animal correspond
to sequences of coactivity simplexes—the simplicial paths
that represent the physical paths in T (Figure 6A). The
structure of the simplicial paths allows establishing topological
(in)equivalences between navigational paths, e.g., topologically
equivalent simplicial paths represent physical paths that can
be deformed into one another, a non-contractible simplicial
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FIGURE 6 | Topological loops in simplicial schema. (A) Sequence of the place cell combinations ignited along a path γ (black line) corresponds to a sequence of

simplexes—a simplicial path Ŵ that represents γ in T . (B) The dynamics of the total number of zero-dimensional loops (red) and one-dimensional loops (blue). Unlike

the growing number of links in the graph schema (Figure 2A), the number of topological loops decreases with time. Eventually, a single loop survives. The margins of

error are shown above and below each graph by a pair of pink and light-blue lines, respectively. (C) The barcodes—timelines of the one-dimensional loops in the

simplicial complex. The topological noise vanishes after ca. 4 min, which is the schematic estimate of the cognitive learning time.

path corresponds to a class of the physical paths that enclose
inaccessible or yet unexplored parts of the environment.
As a result, the simplicial schema produces a qualitative
description of navigational routes: while the total number of
paths grows exponentially, the number of topologically distinct
loops, which represent topologically distinct paths is small
(Figure 6B).

However, this information does not emerge immediately:
as the animal begins to navigate a new environment, most
topological loops reflect transient connections. As the spiking
information accumulates, these “spurious” loops disappear and
only the loops that correspond to the physical signatures of
the environment persist (Figure 6C). With methods drawn from
persistent homology theory (Zomorodian and Carlsson, 2005;
Ghrist, 2008) one can determine the minimal period Tmin

required for removing the spurious loops, which provides a
theoretical estimate of the time required to learn the environment
(Dabaghian et al., 2012; Arai, 2014). Figure 6C demonstrates
that in our test map, after Tmin = 4 min most topological
loops have vanished and only the loops that correspond to
the physical holes in the environment survive. Thus, as in
the case of the graph schema, the topological connectivity of
the cognitive map is captured by the simplicial schema before
the underlying neuronal network is fully trained, Tmin <

TN .

3.3. Mereological Schema M
Although a sufficiently rich simplicial schema can capture
the topological invariants of the representing space X as its
integrals, it does not capture all the qualitative topological
aspects of the connectivity between regions. For example, the
identical simplicial schema (represented by a tetrahedron) can
faithfully represent the overlap relationships in the two maps
shown in Figure 7, because both maps contain the same set
of regions R = {r1, r2, r3, r4} and one fourth-order overlap
relation PR = {(r1, r2, r3, r4)}, as well as all their consequent
ternary and binary sub-relations. However, these maps are
topologically different, since they cannot be transformed from

one into another by a continuous deformation of the plane
R2. The obstruction to such deformation is that the region
x4 on Figure 7A is contained in the union of the regions x1,
x2 and x3, i.e., x4 ⊂ (x1 ∪ x2 ∪ x3), and no containment
relationships exist between any combinations of the regions
on Figure 7B. Neither a graph schema G nor a simplicial
schema T can capture this difference; what is required is the
additional covering relation, (x1, x2, ..., xl) ◭ (y1, y2, ..., yk), (x

′s
are covered by y′s), in terms of which the map on Figure 7A

is described by the relationship r4 ◭ (r1, r2, r3), whereas the
regions shown on Figure 7B produce no containment relation.
The cover relation produces a new—mereological—schema M,
in which the information is encoded in terms of topological
containment (Figure 7C). The intuition behind neuronal
implementation of the formal cover relation is the following. If
the activity of one ensemble of place cells, U = {c1, c2, ..., ck},
outlasts, or covers in time, the activity of cells in another
ensemble V = {d1, d2, ..., dl}, then the region XU , representing
the U-ensemble, contains the region XV representing the
V-ensemble:

XV ⊂ XU if V ◭ U.

From this perspective, the set of covering cells provides
contextual information about the covered cells, i.e., the cover
relation combines the basic formal regions into more complex,
composite regions.

The cover relationship can be implemented, e.g., by a
combination of the excitatory and inhibitory neurons shown on
Figure 7D. In such a cell assembly, the readout neuron signals a
violation of the cover relationship, i.e., the latter is represented
by an absence of the readout neurons’ spiking activity up to the
moment t. Hence, in contrast with simplicial schemas, where
readout neurons learn to detect ever higher-order coactivities, a
readout neuron in a mereological schemaM learns to detect ever
larger groups of cells that together inhibit its activity (Figure 7D).

Similarly to the overlap orders in T , the cover relationships,
as a rule, cannot be deduced from a single coactivity event.
Thus, these relationships represent integral information that
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FIGURE 7 | Mereological schema. In panels (A,B), the overlap pattern does not capture the cover relationship. Four regions, x1, x2, x3, and x4 form a quadruple

overlap in both cases. However, in map shown in (A), the region x4 is contained in the union of x1, x2, and x3. In the map shown in (B), x4 is not covered. (C) The

cover and the overlap relationships in a mereological schema corresponding to the map of Figure 1A. The covering regions are connected by red links (e.g., r6, r1,

and r2) and the red arrows point to the covered region (e.g., r7). (D) A neuronal implementation of the covering relationship includes three inhibitory neurons (magenta)

that provide inhibitory input into the readout neuron (purple). If each inhibitory input of an active interneuron exceeds the excitatory input of the driving cell c7, the

readout neuron can spike only if the activity of the cell c7 is not accompanied by the inputs from any of the cells c1, c2, or c6. As a result, the readout neuron will

remain silent as long as the activity of the cells c1, c2, and c6 temporally covers the activity of cell c7.

can be viewed as the M-integrals which characterize the
large-scale topology of a space. We are currently unaware
of additional mereological algorithms that would allow large-
scale computations of the environment’s global topological
characteristics, similar to computing the homological invariants
in a simplicial schema. Nevertheless, a mereological schema
encodes an important type of topological information, which
may be used in physiological neural networks to represent spatial
maps.

In general, covering relationships can be established between

arbitrary (including multiply connected) regions. As a result,

the number of possible combinations of covered and covering

regions dramatically increases. Even if the covered region V =

{d1, d2, ..., dl} is spatially “bundled” (e.g., if each pair di and

dj is coactive at some moment of time, so that V forms a

connectivity clique) the selection of possible covering regions

remains very large. Therefore, in order to test the development of

cover relationships in time, we opted to limit our study to neuron

pairs covering an individual neuron (k = 2 and l = 1).
The results of simulations show that the time required

to learn second-order covering relationships in M is
comparable to the learning times in the graph schema G

(Figure 8). As spatial exploration begins, a large number
of transient covering relationships is produced because of
insufficient spiking data. With accumulating spike trains
most cover relationships become violated, so that the
number of surviving relationships quickly drops. As the
animal completes its first turn around a central hole of the
environment (Figure 1B), a new set of (mostly transient)
relationships is injected into the schema which produces
the peak shown in Figure 8B. Subsequently, the number of
cover relations steadily diminishes to about 200 pairs, which
corresponds to a saturated schema. This result reflects qualitative
behavior of higher order covering relationships, though a full
implementation of the algorithm for the higher-order covering
combinations (k, l > 1) is computationally substantially more
complex.

3.4. Complex Relations and the RCC
Schema R
Qualitative Space Representations (QSR) are discrete, region-
based versions of the conventional point-set theoretical
geometries and topologies (Hazarika and Cohn, 2001) used to
formalize “intuitive” qualitative spatial reasoning (Gotts et al.,
1996; Cohn et al., 1997; Renz, 2002), and thus are particularly
important for modeling cognitive representations of space
(Knauff et al., 1997; Goodrich-Hunsaker et al., 2008; Wallgrn,
2010; Zeithamova et al., 2012). Important examples of QSRs are
the Region Connection Calculi (RCC)—formal logical theories
based on a family of binary topological relations between
regions (Cui et al., 1993). For example, the most basic RCC

theory, RCC5, which applies to the case of regions with fuzzy
boundaries, is built using the five relations shown in Figure 9A:
disconnect (DR), partial overlap (PO), proper part and its inverse
(PP and PPi), and equality (EQ) (Cohn et al., 1997). In terms of
these relations, the arrangement of regions shown on Figure 2B

is described by the following set of RCC5 relationships:
P = {PO12,PO14,PO16,PO17,PPi23,PO24,PO27,PP32,PP34,

PPi43,PPi45,PO46,PP54,PO67;DR for all other pairs}
(Figure 9B). More elaborate RCC calculi can capture tangencies
(Cui et al., 1993), convexity (Cohn et al., 1997), qualitative
directions (Li and Cohn, 2012), and distances (Gerevini
and Renz, 1998) as well as complex hierarchies of all these
relationships (Lehmann and Cohn, 1994). As a result, RCC
methods can capture not only standard topological signatures of
spaces, such as loops and holes (Gotts, 1994), but alsomore subtle
qualitative features, such as branching points, linear sections,
and dead ends. These qualitative features produce fundamental
differences in spatial reasoning required for navigating the
corresponding environments. For example, the junction point
on the W-tracks, which are often used in behavioral experiments
(Figure 9C), forces an animal to choose between a right or
left turn, which is reflected in the place cell code (Frank et al.,
2000; Huang et al., 2009). The RCC5 theory allows capturing
such features, e.g., distinguishing between the U- and W-tracks,
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FIGURE 8 | Learning the mereological schema. (A) Time development of the covering relationships: a pair of covering place cells, U = {ci, cj}, and a covered cell,

V = {dk}. Each line corresponds to a specific choice of U and V. Each line begins as soon as the covering relationship is detected and stops as soon as it is violated,

that is, as soon as the readout neuron shown in Figure 7D would fire. Note that the majority of relationships are short-lived: a large number of spurious relationships

are detected at the beginning of exploration. After about 7 min the majority of them disappear, similar to the behavior of topological loops computed in the simplicial

schema shown in Figure 6B. This diagram shows about 1% of the detected pairs, selected at random. (B) The number of detected cover relationships between pairs

of place cells and a single place cell as a function of time.

FIGURE 9 | Illustration of RCC5 schema. (A) RCC5 relationships: five logically possible pairwise relations: “x is discrete from y” (denoted as DR), “x partially

overlaps with y” (PO), “x is a proper part of y” (PP), “y is a proper part of x” (PPi), and “x is identical to y” (EQ). (B) An RCC5 schema, R5, of the spatial map from

Figure 2B. For convenience, the DR connections are shown with gray dashed lines. The structure of the rest of the relations produces a graph similar to the one

shown in Figure 2C. The black lines indicate PO connections. Cyan and blue arrows show the PP and PPi connections, respectively. (C) A U-track having two dead

ends and a W-track having three dead ends and a junction, j, marked in red. Every time the rat visits the junction point it must choose between the left and the right

turn, indicated by the red and blue trajectories, respectively. (D) Topological relationships between regions on a U- and a W-track that allow capturing the tracks

qualitative geometries. The endpoints, e1, e2, and e3 are regions that overlap with only one other region. The midpoints, m1, m2, and m3, overlap with two regions

and the junction overlaps with three regions.

which, from the perspective of algebraic topology, are but
contractible manifolds (Figure 9D).

To model spatial learning based on a specific RCC approach,
one can construct an RCC schema, in which the readout
neurons are trained to recognize the appropriate set of
binary relationships. However, an important aspect of RCC

constructions is that the set of relationships that can be
simultaneously imposed on a set of regions is restricted (Bennett,
1998; Renz, 2002). For example, if x and y partially overlap and
y is a proper subset of z, then z and x must have a non-null
intersection and z cannot be a subset of x. Therefore, we define

an RCC schema R as a schema with a set of consistent RCC
relations between regions.

To model the process of physiological learning in the
RCC5 (R5) schema, we trained five types of readout neurons
to recognize the five RCC5 relationships, starting from the
initial DR relationship. This however requires more complex
algorithms than in G and T schemas: while the partial temporal
overlap can always be interpreted as partial spatial overlap, other
temporal relationships cannot be uniquely assigned to a spatial
RCC5 relation (Figure 10A). For example, passing through
two partially overlapping regions along a particular trajectory
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FIGURE 10 | Temporal vs. spatial relationships. (A) Temporal relationships between the spike trains [o, overlap; s, separation; d, during; id, inverse d; and e, equal

(Ligozat, 2013)] and the corresponding spatial relationships. The relationships DRxy , PPxy , PPixy , and EQxy between the regions can be imitated by partial overlap,

depending on the shape of the trajectory, which shows that these relations cannot be directly deduced from the spike train structure. (B) The transitions between the

RCC5 relationships, showing the immediate conceptual neighborhood (continuity table) structure of RCC5. These are the possible sequences of gradual

transformation of the RCC5 relationships. For example, if at some moment of time two regions, x and y, were disconnected (DRxy ) then this relationship cannot

instantly jump to a containment relationship (PPxy or PPixy ) without going through, at least instantaneously, the partially overlapping (POxy ) relationship.

can generate a temporal disconnect, a temporal cover, or a
temporal equality relationship between two spike trains which
can be mistaken for spike trains produced by a DR, PP/PPi,
or EQ relationship, respectively. Because of this ambiguity, the
spiking activity of the presynaptic cells in the cell assemblies
produced during individual runs through a pair of place fields
can invoke different interpretations of the spatial relationships.
Thus, learning a R5 schema rests on encoding, at each moment,
the best guesses for the relationships between pairs of regions and
then updating them based on the available spiking history and
the qualitative analogue of continuity constraints, as shown in
Figure 10B.

In our simulations, the relationships evolved rapidly and
saturated within about TN ≈ 4 min from the onset of
the exploration (Figure 11A). Figure 11B shows that at the
beginning of the exploration, the number of inconsistencies
between independently trained readout neurons is high.
Subsequently, their number quickly diminishes as the
information about coactivity is acquired. An increase in the
number of PP relationships in Figure 11A produces a splash of
inconsistencies occurring at about 3 min, which is at the time
when the animal completes its first turn around the central hole.
This phenomenon has the same origin as the splash of transient
cover relationships occurring in the mereological schema M

(Figure 8).
As the statistical information about place cell coactivity

accumulates, a stable set of RCC5 relationship emerges. The
schema’s specific entropy, defined using the probabilities of
observing all five relationships, saturates about the same time,
TN ≈ 4 min. The entropy of the RCC5 relationships between
the representing regions in the map MX(R) remains similar to
the schema entropy during the entire course of learning, reaching
the asymptotic value of H ≈ 0.84 (Figure 11C). Moreover, the
mutual information between the map and the schema increases
with the acquisition of information in a way similar to the case
of graph schema G but unlike the case of simplicial schema T (cf.
Figures 3C, 5E, 11C). Once again, this data indicates that spatial

maps built on regions with diffuse boundaries may better reflect
the nature of the encoded regions. In the meantime, the integrals
of the R5 schema, i.e., the combinations of RCC5 relationships
that represent the junction and the endpoints on the W track,
emerge from neuronal spiking in under Tmin ≈ 2 min—much
sooner than the readout neurons inR5 network are trained.

4. DISCUSSION

We have presented a framework for integrating the place cells’
spiking information into a global map of space, implemented via
simple cell assembly neural networks, wired to encode spatial
relationships. The approach is motivated by the experimental
results (Gothard et al., 1996a,b; Shapiro et al., 1997; Poucet
and Herrmann, 2001; Lever et al., 2002; Leutgeb et al., 2005;
Touretzky et al., 2005; Wills et al., 2005; Alvernhe et al.,
2011, 2012; Chen et al., 2012; Dabaghian et al., 2014; Wu
and Foster, 2014) and by the theoretical models proposed
in Dabaghian et al. (2012); Arai (2014) and in Muller et al.
(1996); Trullier and Meyer (2000); Chrastil and Warren (2014).
From the perspective of the current approach these models
are particular implementations of the simplicial and the graph
schema, respectively; the mereological and the RCC schemas
are new—to our knowledge, such models have not yet been
considered.

In the following we outline several important aspects of this
framework and provide a general context for the model.

4.1. Emergence of the Memory Map in
Schemas
There is a clear parallel between a coherent representation of
space emerging from the integrated inputs of many individual
neurons and a continuous state of matter (e.g., a solid or a
liquid) emerging from the collective dynamics of molecules.
From a descriptive point of view, the common element in
both phenomena is that neither macro-system can be reduced
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FIGURE 11 | Learning the RCC5 schema. (A) Evolution of RCC5 relationships: at the beginning of the exploration of the new space, the regions are mostly

disconnected and the partial overlap of relationships is accumulated over time. Similarly to the graph schema, the number of all types of relationships saturates in

about 5 min. (B) The number of inconsistencies in the randomly initialized relational network is higher at the beginning of exploration and decays to a low, steady level

by the time the number of relationships stabilize. (C) The entropy of the relations encoded in the schema (red), the entropy of the RCC5 relationships in the map (blue),

and the mutual information (green) between them saturate at a similar time scale.

to a trivial aggregation of the properties of its elementary
constituents. Even when the properties at both the microscopic
and macroscopic levels are well understood, it can be difficult to
correlate the properties at one level with those at the other. For
example, the measurement of the macroscopic properties of a
liquid does not allow one to determine its molecular structure.
Conversely, a detailed description of the properties of a water
molecule does not explain directly key phenomena of the physics
of water. In physics, the solution to this problem historically
proceeded from a simplified, phenomenological models, which
bridged the gap between the microscopic and macroscopic levels
of matter. In a similar way, the present discussion offers a testbed
model with which to bridge the gap between place cells and the
large-scale spatial map.

4.2. Topological Spatial Maps
Topological maps have several biological advantages over
geometric [or topographic (Chen et al., 2014)] maps, which
follow from the qualitative nature of topological relationships
(Chen et al., 2012). First, natural environments are dynamic,
so that it is often impossible for an animal to know when
and how its navigational task may change. Hence acquiring
a qualitative map based on the invariants of the space of an
environment, may be biologically more effective than spending
time on producing a computationally costly precise answer from
mutable relationships between dynamic cues.

One implication of this hypothesis is that in morphing
environments the place fields will retain the pattern of topological
connectivity and may adjust their shapes in order to compensate
for the deformation of the representing space. This hypothesis
is supported by experiments which demonstrate that place fields
maintain their relative configurations in morphing environments
(Muller and Kubie, 1987; Gothard et al., 1996a,b; Lever et al.,
2002; Leutgeb et al., 2005; Touretzky et al., 2005; Wills et al.,
2005; Colgin et al., 2010) and that place cell coactivity pattern
in an animal traversing remains invariant over a significant
range of geometric transformations (Diba and Buzsaki, 2008;
Dabaghian et al., 2014). If the map is Cartesian, i.e., based
on precise coordinates, distances, angles and so forth, such

deformation can be achieved by redrawing the place fields at
each stage of the deformation, via some complex path integration
mechanism (Poucet, 1993; McNaughton et al., 1996; Poucet and
Herrmann, 2001; Etienne and Jeffery, 2004; McNaughton et al.,
2006; Goodrich-Hunsaker et al., 2008; Alvernhe et al., 2012).
From the topological perspective, the observed deformation of
the place fields is simply a result of projecting the same stable
neuronal map into a morphing environment, which does not
require extra computations and hence may be biologically more
plausible.

4.3. Schemas Constrain the Generation of
Intrinsic Sequences in the Hippocampus
Place cells become active in temporal sequences that either
match with or are inverse to the spatial ordering of their
place fields during the active, resting, or sleep states. Initially,
temporal sequences were observed after or during the recording
of the place fields, leading various authors to suggest that
the observed temporal sequences were a replay of sequences
imprinted by sensory inputs (Louie andWilson, 2001; Foster and
Wilson, 2006). More recent experiments have observed temporal
sequences that corresponded to trajectories along which the
animal had never traveled (Gupta et al., 2010). Furthermore,
experiments have revealed that temporal sequences observed
before the animal entered an environment for the first time were
predictive of the place field sequence measured later (Dragoi
and Tonegawa, 2011, 2013). These observations strongly suggest
that temporal sequences are not merely replays of previously
imprinted sequences (Gupta et al., 2010; Cheng and Ji, 2013).
The better interpretation is that sequences are drawn from a
pool of sequences that are intrinsic to the hippocampal network
and this network structure gives rise to the location of place
fields (Buhry et al., 2011; Azizi et al., 2013; Cheng, 2013). The
CRISP (for Context Representation, Intrinsic Sequences, and
Pattern completion) theory goes further to argue that the intrinsic
sequences in the hippocampus are crucial for the storage of
episodic memories (Cheng, 2013). However, this theory does not
explain the origin or properties of such sequences.
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In the schema framework, all neural activity produced in the
hippocampus has to be consistent with its schema. For example,
in the graph schema, spontaneously replayed sequences of neural
activity would have to be consistent with the connectivity of
the graph. In other words, a cell ci may fire a spike after cell cj
only if the relationship ρij = (ri, rj), or a chain of intermediate
relationships ρii1 , ρi1i2 , ..., ρin−1in=j, is present in PR. Other
schemas impose different constraints on which sequences can be
produced, and the elements in the sequencesmay be ensembles of
place cells, rather than single cells. In other words, schemas serve
as “topological templates” off which sequences are generated.

Physiologically, this implies that the hippocampal network
that implements a particular schema can produce sequences with
specific “grammar” which may not have been directly imprinted
or previously produced by the network. In fact, such offline state
sequences of place cell activations, which the animal had never
experienced, were recently observed in the experiments (Dragoi
and Tonegawa, 2011, 2013). Moreover, these sequences were
consistent with the topology of the spatial environment (Wu and
Foster, 2014). Thus, schemas can explain the intrinsic sequences
postulated by CRISP theory as well as in preplay and replay.
This intimate relationship between spontaneous sequences and
schemas may be exploited in future investigations in order to
infer the schema based on recordings of sequences or to predict
the properties of intrinsic sequences from a given schema.

4.4. Spatial vs. Non-Spatial Memories
The hippocampus has been suggested to encode both spatial
and nonspatial memories (Eichenbaum et al., 1999; Eichenbaum,
2000; Shrager et al., 2007; Soei et al., 2008; Konkel and Cohen,
2009). For example, it plays a key role in the ability to remember
visual, odor, action and memory sequences, and to put a specific
memory episode into the context of preceding and succeeding
events, as well as the ability to produce complete memory
sequence from a single structured input (Wood et al., 1999; Fortin
et al., 2002, 2004; Sauvage et al., 2008). The topological view on
the hippocampal spatial representations (Dabaghian et al., 2011,
2012, 2014) provides a common framework for understanding
both spatial and nonspatial memory functions as manifestations
of a single mechanism, which simply produces a topological
arrangement of memory elements, irrespective of the nature
of their content. According to this view, there is no principal
difference between the internalized topological map of spatial
locations and a topological map of memory sequences in the
mnemonic domain.

4.5. Connections to Experiment
Given the place cells’ spiking parameters and a hypothesis
about how the downstream neurons might process place
cell (co)activity, a schematic computation can be used to
assess the effectiveness of the corresponding spatial learning
mechanism: how much time will be required to map a space,
how many integrals can such mapping produce, how quickly
these integrals will emerge and how stable they will be. This
scope of computations suggests a possibility for experimental
verifications of the proposed framework. For example, a decline
in spatial learning caused by neurodegenerative diseases (e.g., in

Alzheimer’s rat models), by aging or by psychoactive substances
is assessed in behavioral experiments in terms of the extra
times required to learn various memory tasks. On the other
hand, such cognitive changes are associated with changes in
the place cell spiking parameters (Gerrard et al., 2001; Silvers
et al., 2003; Wilson et al., 2004; Robbe et al., 2006; Cacucci
et al., 2008; Robitsek et al., 2008). It may therefore be possible to
compare the downturn of spatial memory observed in topological
learning tasks (Poucet and Herrmann, 2001; Alvernhe et al.,
2012) with the increase of the learning time(s) estimated via a
particular schemamodel for the same change in spiking variables.
Another alternative was suggested to us by our recent studies
of hippocampal mapping of 3D spaces in bats, using two types
of simplicial schemas. The results suggest that in the 3D case,
the readout neurons in the place cell assemblies should operate
by integrating synaptic inputs over working memory periods,
rather than detecting coactivities on synaptic plasticity timescale
(Hoffman et al., 2016). Of course, until these predictions are
proved or disproved experimentally, their value is discussable;
meanwhile, the schema approach allows theoretical reasoning
and generates predictions about hippocampal neurophysiology.

5. METHODS

5.1. Place Cells
Spiking is produced by the rat’s movement through the
environment covered by the place fields (Figures 1A,B). The
Poisson rate of the firing of place cells is a function of the animal’s
position r(t) at time t,

λi(r) = fie
−

(r− ri)
2

2s2i ,

where fi is the maximal firing rate of cell ci, si defines the width
of its firing field centered at ri (Barbieri et al., 2004). In an N-cell
ensemble, the parameters fi, and si, i = 1, ...,N are modeled as
random variables drawn from stationary unimodal distributions
characterized by their respective means (f and s) and standard
deviations (see Figure 1 and Methods in Dabaghian et al., 2012).
For the computations we used an ensemble with N = 200
neurons, withmean firing rate f = 12Hz and themean place field
size s = 20 cm. Larger ensembles typically affect the numerical
values of the computed quantities, but not the essence of the
phenomena described in the paper. This spiking is modulated
by theta-oscillations, which are a subcortical EEG cycle in the
hippocampus with a frequency of ∼ 8 Hz (for details see Arai,
2014).

5.2. Learning Algorithm
The physiological processes responsible for emergence of cell
assemblies with readout neurons trained to integrate presynaptic
inputs and to produce a particular response that “actualizes” the
information encoded by the place cell coactivity are complex and
multifaceted (Buzsaki, 2010). For example, the readout neurons
that encode place field overlap must identify a group of place
cells and learn to respond to the coactivity of this specific group.
However, what matters for our study, are the qualitative results
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of this process: the number of readout neurons , the order of the
coactivity detected by these neurons, how this order grows in a
typical cell assembly during the learning process and so forth.
Therefore, we set aside a neural network simulation of schema
learning and employ the following schematic, phenomenological
algorithm:

If a relationship ρ of an appropriate type is detected, then:

1. if ρ is already listed in PR, ignore;
2. else if ρ can be inferred from the known relationships, ignore;
3. if ρ provides nontrivial information, then add ρ to PR.
4. if the known relationships can be inferred from ρ, then

remove the redundant relationships.
5. continue

Steps 2 and 3 ensure that only the highest order relationships
are kept in the schema, eliminating redundant, lower-order
relationships. At the beginning, every state of the readout
neurons can be empty and trained as the simulated animal
explores a novel environment, or these states can be randomly
initialized and then relearned. The transitions between the
readout neuron types may be regarded as a rudimentary,
schematic model of the synaptic plasticity mechanisms. In novel
environments, place fields stabilize in about 4 min (Brown et al.,
2001), even though cognitive learning of the environment may
take days or even weeks (Frank et al., 2006). This implies
that the readout neurons can be trained using constant spiking
parameters fi and si.

5.3. Temporal Relationships
Temporal Relationships between the spike trains and the
physiological mechanisms underlying the downstream neurons’
readout process are in general very complex. For the sake
of simplicity, we consider only the rate-based representation
of neuronal activity (Ahmed and Mehta, 2009), which allows
for a variety of possibilities for encoding relationships. Such
relationships may entail that the firing rates of the pre- and
postsynaptic neurons may be required to fall within a particular
interval of values and the period of activity of a neuron ci may
be required to precede, to follow, or to overlap with the activity
of a neuron cj by a certain minimal, maximal or fixed amount of
time (Ligozat, 2013). The present analysis works from the three
mutually exclusive logical possibilities for the activity of any two
neurons ci and cj :

1. there is an empty intersection of activity, i.e., the two cells are
active at different times;

2. there is a non-null intersection of activity, i.e., their activities
overlap;

3. the activity of one cell is a proper subset of the other cell, i.e.,
the activity of one cell occurs entirely within the timespan of
the activity of the other cell.

The time window for defining the co-activity of two or
more cells is two θ-periods (Mizuseki et al., 2009; Arai,
2014).

Schema entropy and mutual information. For each
relationship ρk of the schema we computed its normalized
frequency of appearance pk and evaluated the resulting specific

entropy,

H = −6kpk log2 pk.

The specific entropy for the corresponding spatial map was
evaluated by identifying the relationships ρk′ that obtain between
the corresponding representing regions and computing their
appearance probabilities pk′ . Following the trajectory of the
animal (Figure 1B), we could also detect the joint probability
of appearance pk,k′ of a given pair of relationships, both
in the schema as well as in the map (ρk, ρk′ ), and then
compute their mutual information between the map and the
schema,

MI = −6k6k′pk,k′ log2
pk,k′

pkpk′
.

The computational software used for topological analysis is JPlex,
an open-source package implementing Persistent Homology
Theory methods developed by the Computational Topology
group at Stanford University (JPlex freeware, 2011).
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