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Neural avalanches are a prominent form of brain activity characterized by network-wide

bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent

work suggests that avalanches of different durations can be rescaled and thus collapsed

together. This collapse mirrors work in statistical physics where it is proposed to form

a signature of systems evolving in a critical state. However, no rigorous statistical test

has been proposed to examine the degree to which neuronal avalanches collapse

together. Here, we describe a statistical test based on functional data analysis, where raw

avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping

function. Finally, an F ratio test combined with a bootstrap permutation is employed to

determine if avalanches collapse together in a statistically reliable fashion. To illustrate this

approach, we recorded avalanches from cortical cultures on multielectrode arrays as in

previous work. Analyses show that avalanches of various durations can be collapsed

together in a statistically robust fashion. However, a principal components analysis

revealed that the offset of avalanches resulted in marked variance in the time-warping

function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We

compared these results with those obtained from cultures treated with an AMPA/NMDA

receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with

a slope greater than 3/2. When collapsed together, these avalanches showed marked

misalignments both at onset and offset time-points. In sum, the proposed statistical

evaluation suggests the presence of scale-free avalanche waveforms and constitutes

an avenue for examining critical dynamics in neuronal systems.

Keywords: neuronal avalanches, in vitro, bursts, network dynamics, cultured neuronal networks, multi-electrode

array, criticality

INTRODUCTION

Neural avalanches are a form of brain dynamics observed both in vivo and in vitro and characterized
by bursts of activity whose statistics follow a power-law distribution (Plenz and Thiagarajan,
2007). Several physical systems that evolve in a critical state exhibit power-law scaling (Bak et al.,
1987).Whether such power-law scaling reflects criticality in neuronal recordings, however, remains
debated (Touboul and Destexhe, 2010; Klaus et al., 2011; Beggs and Timme, 2012). This debate
is fueled by the presence of power-law scaling in stochastic systems that are not in a critical
state (Benayoun et al., 2010). Addressing this question has fundamental implications in neural
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systems, as theoretical work associates the critical state with
optimal information processing, optimal storage, and flexible
responses (Beggs and Plenz, 2003; Shew et al., 2009, 2011).

One aspect of physical systems that weighs in favor of
criticality is the presence of fractal relations at different times
scales (Sethna et al., 2001). Preliminary work has tested this
idea by taking avalanches of different durations, and rescaling
the amplitude and timescale of their mean activity over time
(Friedman et al., 2012). As a result, avalanches of different
durations show a strikingly similar profile of activation. This
scaling property suggests the presence of similar avalanche
dynamics across a range of temporal scales.

However, no statistical test has been proposed to examine the
reliability of this temporal scaling. Such test is not only necessary
to quantify this phenomenon under normal recordings, but
also its potential breakdown in neural activity altered by
pharmacology (Vincent et al., 2013).

Here, we address this question with a technique of functional
data analysis applied to recordings of cultured cortical neurons
plated on multielectrode arrays (Ramsay and Silverman, 2005).
The aim of this technique is to transform a set of data into smooth
differentiable functions. This is done by approximating the data
by a weighted sum of basis functions. The resulting functions
can then be rescaled using a time-warping function, and analyzed
using a generalized linear model (GLM).

This paper is structured as follows. First, we describe
some basic aspects of neuronal avalanches, including scale-free
distributions of time durations and counts of active neurons.
Second, we describe how data can be collapsed using a time-
warping function that rescales avalanches using their total
duration and mean amplitude. Third, we test the statistical
significance of the data collapse by combining a GLM and
permutation test. Finally, we examine the time-warping function
using a principal components analysis. We compare data collapse
obtained from control and pharmacologically altered activity
under APV/DNQX, an AMPA/NMDA receptor antagonist
known to disrupt avalanches by markedly increasing the slope of
the best-fitting power-law describing their distribution (Vincent
et al., 2012). Results show conditions that lead to a statistically
robust collapse of avalanches and carry implications for the
investigation of criticality in neuronal systems.

METHODS

Experiments were performed as previously described following
approval from the Human Health Therapeutics Animal Care
Committee at the National Research Council Canada. Cultures
were inspected to ensure that neurons exhibited a dense
homogeneous monolayer. Recordings were performed between
14 and 19 days in vitro, an age when cultures have sufficiently
matured to produce maximal firing rates and most channels
are active (Tauskela et al., 2008; Vincent et al., 2013).
Pharmacological agents were added directly to the medium
of cultures (AVP/DNQX = (2R)-amino-5-phosphonovaleric
acid + 6,7-dinitroquinoxaline-2,3-dione). Drugs were prepared
from stock solutions, with final bath concentrations of 2µM

DNQX, and 20µM APV. A 10min wash-in period preceded all
recordings.

Recordings were performed at 37◦C with 64-channel
multielectrode arrays using MCRack software (Multi Channel
Systems, Reutlingen, Germany). All recordings were carried
out for 20min duration. Signals were acquired at 5 kHz, then
downsampled to 1 kHz and high-pass filtered using a cut-off
frequency of 200Hz. Online extracellular spike detect was
performed using MCS software.

All offline analyses were performed with custom scripts
in Matlab (Mathworks, Natick, MA). Neural avalanches were
identified using non-overlapping time bins of fixed size (10ms).
An avalanche was defined as a series of consecutive bins where
all bins have at least one spike. An avalanche must be preceded
and followed by at least one time bin without spikes. Source code
on functional data analysis is freely available online (http://www.
functionaldata.org).

RESULTS

Neuronal Avalanches
A total of 6 control cultures were analyzed (see Figure 1A for an
illustration of multielectrode array). These data exhibited bursts
of activity characteristic of neuronal avalanches (Figures 1B,C).
A full analysis of avalanches for these data is available elsewhere,
and shows that the duration of avalanches follows a power-law
with slope close to 3/2 (Figure 2A; Vincent et al., 2012; Thivierge,
2014). A rigorous maximum likelihood method was employed to
show that a power-law offered a closer fit than an exponential
function (Langlois et al., 2014).

Individual avalanches were characterized by a sharp increase
in neural activity between the onset and peak amplitude, followed
by a more gradual offset (Figure 1C). The mean rate of increase
in neural activity from the onset of an avalanche to its maximal
amplitude was 1.28 spikes/ms (s.d. 0.16), which is close to
both experimental (Eytan and Marom, 2006) and theoretical
(Thivierge and Cisek, 2008) reports. The total duration of
avalanches varied between 20 and 580ms (mean of 40.89, s.d. of
8.03). Both the duration of avalanches and the number of cells
activated followed a power-law distribution (Figures 2A,B), with
scaling exponents α = 1.59 (s.d. 0.17) and τ = 1.53 (s.d. 0.09),
respectively (Table 1). In turn, avalanche durations and cell count
were related to each other by a power-lawwith exponent 1.09 (s.d.
0.004) (Figure 2C). In keeping with previous work, we refer to
the latter exponent using the notation 1/σνz (Mehta et al., 2002).
These exponents are slightly outside those predicted by mean
field values (τ = 3/2, α = 2.0, and 1/σνz = 2.0). In spite of
this finding, the exponent relation for critical systems

α − 1

τ − 1
=

1

σνz
(1)

is approximated here, with 1/σνz being slightly overestimated
(the lefthand side of Equation 1 yields 1.11).

An alternative means of estimating the above exponents is
to consider the maximum number of spikes generated during
a given time-bin of avalanches. For this analysis, we first used
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FIGURE 1 | Neuronal avalanches obtained from cortical cultures plated on multielectrode arrays. (A) Cortical neurons on multielectrode array. Only 4 of the

64 electrodes are shown. (B) Spike raster obtained from a control culture. (C) A single avalanche, showing spike raster (bottom panel) and peri-stimulus time

histogram relative to avalanche onset (top panel).

FIGURE 2 | Avalanche distributions and scaling relations. (A) Distribution

of avalanche duration (black dots) and best-fitting slope of power-law obtained

by maximum likelihood estimation (Langlois et al., 2014). Gray dots,

distribution obtained in cultures treated with APV/DNQX. (B) Distribution of the

number of cells activated per avalanche. (C) Relation between the duration of

avalanches and cell count. (D) Relation between the maximum spikes per

time-bin in average avalanches of different durations vs. the duration of

avalanches.

bins of 25ms to average avalanches of similar duration together.
In this way, an individual mean was obtained for avalanches
between 20 and 45ms, 45 and 70ms, and so on until we reached
the maximum avalanche duration of 580ms. The distribution
of maximum spikes per time-bin for these mean avalanches
followed a power-law with exponent µ = 1.44 (s.d. 0.12). The
relation between this exponent and α = 1.59 (obtained from
the duration of avalanches) is described by the exponent ρ/vz
(LeBlanc et al., 2013). From mean-field theory, we expect the

TABLE 1 | Summary of scaling exponents and mean-field theory.

Description Exponent Mean-field theory

Duration distribution α = 1.59 (s.d. 0.17) α = 2.0

Size distribution (# of cells) τ = 1.53 (s.d. 0.09) τ = 1.5

Duration vs. size 1/σνz = 1.09 (s.d. 0.004) 1/σνz = 2.0

Max. spikes per time-bin µ = 1.44 (s.d. 0.12) µ = 2

following relation

α − 1

µ − 1
=

ρ

vz
, (2)

to be approximated here, with the value (α − 1) /(µ − 1) = 1.34
being close to ρ/vz = 1.35 (Figure 2D).

In previous work, the exponents α, τ , and 1/σνz are
combined with a universal scaling function (a set of orthonormal
polynomials) to examine whether avalanches of different
duration can be collapsed together (Sethna et al., 2001; Friedman
et al., 2012). Here, however, we take a different approach that
offers a statistical criterion for testing the collapse of avalanches,
as described next.

Avalanche Collapse
We employed a technique termed functional data analysis
to examine the degree to which mean avalanches of various
durations could be rescaled and collapsed onto each other.
First, mean avalanches were filtered with a 2nd order low-pass
Butterworth filter with a cut-off frequency of 100Hz. Then, we
represented mean avalanches of a given duration by a continuous
variable xj corresponding to the spike rate over time, sampled at
1 kHz. Each mean avalanche was smoothed by a linear mixture of
Fourier basis φk, where k = 1,. . . ,K,

y (t) =

K
∑

k= 1

ckφk (t) , (3)
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given ck coefficients and K number of basis functions defined by
φ0 (t) = 1, φ2r−1 (t) = sin rωt, and φ2r (t) = cos rωt, where t
indexes time within the interval T corresponding to the length
of a given mean avalanche. The parameter ω defines the period
2πω and is set such that this period is equal to T. By allowing the
n × K matrix 8 =

{

φk

(

tj
)}

of basis functions to be of full rank,
we obtained a close approximation y(tj) ≈ xj for each j when K
= n by fitting the coefficients ck. These coefficients were adjusted
to minimize a sum of squared errors between data points xj and
basis 8

SSE (x | c) = (x− 8c)
′

(x− 8c) , (4)

where the vector c contains the coefficients ck. To avoid
overfitting the data, we added a regularization term to Equation
(4) that penalizes the second order derivative of y(t),

R
(

y
)

=

∫

[

∂2y (t) / (∂t)2
]2
dt, (5)

thus yielding

SSEλ (x | c) = (x− 8c)
′

(x− 8c) + λR
(

y
)

, (6)

where λ = 0.001 controls the amount of regularization applied.
The target precision for Equation (6) is 0.0001. Equation (6) can
be optimized in linear O(n) time using a least squares method
described elsewhere in full detail (Green and Silverman, 1994).
One assumption is that the noise is of higher frequency than
the signal. This is justified because neuronal avalanches represent
population-wide fluctuations in signals and have a time-course
that is much slower than high-frequency “jitter” induced by
single spikes.

Examples of smoothed avalanches are shown in Figure 3A

(left panel). To confirm that our choice of parameter λ in
Equation (6) yielded low SSE, we tested a range of values
between λ = 0.001 and λ = 0.1 (Figure 3B). Despite the
smoothed avalanches having different durations, their overall
shape was strikingly similar. It may thus be possible to rescale
these avalanches in time such that their activity aligns with each
other. This was achieved by computing a time-warping function
for each mean avalanche. An advantage of this approach is that
it allows us to devise a statistical analysis based on principal
components analysis and GLM to examine the degree to which
avalanches collapse together (see below).

The time-warping transformation of y(t) is defined as

y∗ (t) = yi
[

hi (t)
]

, (7)

given the time-warping function hi (t), where i indexes individual
avalanches. Here, h implements a transformation

hi (t) = 1
(

D−1 expD−1w
)

(t) , (8)

where

1 = T/
[

D−1 expD−1w (t)
]

(9)

FIGURE 3 | The shape of mean avalanches of different durations

shows a statistically reliable collapse. (A) Left panel: example of

avalanches of different durations. These avalanches were smoothed using a

Fourier basis (Equation 3). Right panel: avalanches registered using a

time-warping function (Equation 7). Avalanches are rescaled by their maximum

amplitude for ease of visualization. (B) Sum of squared errors (SSE) obtained

from Equation (6) as a function of the regularization parameter λ. (C) F ratio

obtained from a functional linear model. Dashed line, critical F-value. Each of

1000 bootstrap permutations is displayed by a solid black line.

andD−1 is an integration operator with lower limit of zero. These
time-warping functions are fitted with a least-squares criterion
using a Newton-Raphson algorithm as described elsewhere
(Ramsay and Silverman, 2005).

The above warping functions allowed for avalanches to be
collapsed onto each other (Figure 2A, right panel). The collapse
of avalanches was particularly accurate around the peak of
avalanches, but less so toward the offset. To evaluate the degree to
which avalanches collapsed together, we employed a combination
of GLM and bootstrap permutation. This procedure allowed us to
identify time-points where avalanches collapsed in a statistically
robust manner, as described next.

Generalized Linear Modeling
First, we randomly divided all mean avalanches of various
durations into two surrogate groups of equal size. Then, we fitted
the resulting data set using the linear model

ykg (t) = µ (t) + αg (t) + εkg (t) , (10)

where µ (t) is the grand mean of the data (i.e., the average
avalanche shape over all groups), αg (t) is the deviation of the
average avalanche shape in a given surrogate group from the
grand mean, and εkg (t) is the residual deviation of the kth
avalanche in group g from the mean avalanche profile. We
constrained αg (t) such that

∑

g αg (t) = 0 for all t. This

constraint is necessary to insure that αg (t) can be identified
uniquely as belonging to a given surrogate group. To fit this
model, we designed a matrix Z of size N (avalanche) × G+1
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(surrogate groups). We indexed the rows and columns of Z using
(k,g), corresponding to mean avalanche k in group g. Row g of
matrix Z had a one in the first column, a one in column g + 1,
and zeroes elsewhere. For instance, with N = 4 avalanches and
G = 2 groups, and assuming that the first two rows are assigned
to group 1 and the remaining 2 rows are assigned to group 2, the
Zmatrix would be

Z =









1 1 0
1 1 0
1 0 1
1 0 1









.

The linear model of Equation (10) can then be rewritten as

y (t) =

N
∑

j= 1

z(k,g)jϕj (t) + εkg (t) , (11)

where ϕj (t) are a set of N regression functions, ϕj, ϕ1 = µ,
ϕ2 = α1, and so on, up to ϕN = αN−1, yielding the vector
ϕ = [µ, α1, α2, . . . , αN]. This model can be fitted with a least
squares criterion,

SSE (ϕ) =
∑

g

∑

k

∫

[

ykg (t) − (Zϕ)kg

]2
dt, (12)

where

(Zϕ)kg =

N
∑

j= 1

z(k,g)ϕj (t) ,

minimized subject to constraint
∑N

j= 1 ϕj = µ. We assessed the

fit of Equation (11) at each time point t using

SSE (t) =
∑

k,g

[

ykg (t) −
(

Zϕ̂
)

kg
(t)

]2
(13)

evaluated at the fitted values of ϕ obtained by minimizing
(Equation 12). We then tested for statistical robustness using an
F ratio,

Fratio(t) =

∑

k,g

[

ykg (t) − µ̂ (t)
]2

−
∑

k,g

[

ykg (t) −
(

Zϕ̂
)

kg
(t)

]2
/dfmodel

∑

k,g

[

ykg (t) −
(

Zϕ̂
)

kg
(t)

]2
/dferror

(14)

where dfmodel = G−1 and dferror = N−2 are the degrees of
freedom associated with the linear model and error, respectively.
Values of Fratio(t) obtained by Equation (14) were compared to
a critical value from the F distribution. We repeated the above
procedure (Equations 10–14) 1000 times, each time using a
random assignment of avalanches to each of the two surrogate
groups in Equation (10). Finally, we identified time-points of
Fratio(t) where >1% of all 1000 random permutations were above

the critical F-value in Equation (14), corresponding to points
where data did not collapse reliably.

Using the above procedure, we found that despite slight
misalignments at the offset of avalanches, all time points were
collapsed above chance levels (Figure 3C; time-points that are
robustly aligned are shown by solid black lines). Similar results
are found when considering only a subset of 30 channels
(Figure 4A) and when altering the duration of time bins for
detecting avalanches (Figure 4B, see Methods).

We compared the above results with those of cultures treated
with APV/DNQX. Distributions of avalanche duration, cell
count, as well as the relation between these measures are shown
in Figures 2A-C, respectively. In previous work, we showed that
APV/DNQX cultures yield avalanches with power-laws greater
than 3/2 (Vincent et al., 2012). Smoothed mean avalanches
recorded in this condition displayed a variety of shapes
(Figure 4C, left panel). Attempts to collapse these shapes together
resulted inmarked discrepancies both before and after the peak of
avalanches (Figure 4C, middle panel). These discrepancies were
reflected in an F ratio test (Figure 4C, right panel). These results
differ sharply from those of control cultures, which displayed
a robust collapse at all time-points of avalanches. Importantly,
while the poor collapse of APV/DNQX data may be anticipated
by observation of the original avalanche shapes (Figure 4C, left
panel), results of the F ratio test provide a benchmark for the
adequate behavior of the proposed framework.

In sum, the above analysis shows that control cultures generate
avalanches across a range of different durations. These avalanches
show a striking similarity as highlighted by a time-warping
function that robustly collapsed them together. By comparison,
cultures treated with APV/DNQX, an AMPA/NMDA antagonist
that disrupts the scale-free distribution of avalanches, yielded
activity that could not be collapsed to the same degree.

Principal Components Analysis
While the above results are consistent with the idea that
avalanches in a critical state of activity can be reliably collapsed
together (Sethna et al., 2001; Friedman et al., 2012), they fail
to characterize the linear time-warping transformation that
makes this possible. Examples of time-warping functions for
mean avalanches of different durations are shown in Figure 5A.
Departures from a line of unity (Figure 5A, dashed line) are
observed predominantly at the onset and offset of avalanches.
To further examine this effect, we entered the time-warping
functions hi(t) in a principal components analysis (PCA). This
PCA performs a linear approximation of the time-warping
functions as follows:

ĥi (t) =

K
∑

k= 1

fikξk (t) , (15)

where ξk are a set of orthonormal functions and

fik =

∫ T

0
xi (t) ξk (t) dt. (16)
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FIGURE 4 | Avalanche collapse under various conditions. (A) Avalanche collapse with a random subsample of 30 channels. (B) Detecting avalanches with a bin

size of 5ms (instead of the 10ms default). (C) Avalanches in cultures treated with APV/DNQX. Times when F ratio exceeded the critical value in at least 1% of all

bootstrap realizations are shown in red.

The fitting criterion for Equation (15) is an integrated sum of
squared errors,

SSE =

N
∑

i=1

∥

∥

∥
hi − ĥi

∥

∥

∥

2
, (17)

where ‖·‖ is a norm operator. To minimize the above criterion,
we sought a set of functions ξk by finding the solution with largest
eigenvalue e of the eigenvector problem,

Vξ = eξ, (18)

where V is the variance-covariance matrix of the time-warping
functions hi (t). In order to visualize the results of the PCA,
we plotted the mean time-warping function, plus or minus a
multiple of the PCA function. To choose an adequate multiple
to use, we defined a constant C to be the root-mean-square
difference between the estimated mean function (µ̂) and the
overall time average (µ̄):

C2 = T−1
∥

∥µ̂ − µ̄
∥

∥

2
, (19)

where

µ̄ = T−1

∫

µ̂ (t) dt. (20)

We then plotted µ̂ and µ̂ ± 0.2Cĥi, where the constant 0.2 gives
results that are easy to interpret.

In control cultures, the largest principal component shows
stronger values toward the offset of the time-warping function
(Figure 5B, left panel). This is consistent with time-warping
being more variable in that time window, because avalanche
collapse is weaker (Figure 4A, middle panel). The second largest
principal component shows divergence from the mean both
at the onset and offset of avalanches (Figure 5B, right panel).
Together, the two largest principal components account for
93% of variance across time-warping functions. We compared
these results with those obtained from time-warping functions
for the APV/DNQX data (Figure 5C). As with controls, the
largest principal component was associated with the offset of
avalanches (Figure 5D, left panel), while the second largest
principal component covered most of the avalanche duration
(Figure 5D, right panel).

In sum, analyses of the time-warping functions reveal
that misalignments arise most strongly toward the offset of
avalanches, with slight misalignments also arising between the
onset and peak of avalanches.

DISCUSSION

In this paper, we examined whether neuronal avalanches of
different durations can be collapsed together (Sethna et al., 2001;
Friedman et al., 2012). One implication of avalanche collapse
is that they form a key signature of criticality in neuronal
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FIGURE 5 | Warping functions employed to collapse the avalanches. (A) Solid gray lines, examples of warping functions for mean avalanches of different

durations. Dashed black line is a line of unity. (B) Largest two principal components (PCs) of the warping functions from (A). Solid gray lines, perturbations around the

mean induced by each principal component (Equations 19–20). Solid black line, mean time-warping function of avalanches over time. (C) Warping functions for mean

avalanches under APV/DNQX. (D) Largest two principal components of the warping functions in (C).

systems, as they reflect a fractal property of activity at different
timescales (Beggs and Timme, 2012). We tested this idea using
a statistical evaluation of avalanche collapse based on functional
data analysis (Ramsay and Silverman, 2005). Our results show
that avalanches could be collapsed together in a statistically
robust fashion. By comparison, recordings under APV/DNQX,
which alter the scale-free distribution of avalanches, yielded an
unreliable collapse of avalanches at both the onset and offset
time-points.

These results thus support the collapse of neuronal avalanches
and highlight experimental conditions under which it may be
disrupted. A follow-up examination of the time-warping function
employed to collapse avalanches, however, showed variations
across avalanches, particularly near their offset, thus calling into
question the strict fractal nature of this activity.

The proposed framework for evaluating avalanche collapse
may serve to discern amongst different classes of models that
generate power-law distributions of avalanches (Levina et al.,
2007; Thivierge and Cisek, 2008; Benayoun et al., 2010; Rubinov
et al., 2011). While these models may successfully reproduce
power-law statistics of avalanches observed experimentally, it
is unclear whether they would also capture avalanche collapse.
One crucial factor in generating avalanche collapse may be
the connectivity of neural models (Friedman et al., 2012). A
full examination of this hypothesis, however, remains to be
performed. Further work is also required to examine the collapse
of neuronal avalanches in other datasets where power-law
distributions have been reported, including in vivo activity
(Petermann et al., 2009).

While the framework described here relies on functional
data analysis, alternatives are possible, including the use of
dynamic time warping (Theodoridis and Koutroumbas, 2009).
As with functional data analysis, dynamic time warping uses a
time transformation to compare time-series that vary in speed.
However, a disadvantage of dynamic time warping is that it does
not guarantee that the warped time-series will result in smoothly
differentiable functions, which prevents further analyses such as
the identification of peaks (Thivierge, 2009) as well as a functional
PCA (Figure 5).

It remains unclear whether the statistical collapse of
avalanches provides a definitive signature of critical dynamics in
neural systems. Crucially, stochastic systems have been shown
to capture power-law distributions of avalanches (Touboul and
Destexhe, 2010). It remains to be shown whether such systems
also exhibit an avalanche collapse in conditions that mimic
normal and pharmacologically-altered states. Analyses of such
systems could test a further prediction of critical phenomena not
addressed here, namely that the size distribution of avalanches
should scale as

s−τL
(

s
(

b− d
)1/σ

)

(21)

where L (·) is a universal scaling function and b is a parameter
tuned away from the critical value d.

One limitation of the approach proposed here is that we are
constrained to collapsing avalanche shapes along the time axis,
and not along their amplitudes. Thus, the more general problem
of data collapse remained to be addressed. However, our current
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work offers an important step in this direction by proposing a
statistical framework to evaluate the quality of scaling collapse in
avalanche data, and may be expanded upon in future studies.
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