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Pain is a highly subjective experience. Self-report is the gold standard for pain

assessment in clinical practice, but it may not be available or reliable in some populations.

Neuroimaging data, such as electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI), have the potential to be used to provide physiology-based and

quantitative nociceptive pain assessment tools that complements self-report. However,

existing neuroimaging-based nociceptive pain assessments only rely on the information

in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is

also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed

to use machine learning algorithms to decode pain intensity from both pre-stimulus

ongoing and post-stimulus evoked brain activities. Neural features that were correlated

with intensity of laser-evoked nociceptive pain were extracted from high-dimensional

pre- and post-stimulus EEG and fMRI activities using partial least-squares regression

(PLSR). Further, we used support vector machine (SVM) to predict the intensity of

pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results

showed that combining predictive information in pre- and post-stimulus brain activities

can achieve significantly better performance in classifying high-pain and low-pain and

in predicting the rating of perceived pain than only using post-stimulus brain activities.

Therefore, the proposed pain prediction method holds great potential in basic research

and clinical applications.

Keywords: pre-stimulus brain activity, EEG, fMRI, pain perception, machine learning, feature selection

INTRODUCTION

Pain assessment is a crucial clinical practice. Inaccurate pain assessment can lead to inadequate
pain management, and even misleads diagnosis and treatment (Brown et al., 2011). As a
multidimensional and highly subjective experience, pain perception is primarily measured by
means of self-report [e.g., Visual Analog Scales (VAS) and Numeric Rating Scales (NRS)]
in clinical applications (Cruccu et al., 2008; Haanpää et al., 2011). However, the subjectivity
of self-report limits its application to people with impaired consciousness (e.g., patients in
a coma, vegetative state or minimal conscious state; Schnakers and Zasler, 2007) or limited
cognitive capacity (e.g., young children, the elderly, patients with cognitive impairment;
Wong and Baker, 1988; Herr et al., 2004; Buffum et al., 2007), and people who are
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unwilling to reliably communicate the feeling of pain. In
addition, self-report provides limited understandings of the
underlying neurophysiological processes of pain perception,
which is important for the development of targeting treatments
(Wager et al., 2013).Therefore, developing a neurophysiology-
based pain assessment tool is highly necessary in basic pain
research and clinical applications.

Non-invasive neuroimaging techniques, such as
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI), enable us to readily obtain brain
responses to nociceptive inputs. A variety of neural correlates
of nociceptive pain [e.g., laser-evoked EEG potentials (LEPs),
fMRI responses within the “pain matrix”] have been identified,
allowing for neurophysiology-based pain assessments (Huang
et al., 2013; Wager et al., 2013). Assessing subjective intensity
of nociceptive pain perception with non-invasive neuroimaging
data has gained emerging interest in recent years. For example,
based on the strong correlation between the amplitudes/latencies
of LEP and subjective pain perception, single-trial LEP features
were used to predict pain intensity with high accuracy (Huang
et al., 2013). Rapid developments of neuroimaging data analytics
also lead to novel and effective algorithms for pain prediction.
Machine learning, which can identify brain activation patterns
corresponding to pain perception, has also been used in pain
prediction due to its high sensitivity to multidimensional
neuroimaging patterns (Schulz et al., 2011; Brodersen et al., 2012;
Wager et al., 2013).

However, conventional neuroimaging-based pain prediction
methods only make use of pain-related information encoded
in brain activities evoked by nociceptive stimulation, while
completely overlook ongoing brain activities prior to nociceptive
stimulation. Actually, pre-stimulus ongoing brain activities
contain important information that is predictive of forthcoming
perception of pain, because previous studies have convincingly
shown that pain perception is largely modulated by ongoing
cognitive states (e.g., expectation, attention, reappraisal;
Terkelsen et al., 2004; Quevedo and Coghill, 2007; Wiech et al.,
2008; Tu et al., 2016). Babiloni et al. (2006) firstly revealed
a strong negative correlation between pre-stimulus alpha-
band EEG power and subjective pain rating. The relationship
between pre-stimulus brain responses and pain perception
was also observed in fMRI studies. It was reported that the
variability in pain perception under identical stimuli was
positively correlated with the fluctuation of baseline blood
oxygenation level dependent (BOLD) signal in medial thalamus,
lateral fronto-parietal network, and negatively correlated with
BOLD in posterior cingulate and temporo-parietal cortices
(Boly et al., 2007). The pre-stimulus functional connectivity
between anterior insula cortex and brainstem was also found
to negatively modulate pain perception (Ploner et al., 2010).
Our recent work has introduced how the ongoing fluctuations
of intrinsic cortical networks (as reflected by EEG spectrogram
and BOLD-fMRI responses) determine the dynamic state of the
brain and influence the pain perception (Tu et al., 2016). These
findings suggested that pre- and post-stimulus brain activities
provide complementary information for pain encoding: post-
stimulus brain activities reflect the nociceptive information while

pre-stimulus brain activities are responsible for trial-to-trial
variability in baseline cognitive and emotional states.

In the present work, we hypothesize that combining the
information embedded in pre- and post-stimulus brain activities
can lead to a more accurate prediction of nociceptive pain
perception. To validate this hypothesis, we collected EEG and
fMRI data in laser-evoked pain experiments and used machine
learning algorithms to decode perceived pain intensity from
both pre-stimulus ongoing and post-stimulus evoked brain
activities. Temporal-spectral EEG spectrogram and BOLD-fMRI
magnitudes (in both pre- and post-stimulus periods) comprise
two high-dimensional feature sets used for pain decoding. A
popular supervisedmachine learningmethod, partial least square
regression (PLSR; Hu et al., 2014), was used to reduce the
dimensionality of EEG or fMRI feature sets by detecting a
subset of features that are closely correlated with pain. These
features form a number of pre- and post-stimulus pain-related
brain patterns (temporal-spectral patterns for EEG and spatial
patterns for fMRI). Support vector machine (SVM; Cortes and
Vapnik, 1995) was then used to decode the intensity of pain
perception from the pre- and post-stimulus EEG or fMRI brain
patterns. In both EEG and fMRI datasets, the proposed pain
decoding method using both pre- and post-stimulus activities
achieved higher prediction performance than conventional pain
decoding methods using post-stimulus information only. In
addition, the predictive power of pre- and post-stimulus brain
patterns for pain decoding was individually assessed and ranked,
helped to build a more concise prediction model and provided
an understanding of to what extent the extracted pain-related
patterns contribute to pain perception.

MATERIALS AND METHODS

In the present work, we proposed to decode the intensity of
perceived pain from both pre- and post-stimulus brain activities
(sampled by EEG or fMRI) in laser-evoked pain experiments.

Experiments
EEG Experiments
EEG data were collected from 96 healthy participants (51
females) aged 21.6 ± 1.7 years (mean ± SD). All participants
gave their written informed consent and the experimental
procedures were approved by the local ethics committee. Details
of experimental design and recordings have been published
previously (Hu et al., 2014).

In brief, nociceptive-specific radiant-heat stimuli were
generated by laser and a total of 40 pulses, 10 for each of the four
stimulus energies (E1: 2.5 J; E2: 3.0 J; E3, 3.5 J; E4, 4.0 J), were
delivered in a pseudorandom order. The inter-stimulus interval
varied between 10 and 15 s. After each stimulus, subjects were
instructed to rate the intensity of the painful sensation elicited
by the laser pulse, using a visual analog scale (VAS) ranging from
0 to 10 (0 corresponds to “no pain,” “<5” corresponds to “heat
pain,” “≥5” corresponds to “acute pain,” and “10” corresponds to
“pain as bad as it could be”; Jensen and Karoly, 1992). EEG data
were continuously recorded using 64 Ag-AgCl scalp electrodes
placed according to the International 10–20 system (Brain
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Products GmbH; Munich, Germany; pass-band: 0.01–100Hz;
sampling rate: 1000Hz), using the nose as reference. Electrode
impedances were kept below 10 kΩ . Electro-oculographic (EOG)
signals were simultaneously recorded using surface electrodes to
monitor ocular movements and eye blinks.

Functional MRI Experiments
Functional MRI data were collected from 32 healthy participants
(20 females) aged 22.1 ± 2.0 years (mean ± SD). All participants
gave their written informed consent and the experimental
procedures were approved by the local ethics committee. The
current dataset follows a similar experimental design as was
adopted in the EEG dataset, with the exception that inter-
stimulus interval was longer (varied between 27 and 33 s) due
to the low temporal resolution of fMRI recording. Functional
MRI data were acquired using a Siemens 3.0 Tesla Trio scanner
with a standard head coil. A whole-brain gradient-echo, echo-
planar-imaging sequence was used for functional scanning with
a repetition time (TR) of 1500ms (29ms echo time, 25 5.0mm-
thick slices with 0.5mm inter-slice gaps, 3 × 3mm in-plane
resolution, field of view 192 × 192 mm, matrix 64 × 64; flip
angle 90◦). A high-resolution T1-weighted structural image (1
mm3 isotropic voxel MPRAGE) was acquired after functional
imaging.

Methods
The proposed pain decoding pipeline is shown in Figure 1.
The pipeline consists of 3 steps: (1) pre-processing (not shown
in Figures 1, 2 feature extraction and selection; and (3) pain
prediction. Firstly, pre-processing is aimed to remove noise
and artifacts from raw EEG and fMRI recordings. Secondly, a
subset of pain-related features is selected from high-dimensional
neuroimaging data (time-frequency EEG data or whole-brain
fMRI data) in both pre- and post-stimulus periods to form
discriminative temporal-spectral EEG patterns and spatial fMRI
patterns. Thirdly, a predictionmodel is established to describe the
relationship between the level of pain perception and identified
EEG or fMRI patterns in both pre- and post-stimulus periods.
Two machine learning methods, PLSR and SVM, were used in
step 2 and step 3, respectively. Although, EEG and fMRI have
different pre-processing steps, they share similar methods in the
steps of feature selection and prediction.

Pre-Processing
For EEG data, five subjects were excluded from the dataset
since they did not have variable painful sensation in response
to different stimulus energies. EEG data were preprocessed
using EEGLAB (Delorme and Makeig, 2004) and underwent
standard pre-processing. Continuous data were filtered (1–
100 Hz) and segmented into epochs (–500 to 0 ms and
0 to 1000 ms for pre- and post-stimulus, respectively) and
baseline-corrected using pre-stimulus interval. An infomax
independent component analysis (ICA; Delorme and Makeig,
2004) was used to correct trials contaminated by eye blinks and
movements.

For fMRI data, two subjects were excluded from the
dataset since they did not have variable painful sensation

in response to different stimulus energies. The preprocessing
routine was conducted using SPM8 (Wellcome Trust Center
for Neuroimaging, London, UK). Images were slice-timing
corrected, head motion corrected, normalized to the Montreal
Neurological Institute (MNI) space (voxel size = 3× 3 × 3
mm) by mapping T1-weighted structural image to MNI template
(Ashburner and Friston, 2005), and spatially smoothed using a
Gaussian kernel of 8 mm full width at half maximum (FWHM
= 8 mm). A high-pass filter was applied (cut-off frequency =

1/128 Hz) to the BOLD time-series to remove low-frequency
drifts. BOLD responses were modeled as a series of events
using a stick function and ratings were included as a parametric
modulator of each stimulus, which were then convolved with
a canonical hemodynamic response function (HRF). Group-
level statistical analyses were carried out using a random effects
analysis with one-sample t-test as implemented in SPM8. Brain
regions activated by laser stimuli were illustrated in Figure 3.

Feature Extraction and Selection
EEG spectral power in the time-frequency domain and BOLD-
fMRI strength are used as features to predict pain levels. For
EEG, short-time Fourier transform (STFT) with a fixed 200 ms
Hanning window (Zhang et al., 2012) was applied to single-
trial data at electrode C4 (LEP has maximal responses at the
contralateral site of somatosensory area) (Valentini et al., 2012)
to obtain their time-frequency distributions. Pre-stimulus (–500
to 0ms) and post-stimulus (0 to 1000ms) EEG spectrograms
were extracted as pre- and post-stimulus features (i.e., each
feature represents the power at a time-frequency pixel in the
spectrogram) for further analysis. For fMRI, the whole-brain
scan at stimulus onset containing pre-stimulus brain patterns
immediately before stimulus onset (onset scan), and the whole-
brain scan corresponding to the maximum BOLD response to
nociceptive pain (peak scan, i.e., 4th scan after stimulus onset,
Figure 3B), were extracted as pre- and post-stimulus features
(i.e., each feature represents a voxel at stimulus onset or response
peak in the scans) for further analysis. Since in both EEG and
fMRI experiments painful stimuli were delivered in 4 different
energy levels, both EEG and fMRI features as well as subjective
pain ratings were normalized by removing the mean values of
ratings within each energy group to minimize the influence
of stimulus energy on the assessment of their trial-to-trial
relationship.

For each subject, a linear model is used to describe the
relationship between the level of pain perception and pain-related
neuroimaging features, which include pre-stimulus features
(X

pre
m , m = 1, ..., M, where m denotes the index of pre-stimulus

features andM is the total number of pre-stimulus features) and

post-stimulus features ( X
post
n , n = 1, ..., N, where n denotes the

index of post-stimulus features and N is the total number of
post-stimulus features). The linear function linking the reported
intensity of pain, Y, and EEG or fMRI features of one trial reads:

Y = a0 +

M
∑

m

a
pre
m X

pre
m +

N
∑

n

a
post
n X

post
n + ε, (1)
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FIGURE 1 | Overview of the proposed pain decoding method (pre-processing steps are not shown). (1) Feature extraction. Single-trial pre- and

post-stimulus EEG spectrogram at C4 electrode (left) and whole-brain fMRI BOLD signals of onset and peak scans (right) were extracted from preprocessed data as

features. (2) Feature selection. Extracted features and perceived intensity of pain were fitted in a PLSR model. Features that were significantly predictive of pain

perception were identified from group analysis and form a set of patterns (temporal-spectral EEG patetrns and spatial fMRI patterns). (3) Prediction. Selected brain

patterns were fed to SVC and SVR models for pain classification and regression.

where a
pre
m and a

post
n , respectively, denote the model coefficients

for X
pre
m and X

post
n , a0 denotes the intercept, and ε denotes the

model residual.
Following, a subset of features that are most predictive of

pain perception was selected. Here, the predictive power of

each feature was defined according to its corresponding model

coefficient (a
pre
m or a

post
n ) in Equation (1). That is, those features

with a corresponding model coefficient significantly different
from 0 across subjects were regarded as regions with predictive
power. To achieve this, PLSR [implemented by Nonlinear
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FIGURE 2 | (A) Identified pain related EEG time-frequency patterns. PLSR coefficients indicating the relationship between EEG spectrogram and the intensity of pain.

Five time-frequency clusters (C4-nose) significantly modulated the intensity of pain. (B) Group-level average of EEG spectrogram (C4-nose). Time-frequency power

within corresponding five time-frequency clusters were selected for pain prediction. (C) The performance to predict subjective intensity of pain based on “Pre+Post”

and “Post” EEG features. Classification accuracies to discriminate low and high pain trials were 83.5 ± 6.8% (“Pre+Post”) and 78.2 ± 9.1% (“Post”), respectively (p <

0.0001, paired t-test). Significant difference was observed in classification sensitivity (p < 0.05, paired t-test), but not in specificity. Prediction errors to continuous

predict pain intensity were 1.15 ± 0.32 (“Pre+Post”) and 1.27 ± 0.38 (“Post”), respectively (p < 0.0001, paired t-test). Error bars represent SD across subjects. (D)

The performance to predict subjective intensity of pain based on individual EEG patterns. “LEP” provided strongest and most significant prediction performance.

Iterative Partial Least Squares algorithm (NIPALS); Wold et al.,
2001] was applied to estimate the model coefficients in Equation
(1). PLSR was applied here as it can solve the problems of
high dimensionality and multicollinearity, which are typical in
neuroimaging data. Statistical significance of the estimatedmodel
coefficients across subjects were assessed with a point-by-point
one-sample t-test against zero, combined with nonparametric
permutation testing (see PLSR analysis in Tu et al., 2016 for
details of this method). The statistical result defines a number
of pain-related patterns (temporal-spectral patterns for EEG and
spatial patterns for fMRI), which consist of features that are most
predictive of pain intensity and share similar temporal-spectral
characteristics (for EEG) or spatial characteristics (for fMRI)
across subjects. More precisely, for EEG data, these patterns are
neighboring time-frequency pixels having power values that are
significantly correlated with pain perception, while for fMRI data,
these patterns are neighboring voxels having BOLD strengths
that are significantly correlated with pain perception.

Pain Prediction
In this step, pain prediction models were trained to decode
single-trial intensity of pain perception from identified pain-
related patterns (time-frequency patterns for EEG and spatial
patterns for fMRI). Two types of pain decoding models were
trained in the current study: (1) classification, which qualitatively
predicts the intensity of pain by classifying trials into two levels

(low pain: VAS < 5; high pain: VAS ≥ 5); and (2) regression,
which quantitatively predicts the intensity of pain as a continuous
value (0–10). Linear support vector classification (SVC) and
support vector regression (SVR) model were, respectively,
adopted as the classification and regression model (Pereira et al.,
2009).

A leave-one-out-cross-validation (LOOCV) strategy was
adopted to evaluate the performance of the pain decoding model
(SVC and SVR) for each subject (Huang et al., 2013). For each
iteration in LOOCV, one trial was selected as the test sample
and fed to the SVC/SVR model trained with remaining samples,
and the iterations were repeated for every trial. To quantify
the performance of SVC, classification accuracy, sensitivity, and
specificity were calculated. Sensitivity and specificity are defined
as:

Sensitivity =

∑

TP
∑

TP +
∑

FN
, Specificity =

∑

TN
∑

TN +
∑

FP
,(2)

where
∑

TP and
∑

FN denote the number of true positive and
false negative respectively,

∑

TN and
∑

FP denote the number
of true negative and false positive respectively. Here positive is
defined as high pain trials and negative is defined as low pain
trials.
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To quantify the performance of SVR, we used mean absolute
error (MAE), which is defined as:

MAE =
1

P

P
∑

p=1

∣

∣

∣

Rp − R̂p

∣

∣

∣

, (3)

where Rp and R̂p denote, respectively, the actual and predicted
intensity of pain perception for trial p, and P is the number
of trials of each subject. The above steps were repeated for
each subject, and the performance measures were assessed at
group level (e.g., whether SVC yielded significantly above-chance
classification accuracy).

Since one of our focuses is to investigate whether the
combination of pain-related information in both pre- and post-
stimulus information can improve pain decoding performance,
we further compared the prediction performance using two sets
of patterns: (1) both pre- and post-stimulus pain-related patterns
(the proposed method); (2) post-stimulus pain-related patterns
only (the conventional method). Last, we also evaluated the
individual contribution of each pain-related brain pattern to pain
decoding, yielding a ranked contribution of these pain-related
patterns.

RESULTS

EEG Results
Psychophysics
Ninety-six subjects overall had an average subjective pain
intensity of 5.74± 1.03 (mean± SD). Five subjects were excluded
for the following analyses since they did not have variable
sensation in response to different stimulus energies. Nociceptive-
specific laser stimuli of four energies (E1–E4) elicited clear
pinprick sensation in the remaining 91 subjects (E1: 3.81 ± 1.41;
E2: 4.86± 1.34; E3: 6.63± 1.07; E4: 7.75± 1.03).

Pain-Related Time-Frequency Patterns
Five time-frequency clusters were identified to significantly
modulate the perceived pain intensity (Figures 2A,B). In the pre-
stimulus interval, a cluster in the alpha band (“Pre-ABO”: –221–
31 ms, 8–15 Hz; p < 0.001) and a cluster in gamma band (“Pre-
GBO”: –180–85 ms, 74–87 Hz; p = 0.001) negatively modulated
the perceived intensity of a subsequent stimulus. In the post-
stimulus interval, three significant clusters were observed: the
low-frequency “LEP” (74–470 ms, 1–22 Hz; p < 0.001), the low-
frequency ABO (“Post-ABO”: 637–935 ms, 8–20 Hz; p < 0.001),
and the high-frequency GBO (“Post-GBO”: 127–377ms, 62–
100Hz; p< 0.001). It was confirmed that the magnitude of “LEP”
and “Post-GBO” positively correlated with perceived intensity of
pain, while the magnitude of “Post-ABO” negatively correlated
with perceived intensity of pain.

Predicting Pain from Pre- and Post-stimulus

Time-Frequency Patterns
We trained and tested a linear SVM on two different
sets of patterns: (1) post-stimulus time-frequency patterns
(“Post”) including “LEP,” “Post-ABO,” and “Post-GBO”; (2) both
pre- and post-stimulus time-frequency patterns (“Pre+Post”)

FIGURE 3 | (A) Statistical result of brain regions activated (red) and

deactivated (blue) by nociceptive pain following a conventional GLM analysis in

SPM8, which represents the voxel-wise t-statistics of GLM model coefficients

corresponding to the regressor denoting stimulus-evoked BOLD time-series

(constructed by canonical hemodynamic functions at stimulus onsets) at

group level [corrected with false discovery rate correction (FDR)]. For illustrative

purpose, we used different p-value threshold for showing activated regions

(PFDR < 10−6, as the result was highly significant) and deactivated regions

(PFDR < 0.05) in the current figure. (B) Averaged BOLD time series (–3 to 12 s)

in activated regions (red curve) and deactivated regions (blue curve). Error bar

at each time instant represents the standard error of mean (SEM) of BOLD

responses across subjects.

including “Pre-ABO,” “Pre-GBO,” “LEP,” “Post-ABO,” and “Post-
GBO” (Figure 2C). For classification accuracy (mean ± SD),
“Pre+Post” provided significantly higher accuracy than “Post”
(“Pre+Post”: 83.5 ± 6.8%; “Post”: 78.2 ± 9.1%; p < 0.0001,
paired t-test). Significant difference was observed in classification
sensitivity (“Pre+Post”: 79.2 ± 14.6%; “Post”: 77.0 ± 17.3%; p
= 0.04, paired t-test), but no significant difference in specificity
was observed (“Pre+Post”: 72.2 ± 14.2%; “Post”: 72.0 ± 17.3%;
p = 0.91). For prediction error (mean ± SD), “Pre+Post” also
provided significantly lower MAE than “Post” (“Pre+Post”: 1.15
± 0.32; “Post”: 1.27± 0.38; p < 0.0001, paired t-test).

Predicting Pain from Individual Time-Frequency

Patterns
We attempted to predict the perception of pain from individual
time-frequency EEG patterns, with the aim to rank their
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respective predictive power. Therefore, results could offer us
an understanding of to what extent the extracted patterns
contribute to pain prediction. It should be noticed that pre-
stimulus brain patterns can only contribute to the fluctuation of
perceived pain perception within identical stimuli, as the brain
could not forecast the energy of forthcoming nociceptive stimuli
which were randomized across trials. Therefore, we used “Pre-
ABO” and “Pre-GBO” to predict the normalized intensity of
pain perception, while “LEP,” “Post-ABO,” and “Post-GBO” to
predict the perceived intensity of pain perception. Thus, we could
propose a rank order of pain-related brain patterns (Figure 2D).

All five time-frequency patterns obtained significant
prediction results. The most predictive pattern in the pre-
stimulus period was “Pre-ABO” in terms of classification
accuracy and prediction error (55.3 ± 6.6% and 1.79 ± 0.56)
and “LEP” was the most predictive pattern in the post-stimulus
period (77.0 ± 9.3% and 1.30 ± 0.36). Other patterns also
provided above-chance performance (“Pre-GBO”: 55.0 ± 7.6%
and 1.86 ± 0.55; “Post-ABO”: 57.5 ± 6.9% and 1.72 ± 0.51;
“Post-GBO”: 56.9± 4.6% and 1.75± 0.55).

Functional MRI Results
Psychophysics
Thirty-two subjects overall had an average subjective pain
intensity of 4.82 ± 1.55 (mean ± SD). Nociceptive-specific laser
stimuli of four energies (E1–E4) elicited clear pinprick sensation
in 30 subjects (E1: 2.92 ± 1.53; E2: 3.84 ± 1.69; E3: 5.68 ± 1.62;
E4: 6.91 ± 1.54). Two subjects were excluded for the following
analyses since they did not have variable sensation in response to
different stimulus energies.

Laser-Evoked BOLD Responses
Single-subject fMRI data were analyzed on a voxel-by-voxel basis,
using a general linear model (GLM) approach (Frackowiak et al.,
2004), to assess the laser-evoked BOLD activations/deactivations.
Figure 3A shows that laser stimuli elicited activations within
various brain regions, including anterior/middle cingulate
cortex (ACC and MCC), supplementary motor area (SMA),
primary, and secondary somatosensory cortex (S1 and S2),
insula (INS), and thalamus, while deactivations in rectus and
DLPFC. Group-level BOLD responses in positive and negative
activated regions were illustrated in Figure 3B. The peak
response of positive activation was located around 6 s (4th scan)
after stimulus, while was located around 7.5 s (5th scan) for
deactivation.

Pain-Related fMRI Patterns
Post-stimulus evoked BOLD responses in several brain regions
showed the capability of significantly modulating the pain
perception (Figure 4A). These regions include INS, ACC, MCC,
S1, SMA, and S2 in the “pain matrix” (Legrain et al., 2011), which
can positively modulate pain perception, rectus in default mode
network (DMN), and dorsal lateral prefrontal cortex (DLPFC),
which can negatively modulate pain perception. Because of the
intrinsic delay of the hemodynamic response, the fMRI signal
sampled at stimulus onset reflects the brain activity preceding the
arrival of the sensory input to the nervous system. At the stimulus

onset time, we found a positive correlation between subsequent
normalized pain intensity and BOLD in S1, DLPFC, MCC, SMA,
and ACC, and a negative correlation in angular, amygdala and
precuneus (Figure 4A).

Predicting Pain from Pre- and Post-Stimulus fMRI

Patterns
Similar to EEG analysis, we trained and tested linear SVM
on two sets of patterns: (1) post-stimulus fMRI patterns
(“Post”) including identified patterns at the peak scan; (2) both
pre- and post-stimulus fMRI patterns (“Pre+Post”) including
identified patterns at both onset and peak scans. For classification
accuracy, “Pre+Post” provided significantly higher accuracy than
“Post” (“Pre+Post”: 75.0 ± 10.5%; “Post”: 72.5 ± 11.0%; p =

0.0018, paired t-test). No significant difference was observed in
classification sensitivity (“Pre+Post”: 63.1 ± 31.7%; “Post”: 58.9
± 35.0%; p = 0.12, paired t-test) and specificity (“Pre+Post”:
57.1 ± 37.0%; “Post”: 54.4 ± 39.5%; p = 0.24, paired t-test). For
prediction error, “Pre+Post” also provided significantly lower
error than “Post” (“Pre+Post”: 1.66± 0.47; “Post”: 1.76± 0.47; p
< 0.0035, paired t-test) (Figure 4B).

Predicting Pain from Individual fMRI Patterns
We further predicted the perception of pain from individual
fMRI spatial patterns. Similarly, pre-stimulus fMRI patterns were
assessed to predict the normalized intensity of pain while post-
stimulus fMRI patterns were assessed to predict the perceived
intensity of pain (please refer to “Predicting Pain from Individual
Time-frequency Patterns” for the reason). All regions achieved
significant above-chance prediction accuracy (p < 0.05). The
most predictive pre-stimulus fMRI patterns were S1 (56.0± 8.4%
and 1.95± 0.34) (in terms of accuracy) and DLPFC (55.3± 7.7%
and 1.92 ± 0.39) (in terms of prediction error), while the most
predictive post-stimulus fMRI pattern was insula (72.4 ± 10.6%
and MAE: 1.89± 0.62) (Figure 4C).

DISCUSSION

In the present work, we proposed a novel pain decoding method
which uses both post-stimulus evoked brain activity and pre-
stimulus brain activity as features to enhance the prediction
performance compared to conventional methods based on post-
stimulus evoked brain activities only. Our analysis led to two
main findings.

First and foremost, our results demonstrated that by further
incorporating pain-related information in pre-stimulus brain
activities into the conventional pain prediction model solely
based on post-stimulus evoked brain activities, the prediction
performance can be significantly improved. The present work
highlights the significance of pre-stimulus brain activities
in encoding pain perception in the brain, and indicates
the bias between actual pain perception and predicted pain
perception may also be contributed from pre-stimulus brain
activities.

Second, the individual predictive power of pain-related neural
features is investigated and ranked, which offers us a better
understanding of the predictive capacity of pain-associated
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FIGURE 4 | (A) Post-stimulus and pre-stimulus fMRI patterns defined by PLSR coefficients. Positively and negatively predictive patterns are shown in red and blue,

respectively (p < 0.05, cluster-level permutation test). (B) The performance to predict subjective intensity of pain based on “Pre+Post” and “Post” fMRI patterns.

Classification accuracies to discriminate low and high pain trials were 75.0 ± 10.5% (“Pre+Post”) and 72.5 ± 11.0% (“Post”), respectively (p = 0.0018, paired t-test).

No significant difference was observed in classification sensitivity and specificity. Prediction errors (quantified as MAE) to continuously predict pain intensity were 1.66 ±

0.47 (“Pre+Post”) and 1.76 ± 0.47 (“Post”), respectively (p < 0.0035, paired t-test). Error bars represent SEM across subjects. (C) Ranked contribution of pain-related

patterns. Error bars represent SEM across subjects. ACC, Anterior Cingulate Cortex; AMYG, Amygdala; DLPFC, Dorsal Lateral Prefrontal Cortex; INS, Insula; MCC,

Middle Cingulate Cortex; PREC, Precuneus; SMA, Supplementary Motor Area; S1, Primary Somatosensory Cortex; S2, Secondary Somatosensory Cortex.

brain patterns. The combined predictive power of these neural
features is also obtained. Although, most of identified neural
features provided above-chance prediction individually, they
could not be able to yield higher predictive power when being
used with other features, which implies that these regions may
not provide completely independent and complimentary pain-
related information.

Significance of Pre-stimulus Brain
Activities in Pain Decoding
Conventional pain prediction approaches only rely on the
relationship between post-stimulus evoked brain activity and
pain perception, but they seldom consider the predictive power
of pre-stimulus ongoing activities, which have been shown to be
correlated with pain (Brodersen et al., 2012; Huang et al., 2013;
Wager et al., 2013). In the present work, we demonstrated that, a
prediction model, which describes the joint contribution of post-
stimulus evoked brain activities and pre-stimulus ongoing brain
activities to pain, can provide significantly higher prediction
performance.

Actually, pre-stimulus brain oscillations have been repeatedly
shown to be predictive of forthcoming sensory perception and
they play an important role in the brain mechanisms underlying
perception (Linkenkaer-Hansen et al., 2004; Hanslmayr et al.,
2007; Van Dijk et al., 2008; Zhang and Ding, 2010; Lange
et al., 2012; De Lange et al., 2013). It has been reported that

the fluctuation of ongoing brain activities is able to capture
the ongoing brain state and reflect various cognitive terms
such as vigilance, attention, and expectation (Buzsaki, 2009).
Such ongoing variation in brain state, as captured by ongoing
brain activities, has been shown to be able to bias various
sensory perceptions. As for pain perception, literature has
shown that pain does not only reflect the neural processing
of nociceptive information, but is also influenced by various
psychosocial contexts and psycho-physiological factors (i.e.,
brain states; Wiech et al., 2008). In our previous work (Tu
et al., 2016), we reported that pre-stimulus alpha and gamma
oscillations sampled by EEG and BOLD activities in sensorimotor
resting state network and DMN were implicated in top-down
modulation of pain, and consequently modulated the perception
of subsequent painful stimuli. These findings advanced
our understanding of the neural mechanisms of pain, and
inspired us to further utilize pre-stimulus information for pain
decoding.

Predictive Neural Patterns
For EEG data, when decoding pain perception from pre-stimulus
activity, both “Pre-ABO” and “Pre-GBO” afforded significant
accuracies. “Pre-ABO” has been interpreted as a measure of
altered excitability of neuronal ensembles in primary sensory
cortex, while “Pre-GBO” modulates long-range communication
between distributed neuronal assembles. Thereby they offered
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complementary information in terms of classification accuracy.
When decoding pain-related information embedded in post-
stimulus EEG activities, “LEP” had the highest accuracies,
indicating its strongest contribution to pain prediction [in terms
of mean accuracy (%) and variability (t-value)]. Not surprisingly,
no significant difference of prediction accuracy was observed
between “LEP” and “Post” (“LEP”: 77.0 ± 9.3% and 1.30 ±

0.36; “Post”: 78.2 ± 9.1% and 1.27 ± 0.38; p = 0.72 and p
= 0.54 for classification and regression, respectively). Although
“Post-ABO” and “Post-GBO” enabled significant accuracies
when predicting pain perception individually, they did not
provide additional information when being considered along
with “LEP.” It may due to the predictive information provided
by “Post-ABO” and “Post-GBO” is also contained in “LEP.”
Therefore, it is possible to remove “Post-ABO” and “Post-GBO”
and develop a more concise pain prediction model in clinical
practice.

For fMRI data, we found the activities at DLPFC are predictive
of pain perception, no matter whether they are measured before
or after stimulus onset. But the degrees of importance of pre-
stimulus DLPFC activities and post-stimulus DLPFC activities
are largely different. Pre-stimulus DLPFC activities provide the
highest prediction performance among all pre-stimulus patterns
(measured by MAE), showing DLPFC is one of the most
important regions executing cognitive pain modulation (Wiech
et al., 2008). One the other hand, post-stimulus DLPFC activities
cannot offer as high prediction performance as “pain matrix”
(insula, ACC, MCC, S1, and SMA) does (Legrain et al., 2011),
indicating that cognitive modulation is less important after
stimulus.

Machine Learning Classifiers for Brain
Decoding
Machine learning has gained popularity in the community
of brain science and engineering recently for it allows for
decoding stimuli, mental states, behaviors, and other variables
of interest from neuroimaging data (Pereira et al., 2009).
Various machine learning classifiers have been applied to brain
decoding, including Logistic Regression (LR; Ryali et al., 2010),
linear SVM (Ryali et al., 2010), Gaussian Naïve Bayes (GNB;
Huang et al., 2013) and Fisher’s Linear Discriminant Analysis
(LDA) (Davatzikos et al., 2005). In the present work, we used
PLSR to select discriminative features from EEG and fMRI
data and applied linear SVC and SVR, both of which are
extensions of the classical SVM, to classify and continuously
predict subjective pain perception from EEG and fMRI features.
PLSR and SVM are both popular machine learning methods
and they are gradually used in many applications of brain
decoding.

Since there are generally more predictors than experimental
trials or subjects, it is often advantageous to reduce the number
of predictors by selecting an informative subset. Wager and
his colleagues used LASSO-PCR, which is combination of two
dimension reduction methods (LASSO and PCA), to extract
features and predict pain perception (Wager et al., 2013). LASSO
is based on sparsity-enhancing L1 regularization on regression
coefficients and it can shrink small regression coefficients to

zero to realize dimension reduction. But, when dealing with
strongly correlated predictors (e.g., adjacent fMRI voxels),
LASSO arbitrarily selects one variable from a group of highly-
correlated variables, which degrades the interpretability of the
prediction model (Cecchi et al., 2012). Therefore, in (Wager
et al., 2013), the authors first used PCA to reduce the number
of predictors and then used LASSO on the orthogonal principle
components (PCs) rather than the original fMRI data. However,
since PCA is an unsupervised method and the PCs are obtained
according to the variance of the data solely, it cannot guarantee
that the classes can be well-separated in the space defined by
reduced dimensions. Here we used PLSR to decode pain related
brain patterns, because it is a supervised dimension reduction
method that can exploit class information to ensure that high-
dimensional data can be amped into a low-dimensional space
where different classes are well-separated. PLSR is still a linear
method but the relationship between pain intensity and brain
signals could be non-linear (Wager et al., 2005; Loggia et al.,
2012). There are more sophisticated methods that can explore
nonlinear relationships between brain responses and behavior
variables, which is in accord with intrinsic nonlinear neuro-
dynamics of the brain (Tu et al., 2015).

More recently, deep machine learning algorithms which can
model the data with multiple processing layers, have been applied
for brain decoding and neuroscience discovery (Plis et al.,
2014). What differentiates them from other classifiers is the
automatic feature learning from data which largely contributes
to improvements in accuracy. Deep models such as deep belief
networks (DBNs) and restricted Boltzmann machine (RBM),
separate linear factors from functional brain imaging data by
fitting a probability distribution model to the data, has been
used for fMRI classification (Schmah et al., 2008) and for
identifying intrinsic networks (Hjelm et al., 2014). It is potentially
a suitable solution for pain decoding model, and more advanced
feature selection and machine learning techniques will be used
to build a more powerful pain decoding model in our future
study.

Further Developments for Clinical Uses
In the present study, we proposed a novel pain decoding
model incorporating both pre-stimulus brain activities
and post-stimulus brain activities, and adopted machine
learning classifiers to effectively predict pain perception in
single-trials. Such decoding model and prediction strategy
could be executed rapidly, reliably, and automatically, thus
satisfying most requirements of various basic and clinical
applications.

Pre-stimulus brain activities could be a great indicator of
subject’s ongoing cognitive states and they include much useful
information for decoding within-subject variability. However,
our decoding model does not take inter-subject variability of pain
perception and brain responses into consideration. In future,
we would like to apply the decoding model on cross-subject
prediction which is more favored because it does not need any
training on new individuals.

EEG and fMRI are the commonly used techniques for pain
assessment in clinical applications. Particularly, EEG is more
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favored because it is cheap and easy to operate. For pain-related
clinical study, our proposed novel pain-related brain patterns
hold great potential to help diagnose nociceptive system deficit
as well as to predict subjective pain perception (e.g., to monitor
the effect of analgesic drug or the recovery of nociceptive system
for non-communicative patients). Moreover, compared with our
previous work on pain prediction (Huang et al., 2013), which rely
on EEG data from a high-density EEG cap, we obtain desirable
pain prediction accuracy from EEG at only one electrode so that
the preparation period is significantly reduced, which makes the
proposed EEG-based prediction method more suitable for both
clinicians and patients.
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