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The Editorial on the Research Topic

Integrating Computational and Neural Findings in Visual Object Perception

Recognizing objects despite infinite variations in their appearance is a highly challenging
computational task the visual system performs in a remarkably fast, accurate, and robust fashion.
The complexity of the underlying mechanisms is reflected in the large proportion of cortical real-
estate dedicated to visual processing, as well as in the difficulties encountered when trying to build
models whose performance matches human proficiency.

The articles in this Research Topic provide an overview of recent advances in our understanding
of the neural mechanisms underlying visual object perception, focusing on integrative approaches
which encompass both computational and empirical work. Given the vast expanse of topics covered
in the discipline of computational visual neuroscience, it is impossible to provide a comprehensive
overview of the field’s status-quo. Instead, the presented papers highlight interesting extensions to
existing models and novel insights into computational principles and their neural underpinnings.
Contributions could be coarsely subdivided into three different sections: Two papers focused on
implementing biologically-valid learning rules and heuristics in well-established neural models
of the visual pathway (i.e., “VisNet” and “HMAX”) to improve flexible object recognition. Three
other studies investigated the role of sparseness, selectivity, and correlation in optimizing neural
coding of object features. Finally, another set of contributions focused on integrating computational
vision models and human brain responses to gain more insights in the computational mechanisms
underlying neural object representations.

EXTENDING INVARIANT RECOGNITION CAPABILITIES OF

EXISTING MODELS

A key challenge our visual system faces is a trade-off between discrimination and generalization. It
should be able to discriminate an encountered object from a myriad of possible alternatives. Yet,
it has to generalize across different instances of the same object, or, in other words, be invariant
to so-called “identity-preserving transformations” (DiCarlo et al., 2012). Two contributions in this
Research Topic propose updates to influential computational models to more adequately deal with
the latter invariance constraint.

Rolls and Webb, introduce an extension of the Ventral Visual Stream (VVS) model “VisNet”
(Rolls, 2012) by incorporating a bottom-up driven saliency-detection mechanism to locate items
of interest in natural scenes. By adding this functionality, their model mimics the “divide-and-
conquer” strategy applied by the primate visual system: the dorsal stream uses stimulus saliency to
guide saccades, which then allows the VVS to successively process a set of relatively small fixated
regions (instead of having to deal with a complex visual scene in its entirety), thereby reducing the
computational requirements to achieve invariant object recognition. The presented results show

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00036
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00036&domain=pdf&date_stamp=2016-04-20
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:j.peters@nin.knaw.nl
http://dx.doi.org/10.3389/fncom.2016.00036
http://journal.frontiersin.org/article/10.3389/fncom.2016.00036/full
http://loop.frontiersin.org/people/42689/overview
http://loop.frontiersin.org/people/2032/overview
http://loop.frontiersin.org/people/67248/overview
http://journal.frontiersin.org/researchtopic/1618/integrating-computational-and-neural-findings-in-visual-object-perception
http://dx.doi.org/10.3389/fncom.2014.00085


Peters et al. Neuro-Computational Mechanisms of Object Perception

that VisNet could reliably locate and identify a number
of objects in cluttered scenes, portraying both view and
translation invariance, even though training encompassed only
four viewpoints and a limited range of positions per object. These
findings further corroborate the notion that learning rules based
on temporal continuity (i.e., exploiting the increased likelihood
that consecutive retinal images belong to the same object despite
slight changes in its appearance) can successfully guide the
development of invariant object representations.

Likewise, Parker and Serre show that another prominent
model, namely HMAX (Riesenhuber and Poggio, 1999), can
be extended to learn invariant recognition across 3D-rotations
(while previous instantiations were limited to 2D changes in
position and scale) based on unsupervised training on short
object transformation sequences. The extended model exhibited
greater sensitivity to so-called “Non-Accidental Properties”
(akin to infero-temporal cortical responses) and concomitantly
demonstrated greater tolerance to object transformations in its
input.

EFFICIENT NEURAL CODING STRATEGIES

The selectivity and sparseness observed in neural firing elicited
by visual stimulation are generally considered hallmarks of an
efficient coding scheme: since a given neuron only responds to
a limited set of inputs, and conversely any input only triggers
activity in a relatively small fraction of the neural population,
redundancy is minimized. In their contribution, Xiong et al.
show that both selectivity and sparseness (which need not be
correlated) can simultaneously arise as properties of modeled
V1 receptive fields by reinforcing diversity (i.e., minimizing
similarity by mimicking neural inhibition) during the training of
a restricted Boltzmannmachine (a type of network routinely used
in “deep learning” approaches LeCun et al., 2015).

Interestingly, the findings presented by Hung et al. actually
point to a role of correlated neural activity in efficient
visual recognition as opposed to the proposedly beneficial
de-correlation that tuning selectivity might offer. Based on
dense neurophysiological recordings in monkey infero-temporal
cortex, the authors show that correlation strength and tuning
selectivity are only weakly related and that the observed
correlated activity is mainly driven by neurons in IT output
layers that convey generalizable object information, which
is behaviorally relevant as it predicts human visual search
performance (see below). Relatedly, Gladilin and Eils discuss the
behavioral and neural importance of (phase) correlation in visual
input.

LINKING COMPUTATIONAL MODELS TO

HUMAN BRAIN RESPONSES

Human neuropsychological and neuroimaging studies have
consistently identified brain regions involved in object
recognition. Nevertheless, our current understanding of
ongoing computations and feature representations within these
areas is rather limited.

One way forward to unravel the identified regions’ inner
workings is to compare the similarity across neural response

patterns elicited by a given stimulus set to the similarity in
output of a range of computer-vision models (with different
feature extractions) when presented with the same stimulus set.
Using this exploratory strategy, Aminoff et al. demonstrate that
fMRI activation-patterns within scene-selective brain regions,
such as the parahippocampal (PPA) and occipital place area
(OPA), correlated most strongly with computer-vision models
incorporating semantic features. In comparison, correlations
were lower for models representing low-level features and for
behavioral similarity scores. Conversely, the activation-pattern
observed in the retrosplenial complex (RSC) was more in line
with one of the low-level models and did correlate with subjective
similarity ratings. Although encouraging, the results also clearly
indicated that the overall correspondence between empirical and
modeled responses was weak, suggesting that we still lack a clear
grasp on cortical feature representation. One such feature, visual
texture, is further explored in the contribution by Liu et al. using
behavioral methods and modeling.

Another approach to gain insights into VVS feature
representations is employed by Lescroart et al. They compared
how well three encoding models, based on different scene-
defining feature classes, could voxel-wise predict neural
representations in scene-selective brain regions. The encoding
models mapped a diverse set of natural images to three
qualitatively different feature spaces: 2D-features related to
Fourier-power, the subjective 3D—distance to salient objects
in the scene, and a more abstract, semantic scene description
(“object-categorization”). In line with Aminoff et al. the object-
category model provided a better prediction of PPA and OPA
activity compared to the other two encoding models which did
not include semantic features. In addition, RSC activity was
more accurately predicted by the object-category model than the
Fourier-power model, but the object-category model and the 3D-
distance model performed equally well. Although, results of both
studies suggest a different feature representation for scenes in
RSC compared to PPA and OPA, it should be noted that feature
representations in all areas are more complex than captured by
the applied computer-vision and encoding models. Response
variance explained by the models was largely shared in the fMRI
data of Lescroart et al. To which extent this reflects an actual
combined representation of the model’s different feature classes,
or alternatively the high correlation between these feature spaces
in natural images, could be further explored by follow-up studies
using stimulus sets with reduced feature covariance (yet covering
enough variance for real-world generalization). Furthermore,
such studies might attempt to establish new encoding models
based on feature spaces inspired by feature representations in
high-level computer-vision models (e.g., Aminoff et al.) or deep
neural nets (e.g., Güçlü and Van Gerven, 2015).

However, even the most optimal feature representations based
on such approaches currently miss an important ingredient that
might be essential for our fast and efficient object recognition:
feature representations in the brain are dynamically influenced
by task demands. We actively engage in a dynamical world,
intentionally searching for and interacting with objects, rather
than passively observing static sceneries. Several aforementioned
contributions highlight specific aspects of such active perception,
andmore aspects can be distinguished. For example, to selectively

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2016 | Volume 10 | Article 36

http://dx.doi.org/10.3389/fncom.2015.00115
http://dx.doi.org/10.3389/fncom.2015.00104
http://dx.doi.org/10.3389/fncom.2014.00171
http://dx.doi.org/10.3389/fncom.2015.00045
http://dx.doi.org/10.3389/fncom.2015.00008
http://dx.doi.org/10.3389/10.3389/fncom.2015.00134
http://dx.doi.org/10.3389/fncom.2015.00135
http://dx.doi.org/10.3389/fncom.2015.00008
http://dx.doi.org/10.3389/fncom.2015.00135
http://dx.doi.org/10.3389/fncom.2015.00008
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Peters et al. Neuro-Computational Mechanisms of Object Perception

process objects of interest over distracting information, we can
use (c)overt spatial attention to constrain computations (see
Rolls and Webb), but also non-spatial attention contributes
to an efficient read-out of neural representations by altering
the corresponding feature space. In particular, during visual
search for objects in a movie, fronto-parietal and occipito-
temporal activations become tuned toward the attended object-
category, expanding representations of this and semantically
related categories, at the cost of unattended categories (Çukur
et al., 2013). Likewise, the work by Hung et al. revealed
that proximity in a neurally defined feature space (based on
monkey IT data) predicts human visual search efficiency: targets
were more easily identified when subjects were previously
adapted to surrounding distractors containing contrastive
features represented in neighboring cortical columns. This relates
to neural simulations in the contribution of Borji and Itti,
suggesting that feature similarity between target and distractors
affects whether attention modulates (combinations of) neural
gain, shifts in tunings, or sharpening of tunings, to allow for the
most informative representations of important stimulus features.
Moreover, the employed attentional mechanisms were influenced
by task requirements (e.g., object discrimination vs. search),
providing a further demonstration of the adaptive nature of
feature representations optimized for fast and efficient read-
out by higher-level areas. Adding such cognitive top-down
influences that warp feature spaces according to salience and
relevance, employing vision models with recurrent connections,
and defining specific encoding models for each processing
stage remains challenging, yet appears necessary for a profound
understanding of object representations in the primate brain.

CONCLUDING REMARKS

Combining computational and empirical efforts to reveal the
neural mechanisms underlying visual object recognition has
recently gained momentum. There has been a vast increase in
studies employing encoding models to understand how input,
transformed to an abstract feature space, predicts measured
neural activity. The variety of models under investigation
has expanded, ranging from low-level visual descriptors to
models that incorporate high-level semantic features. Moreover,

advances in high performance computing made it possible to
move beyond predefined sets of features, to feature spaces learned
from huge and diverse sets of natural world images using
deep-learning techniques. Comparing different feature spaces
to neural activity can be performed for each measure unit
separately (e.g., for each fMRI voxel, see Lescroart et al.) or
features can be compared to activation patterns in pre-localized
brain regions using similarity estimates (e.g., Aminoff et al.).
Recently, Khaligh-Razavi et al. (2014) showed that integrating
both approaches, by reweighting and remixing model features
via voxel-wise modeling, can lead to higher similarity between
models and neural responses in object-selective visual cortex.
Direct integration by projecting (population receptive field) voxel
models and measured fMRI data in the same brain space might
further facilitate comparisons by enabling the use of identical

data analysis and visualization techniques for both modeled and
measured data (Peters et al., 2012).

The advent of ultra-high field fMRI imaging, large-scale
electrocorticographic grids, and dense electrode arrays will
provide increasingly rich datasets to study neural activity-
patterns with unprecedented detail, yet with sufficient coverage
to track reformatting of feature representations from low- to
mid- to high-level areas along the VVS. By capitalizing on these
increasing opportunities to integrate advanced computer-vision
models and large-scale, high-resolution neural datasets, future
research can rely on an ever-expanding data mining toolbox to
probe neural feature and object representations to uncover the
underlying neural “vocabularies.”
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