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It is widely accepted that the hippocampal place cells’ spiking activity produces a

cognitive map of space. However, many details of this representation’s physiological

mechanism remain unknown. For example, it is believed that the place cells exhibiting

frequent coactivity form functionally interconnected groups—place cell assemblies—that

drive readout neurons in the downstream networks. However, the sheer number of

coactive combinations is extremely large, which implies that only a small fraction of

them actually gives rise to cell assemblies. The physiological processes responsible

for selecting the winning combinations are highly complex and are usually modeled via

detailed synaptic and structural plasticity mechanisms. Here we propose an alternative

approach that allows modeling the cell assembly network directly, based on a small

number of phenomenological selection rules. We then demonstrate that the selected

population of place cell assemblies correctly encodes the topology of the environment

in biologically plausible time, and may serve as a schematic model of the hippocampal

network.
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1. INTRODUCTION

The mammalian hippocampus plays a major role in spatial learning by encoding a cognitive map
of space—a key component of animals’ spatial memory and spatial awareness (OKeefe and Nadel,
1978; Best et al., 2001). A remarkable property of the hippocampal neurons—the place cells—is that
they become active only in discrete spatial regions—their respective place fields (Best and White,
1998) (Figure 1A). A number of studies have demonstrated that place cell activity can represent the
animal’s current location (Brown et al., 1998; Zhang et al., 1998), its past navigational experience
(Carr et al., 2011; Derdikman and Moser, 2010), and even its future planned routes (Dragoi and
Tonegawa, 2011; Pfeiffer and Foster, 2013). Numerical simulations suggest that a population of
place cells can also encode a global spatial connectivity map of the entire environment (Curto and
Itskov, 2008; Dabaghian et al., 2012; Arai et al., 2014). Hence, it is believed that the large-scale
hippocampal representation of space emerges from integrating the information provided by the
individual place cells, although the details of this process remain poorly understood.

Experimental studies point out that the hippocampal map is topological in nature, i.e., it is more
similar to a subway map than to a topographical city map (Gothard et al., 1996; Leutgeb et al., 2005;
Alvernhe et al., 2012; Dabaghian et al., 2014). This “topological” hypothesis has a major practical
implication: it suggests that hippocampal data should be amenable to topological analyses, thereby
allowing us to use powerful arsenals of computational topology. For example, the way place fields
cover an environment calls to mind the Alexandrov-Čech theorem that holds that if a space X is
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covered with a sufficient number of discrete regions, then it
is possible to reconstruct topology of X from the pattern of
the overlaps between these regions. The argument is based
on building a special simplicial complex N—the nerve of the
cover—each n-dimensional simplex of which corresponds to a
nonempty overlap of n+ 1 covering regions, and demonstrating
that the topological signatures of N and X are same [for details
see (Hatcher, 2002) and Methods in (Dabaghian et al., 2012)].
Since, the place cells’ spiking activity induces a covering of the
environment by the place fields, called a place field map [see
Figure 1B and (Babichev et al., 2016)], the Alexandrov-Čech’s
theorem suggests that the place cells’ coactivity (Figure 1C),
which marks the overlaps of the place fields, may be used by
the brain to represent the topology of the environment. The
individual groups of coactive place cells, just like simplices,
provide local information about the space, but together, as
a neuronal ensemble, they represent space as whole—as the
simplicial complex. This analogy establishes a possible approach
to the long-sought connection between the cellular and system-
scales, which was developed in (Dabaghian et al., 2012; Arai
et al., 2014) into a working model of spatial memory. First,
it was demonstrated that place cell coactivity can in fact be
used to construct a temporal analog of the nerve complex, T ,
the simplexes of which, σ = [c1, c2, ..., ck], correspond to the
combinations of coactive place cells, c1, c2, ..., ck (Figure 1D).
Second, using the methods of persistent homology (Zomorodian,
2005; Ghrist, 2008) it was shown that the topological structure
of T captures the topological properties of the environment, if
the range of place cell spiking rates and place field sizes happen
to parallel biological values derived from animal experiments.
Lastly, the persistent homology theory was used to estimate
the rate of accumulation of global topological information, i.e.,
spatial learning.

However, it remained unclear whether it is possible to
implement this algorithm in the (para)hippocampal network.
On the one hand, electrophysiological studies suggest that place
cells showing repetitive coactivity tend to form cell assemblies—
functionally interconnected neuronal groups that synaptically
drive a readout neuron in the downstream networks (Harris et al.,
2003; Harris, 2005; Buzsaki, 2010; Huyck and Passmore, 2013)—
which may be viewed as “physiological simplexes” implementing
T . On the other hand, the place cell combinations of T are much
too numerous to be implemented physiologically. In a small
environment, c.a. 1 × 1 m, thousands of place cells are active
and the activity of 50–300 of them is near maximal level at every
given location (Buzsaki, 2010). The number of combinations
of hundreds of coactive cells in an ensemble of thousands is
unrealistically large, comparable to C100

3000 ∼ 10200. The number
of cells in most parahippocampal regions, which may potentially
serve as readout neurons, is similar to the number of place
cells (Shepherd, 2004). This implies that only a small fraction of
coactive place cell groupsmay be equipped with readout neurons,
i.e., that the cell assemblies may encode only a small part of the
place cell coactivities—those which represent a “critical mass” of
spatial connections.

It is believed that place cells form as a result of competitive
learning of inputs provided by the grid cells in the medial

entorhinal cortex (MEC), which suggests a particular
organization of functional connections between the grid
cells and the place cells (Rolls et al., 2006; Solstad et al.,
2006). Physiologically, the synaptic architecture of the place
cell assembly network (which includes the readout networks
downstream from the hippocampus) should also emerge from
dynamically changing constellations of synaptic connections,
which are commonly studied in terms of the synaptic and
structural plasticity mechanisms (Chklovskii et al., 2004; Ghalib
and Huyck, 2007; Wennekers and Palm, 2009; Itskov et al., 2011;
Caroni et al., 2012). For a better understanding of the qualitative
properties of the cell assembly network we propose a biologically
plausible phenomenological approach that allows selecting the
most prominent combinations of coactive place cells directly and
demonstrate that the resulting population of cell assemblies is
sufficient for representing the topology of the environment.

We proceed as follows: we start by outlining our methods
and formulating general requirements to the model. Then we
test three approaches to building a cell assembly network. First,
we demonstrate that a “naïve” selection of the cell groups
that show repetitive coactivity fails to produce a working cell
assembly network. Then we propose two alternative methods
of constructing the cell assembly network that reliably capture
the topology of the environment. General implications of the
approach and possible physiological connections are outlined in
the Discussion.

2. THE METHODS

Mathematically, the task of identifying a subpopulation of
coactive place cell combinations corresponds to selecting
according to biologically motivated criteria a subcomplex T0 of
the full coactivity complex T . The cell assemblies correspond
to the maximal simplexes of T0, (i.e., the ones that are not
subsimplexes of any other simplex), in contrast with the maximal
simplexes of the coactivity complex, T , which can represent
any largest combinations of coactive cells. The “cell assembly
complex,” T0, should satisfy several general requirements:

I. Effectiveness. In the readercentric approach (Buzsaki, 2010),
each cell assembly drives a coincidence detector readout
neuron in the downstream brain regions. Since the number
of the readout neurons is comparable to the number of
place cells, the total number of the maximal simplexes in
T0, Nmax(T0), should be comparable to the number of its
vertexes, Nc(T0),

Nmax(T0) ≈ Nc(T0).

However, the algorithm for selecting T0 should reduce only
the number of coactive place cell combinations and not
the place cells themselves, meaning that the number of
vertexes in T and in T0 should not differ significantly.
In mathematical literature, the number of k-dimensional
simplexes of a simplicial complex is usually denoted as fk,
and the list f = (f0, f1, ..., fd) is referred to as the complex’s
f -vector (Gromov, 1968). However, since in neuroscience
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FIGURE 1 | Place fields and place cells. (A) The blue, green, and brown dots, corresponding to the spikes produced by three different place cells, form

well-defined spatial clusters, which represent their respective place fields. Spikes are positioned in space according to the animal’s coordinates at the time of spiking.

(B) A place field map produced by an ensemble of 300 place cells with mean peak firing rate f = 20 Hz and mean place field size s = 14 cm located in a 1× 1 m

environment. (C) A short time segment of the spike trains produced by three place cells. The periods of the cells’ coactivity, marked by dashed lines, indicate overlap

of their respective place fields (A): cells c1 and c2 are coactive in the region 12, cells c1, c2, and c3 are co-active in the region 123. (D) A simplex σ123 represents

schematically the spatial connectivity encoded by the coactivity of cells c1, c2, and c3. Its 1D edges correspond to pairwise coactivity, e.g., σ12 represents the

coactivity of cells c1 and c2.

literature the letter f is often used to denote firing rates, we
denote the number of k-dimensional simplexes by Nk. As a
shorthand notation, we use Nmax to denote the number of
the maximal simplexes and Nc the number of 0-dimensional
simplexes in a given complex.

II. Parsimony. To avoid redundancy, only a few cell assemblies
should be active at a given location. Conversely, the rat’s
movements should not go unnoticed by the hippocampal
network, i.e., the periods during which all place cell
assemblies are inactive should be short.

III. Contiguity. A transition of the spiking activity from one
cell assembly σi to another σi+1 occurs when some cells
in σi shut off and a new group of cells activates in σi+1

(see Supplementary Movies). The larger is the subassembly
σi,i+1 = σi ∩ σi+1 that remains active during this transition
(i.e., the more cells are shared by σi and σi+1) the more
contiguous is the representation of the rat’s moves and hence
of the space in which it moves. The overlap between a pair
of consecutively active simplexes can be characterized by a
contiguity index

ξ =
dim(σi ∩ σi+1)

√

dim(σi) dim(σi+1)
,

which assumes the maximal value ξ = 1 for coinciding cell
assemblies and ξ = 0 for disjoint ones. In constructing a cell
assembly complex, we expect that the mean contiguity over
the simplexes in T0 should not be lower than in T .

IV. Completeness. The cell assembly complex T0 should capture
the correct topological signatures of the environment, such
as obstacles, holes, and boundaries. For example, the lowest
dimensional 0D and 1D loops in T0 represent, respectively,
the piecewise and the path connectivity of the environment,
as they are captured by the place cell coactivity. This
information should emerge from the “topological noise” in
a biologically plausible time period, comparable to the time
required to obtain this information via the full complex, T
[see (Dabaghian et al., 2012; Arai et al., 2014) and Figure 2].

FIGURE 2 | Topological loops: each horizontal bar represents the

timeline of a topological cycle in T (T): 0D loops (connectivity

components) and the 1D loops. Most cycles last over a short time before

disappearing. A few remaining, persistent loops express stable topological

information that may correspond to physical obstacles in the rat’s

environment. The time required for the correct number of cycles to appear is

interpreted as the minimal time Tmin required for the rat to learn the

environment. The environment used in these simulations (Figure 1B) is

topologically connected (b0 = 1), and has one central hole (b1 = 1), and no

topological signatures in higher dimensions (bn>1 = 0). Thus, the topological

barcode of this environment—the list of Betti numbers (b0, b1, b2,...)—is (1,1,

0, ...). The last spurious loop (blue 1D timeline on the bottom panel) disappears

at about Tmin = 4.6 min, which is the learning time in this case.

2.1. Place Cell Spiking
Place cell spiking is modeled as a time-dependent Poisson process
with spatially localized rate

λc(r) = fce
−

(r−rc)
2

s2c ,

where r is a point in the environment, fc is the maximal firing
rate of a place cell c, and sc defines the size of the corresponding
place field centered at rc (Barbieri et al., 2004). In a familiar
environment, the place fields are stable, that is, the parameters
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fc, sc, and rc remain constant (Wilson and McNaughton, 1993;
Brown et al., 2001). In our simulations, all computations were
performed for 10 place cell ensembles, each containing 300
neurons with an ensemble mean maximal firing rate of 20 Hz
and a mean place field size of 30 cm. The place field centers in
each ensemble were randomly scattered across the environment
and most quantities reported in the Results were averaged over
ten place field configurations.

2.2. Spatial Map
We simulated the rat’s movements through a small (1 × 1
m) planar environment (Figure 1B), similar to the arenas used
in typical electrophysiological experiments [see Methods in
(Dabaghian et al., 2012)] over T = 25 min—the duration of
a typical “running session.” The spatial occupancy rate of the
rat’s trajectory (i.e., the histogram of times spent at a particular
location) and the frequency of the place cells’ activity are shown
on Figures 3A,B. The mean speed of the rat is 20 cm/sec, so that
turning around the central obstacle takes about 7 s.

By analogy with the place fields, we designate the spatial
domain where a combination of place cells comprising a simplex
σ is active as its simplex field, sσ (Figure 3C). If the simplex
corresponds to a cell assembly, then sσ may also be referred to
as the cell assembly field. Similarly to the place fields and the place
field map (Figure 1B), the collection of all simplex fields forms a
simplex field map and the cell assembly fields form a cell assembly
map(Figure 3C). These maps provide a better “geometric proxy”
for the rat’s cognitive map because they illustrate both the activity
and the coactivity of the individual place cells (Figures 3C,D).
In the following, the structure of these maps will be used to
discuss our selection algorithms. If the distinction between a
cell assembly map and a simplex map is not essential, it will be
referred to as a space map.

2.3. Population Activity
To define the population code (Pouget et al., 2000) of place cell
combinations, we construct place cell activity vectors by binning
spike trains into w = 1/4 s long time bins [for a physiological

justification of this value see (Mizuseki et al., 2009; Arai et al.,
2014)]. If the time interval T splits into n such bins, then the
activity vector of a cell c is

mc(T) = [mc,1, ...,mc,n],

where mc,k specifies how many spikes were fired by c in the kth

time bin. The components ofmc, normalized by the total number
of spikes,Mc, define spiking probabilities, pc,k = mk/Mc (Perkel
et al., 1967). A stack of activity vectors forms an activity raster
illustrated on Figure 4.

Two cells, c1 and c2, are coactive over a certain time period T,
if the dot product of their activity vectors does not vanish,

mc1 (T) ·mc2 (T) 6= 0.

The component-wise or Hadamard product of two activity
vectors

mc1,c2 = mc1 ⊙mc2 = [mc1,1mc2,1,mc1,2mc2,2, ...,mc1,nmc2,n]

defines the coactivity vector of cells c1 and c2, which can also be
viewed as the activity vector of the corresponding 1D simplex
σ12 = [c1, c2], mσ12 ≡ mc1,c2 . Similarly, the Hadamard product
of k vectors,

mσ12...k = mc1,c2,...,ck = mc1 ⊙mc2 ⊙ ...⊙mck ,

defines the activity vector of the simplex σ12...k = [c1, c2, ..., ck].
For each activity vector, mσ , we also define its bit array

mapping into a binary appearance vector, aσ , which indicates
during which time-bins the corresponding simplex σ has made
its appearance, i.e., aσ,i = 1 iff mσ,i > 0. The appearance rate,
fσ (T), of a simplex σ over a time interval T, is defined as the L1
norm of its appearance vector, averaged over that time interval,

fσ (T) = (1/T)6iaσ,i.

These appearance vectors and appearance rates allow
distinguishing the intrinsic physiological characteristics of

FIGURE 3 | Spatial maps. (A) Occupancy of spatial locations in a 1× 1 m environment—a 2D histogram of the time spent by the animal in different locations. (B)

Frequency of place cells’ spiking: each dot marks the location of a place cell’s center rc and indicates the corresponding appearance rate according to the colorbar.

Higher appearance rates appear in the domain where the spatial occupancy is higher. (C) Simplex field map. The place field map for the same place cell ensemble is

shown in Figure 1B. (D) Spatial distribution of the frequency of the maximal simplexes’ appearances. Notice that, since place cells with higher appearance rates tend

to produce higher order cell assemblies, which, in turn, have lower appearance rates, the spatial distribution of rates on (B,D) are complementary.
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FIGURE 4 | An activity raster of a population of 20 place cells over 250

time bins. Each row defines the activity vector of the corresponding place

cell. The color of the ticks indicates the number of spikes contained in the

corresponding bin of width w, according to the colorbar on the right. At every

time step, the nonempty bins in the vertical column define the list of currently

active cells, i.e., the active simplex σt. During the time interval marked by the

vertical dashed line, cell c1, c2, c14, c16, c17, and c18 are coactive, producing

the coactivity simplex of fifth order σ = [c1, c2, c14, c16, c17, c18 ].

place cells’ spiking, e.g., their maximal firing rate, from the
frequency with which these cells activate due to the rat’s
movements through their respective place fields. While the
maximal firing rate of a typical place cell is about 15 Hz (Best
et al., 2001), the frequency of their activation is much lower.

3. RESULTS

The simulated ensembles of 300 place cells in the environment
shown on Figure 1B produced a coactivity complex T with
about Nmax = 1000 maximal simplexes. Despite the high
dimensionality of these simplexes (up to D = 35, mean
D̄ = 17), the characteristic dimensionality of a facet shared
by two consecutively active simplexes, σi and σi+1, is relatively
low, so that the mean contiguity of T is ξ = 0.6. This
implies that, geometrically, if the simplexes of T are viewed
as multidimensional tetrahedrons, the selected complex, T0(θ),
assumes a highly irregular shape (Supplementary Figure 1A).

More importantly, nearly 100% of the maximal simplexes
appeared only once during the entire 25min period of navigation,
i.e., a typical maximal simplex’s appearance rate is low, fσ ∼

10−3 Hz. However, a typical vertex activated about 200 times
or every seven seconds, suggesting that some of the lower
dimensional subsimplexes may be better candidates for forming
cell assemblies. Is it then possible to build a cell assembly complex
T0 by discarding the high-dimensional maximal simplexes with
low appearance rates and retaining their subsimplexes that
appear more frequently? We tested this hypothesis by identifying
the combinations σ whose coactivity exceeds a certain threshold
fσ > θ , and studied the properties of the resulting simplicial
complex as a function of θ (Figure 5A).

First we observed that, as soon as the appearance threshold
is introduced (θ & 10−3 Hz), the high dimensional simplexes
start breaking up, releasing large numbers of lower dimensional
subsimplexes: the number of k-dimensional subsimplexes in a

n-dimensional simplex grows as combinatorial coefficient Ck+1
n+1,

e.g., for n = 17 and k = 7, C8
18 ≈ 44, 000. As a result, the

complex T0(θ) rapidly inflates. As θ increases further (θ > 0.04),
the number of “passing” simplexes decreases, and T0(θ) begins to
shrink in all dimensions (i.e., ND(θ1) > ND(θ2) for θ1 < θ2, for
allD, (Figure 5B). Despite this, the number ofmaximal simplexes
remains high: Nmax = 30×Nc at θ = 0.04 Hz, Nmax = 7×Nc at
θ = 0.07 Hz and Nmax = 3× Nc for the highest tested threshold,
θ = 0.1 Hz (Figure 5B), while their characteristic dimensionality
drops from D = 17 to D = 7 at θ = 0.04 Hz and to D = 3
at θ = 0.1 Hz. The mean contiguity index for this range of
thresholds remains close to ξ = 0.7, indicating that the degree of
overlap between the selected combinations of place cells is higher
than in the original coactivity complex.

However, raising the passing threshold θ quickly destroys the
geometric integrity of the resulting complex’s spatial map. As
shown on Supplementary Figure 2, for θ = 0.05 Hz, only ∼ 50%
of the environment is covered by the remaining simplex fields,
and for θ = 0.07 Hz the simplex map barely retains its one-piece
connectedness: in some cases the complex T0 splits in two (the
corresponding Betti numbers, b0, are listed in Supplementary
Table 1, for an illustration see Supplementary Figure 3). For
θ = 0.1 Hz, the complex fragments into multiple components
(mean b0 ∼ 7) that are riddled with holes: the Betti numbers
bn>0 indicate the presence of hundreds of stable loops in higher
dimensions. Thus, even if the coactive place cell combinations
selected at θ ≥ 0.05 Hz could be supplied with readout neurons
and would form cell assemblies, the resulting cell assembly
network would not encode the correct spatial connectivity.

An additional problem is that reducing the order of the
assemblies violates the “assembly code” for spatial locations:
every time several subsimplexes σi are selected from a high-order
maximal simplex σ , several overlapping simplex fields sσi are
produced in place of a single sσ . As a result, the parsimony of
the representation is compromised: a location that was previously
represented by a single simplex becomes represented by a few
of its subsimplexes (Supplementary Figures 4A,B). Figure 5D
shows a histogram of the numbers of simultaneously active
maximal simplexes in T0: although most of the time only a few
maximal simplexes are active, a coactivity of many of them (n >

25) is not uncommon. Conversely, while most of the time—
on average 84% for the selected place cell ensembles—at least
one simplex is active, longer inactivity periods are observed as
described by double exponential distributed with the rate β ≈ 3.5
s (Supplementary Figure 2).

Overall, since most of the T0-requirements listed in the
Methods fail, we are led to conclude that themost straightforward
selection rule, based on selecting high appearance rates, does not
produce the desired tradeoff between the order of the assemblies,
the frequency of their appearances, and the quality of topological
representation of the environment. This failure motivates the
search for alternative methods.

3.1. Method I
To produce a more detailed approach to selecting coactive cell
combinations, we observe that place fields are typically convex
planar regions, and hence the existence of higher order overlaps
between them actually follows from the lower order overlaps.
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FIGURE 5 | A direct selection of the simplexes by appearance rates. (A) In the original coactivity complex T (θ = 0), the maximal simplexes σmax appear on

average but once during the entire observation period, resulting in low appearance rates (fσ < 10−3 Hz, blue line). Imposing four different thresholds θ (color coded)

raises the appearance rates of the selected maximal simplexes almost uniformly in all dimensionalities. (B) Cumulative distribution of the number of maximal simplexes

Nmax over the selected simplexes’ dimension. In the T (θ = 0) case Nmax exceeds the number of vertexes (Nc = 300, black horizontal line) by almost an order of

magnitude. Small threshold values result in an explosive increase of Nmax which then begins to decrease for θ > 0.04 Hz, remaining significantly higher than Nc for all

four tested values of θ . (C) The histograms of the maximal simplexes’ dimensionalities fit with normal distribution. The high mean dimensionality (D̄ = 17) observed in

the T (θ = 0) case reduces to D̄ = 2.2 for θ = 0.1 Hz. The width of the distributions is about 50% of D̄. (D) The histograms of the number of the coactive maximal

simplexes, fit to an exponential distribution, demonstrate that the typical number of coactive simplexes is large, β > 10. All values are averaged over ten place field

maps generated by 10 place cell ensembles with the same mean peak firing rate and mean place field size.

According to Helly’s theorem, a collection of n > D+1 convexD-
dimensional regions in Euclidean space RD will necessarily have a
nonempty common intersection, if the intersection of every set of
D + 1 regions is nonempty (see (Eckhoff, 1993; Avis and Houle,
1995) and Supplementary Figure 4D). From the perspective of
Čech theory, this implies that if n convex regions which cover a
D-dimensional space contribute all the combinatorially possible
D-dimensional simplexes to the nerve complex, then they also
provide all the higher (up to n − 1) dimensional simplexes to it.
In a planar (D = 2) environment, this implies that a set of four
or more place fields has a common intersection,if any three of
them overlap. Moreover, although mathematically it is possible
that three place fields exhibit pairwise, but not triple overlap, the
probability of such an occurrence is low (Supplementary Figure
4C). A direct computational verification shows that if a triple of
place cells demonstrates pairwise coactivity, then, in over 90% of
cases, it also correctly encodes a triple spatial overlap. In other
words, a “clique” of pairwise coactivities indicates the overlaps
of all higher orders, which implies that the spatial connectivity
graphGN whose vertexes correspond to the place fields and links
represent pairwise overlaps, encodes most simplexes in the nerve
complexN .

As a reminder, a clique of an undirected graph is a set of
pairwise connected vertices. From the combinatorial perspective,
a clique and a simplex have the same defining property: any
subset of a simplex is its subsimplex and any subset of a clique is
its subclique; a maximal clique is the one that is contained in no
other clique. Hence, each graph defines its own “clique complex,”
the k-dimensional simplexes of which corresponds to the graph’s
cliques with k+ 1 vertices (Bandelt and Chepoi, 2008).

The observation that the nerve complex induced from the
place field map can be approximated by the clique complex
of the place field pairwise connectivity graph, suggests that the

corresponding coactivity complex T can also be built based only
on pairwise, rather than higher-order, coactivities. This approach
is well justified physiologically, since pairwise coactivity detector
pairs of synapses are commonly observed (Katz et al., 2007;
Brette, 2012). The rule for defining the temporal analog of GN—
the relational graph GT —is straightforward: a pair of vertexes is
connected in GT if the corresponding cells ci and cj are coactive.
Thresholding pairwise coactivity rates according to the rule

Cij =

{

1 if fci,cj ≥ θ

0 if fci,cj < θ .
(1)

allows constructing a family of relational graphs GT (θ) over the
pairs of place cells with high coactivity. The higher the threshold
is, the sparser its connectivity matrix Cij and the smaller the
number of maximal cliques and hence of maximal simplexes in
the corresponding clique complex. Since in the following the
graph GN will not be used we will suppress the subscript “T ”
in the notation for GT .

We studied the relational graphs G(θ) and their respective
clique complexes T0(G(θ)) ≡ T0(θ) as a function of θ . First, we
observed that the appearance rates of the maximal simplexes
in T0(θ) become sensitive to the simplexes’ dimensionality
(Figure 6A), implying that this selection procedure in effect
attributes different thresholds to simplexes of different
dimensions by using only one free parameter θ . Second,
the size of T0(θ) is not as large as before. As shown on
Figures 6B–D, even for a relatively low threshold θ = 0.05
Hz, the number of maximal simplexes exceeds the number
of cells only marginally. For higher thresholds, this number
steadily decreases: ND(θ1) < ND(θ2) for θ1 > θ2 > 0.04
and D > 3, though in lower dimensions (1 ≤ D ≤ 3) this
number may increase. The characteristic contiguity ranges
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FIGURE 6 | Selecting maximal simplexes via the pairwise coactivity threshold (Method I). (A) The appearance rates of the maximal simplexes computed for

four different pairwise appearance rate thresholds θ decrease as a function of their dimensionality. The values at D = 1 correspond to the value of the threshold

imposed on the links’ appearance rate. (B) Cumulative distribution of the numbers of maximal simplexes, Nmax, over the selected simplexes’ dimension. The numbers

of cells Nc for each threshold value are shown by horizontal lines. The tendency of the maximal simplexes to outnumber the vertexes Nmax > Nc, characteristic for

small values of θ , is reversed around θ = 0.07 Hz, where Nmax and Nc level out. (C) The histograms of the maximal simplexes’ dimensionalities fit with normal

distribution. The mean dimensionalities are similar to the ones produced by the previous selection method. The width of the distributions is about 50% of D̄. (D) The

histogram of the number of coactive maximal simplexes, fit to an exponential distribution, shows that the expected number of coactive simplexes (β ∼ 4) is

significantly lower than in the previous selection method. The procedure of averaging over the place field maps is the same.

between ξ = 0.65 at θ = 0.05 Hz to ξ = 0.72 at θ = 0.14 Hz,
which is higher than the value produced by the direct simplex
selection method. Geometrically, this implies that the collection
of maximal simplexes selected by pairwise threshold selection is
more aggregated than the collection produced via direct simplex
selection, i.e., the resulting complex T0(θ) is geometrically more
similar to a “simplicial quasimanifold” (see Supplementary
Figure 1B). However, the number of place cells Nc drops as a
result of discarding too many links with low appearance rate:
Nc = 290 at θ = 0.05 Hz and Nc = 100 at θ = 0.14 Hz.
At θ = 0.1 Hz number of cells levels out with the number of
maximal simplexes, Nmax ∼ Nc = 260.

As before, raising the coactivity threshold degrades the spatial
map. At θ > 0.07 Hz the simplex fields no longer cover
the environment and at θ > 0.1 Hz the map fragments into
pieces (Supplementary Figure 5). However, the resulting complex
exhibits a much more regular topological behavior: the correct
signature (b0 = 1, b1 = 1, b2 = 0, b3 = 0, ...) in T0(θ) appears
at θ = 0.05 Hz. The higher order Betti numbers (bn≥2) remain
trivial at still higher θs (Supplementary Table 2A), even though
the connectedness and path connectivity of the environment (b1
and b0) become misrepresented.

This improvement of the behavior of T0(θ) suggests that,
despite all the shortcomings, the link-selection strategy may lead
to a successful model of the place cell assembly network. After
all, it is not surprising that a single selection rule does not resolve
all the aspects of the cell assembly formation. Yet if it captures
the essence of the process, it should be possible to correct or to
adjust its outcome. For example, one of the difficulties faced by
the coactivity selection algorithm is that, for high θ , T0(θ) may
brake into several pieces. However, the gaps between them are
small. Thus, if a few discarded edges of the relational graph that
originally bridged these gaps are retained, then the connectedness

of T0(θ) may be spared (Figure 7A). Similarly, a “hole” in the
relational graph is a linear chain of edges, connected tail to
tail, with no shortcuts. However, if the links with the lower
appearance rate (f ≥ θh, θh < θ) that span across the hole
exist at θ = 0, then they also can be restored (Figure 7B). This
may remove the non-contractible chains of 1D simplexes in T0(θ)
that compromised its path connectivity (Figures 7C,D). Thus, we
implemented the following two rectification algorithms:

1. Filling gaps: find pairs of vertexes va and vb separated in G(θ)
by more than ng edges and then test whether these vertexes
are connected directly by links (from G(θ = 0)) whose
appearance rate exceeds a lower threshold θg < θ . If such links
exist, add them to G(θ) (red lines on Figure 7C).

2. Closing holes: A closed chain containing mh ≥ 4 edges in
G(θ), with no shortcuts, is likely to produce a hole in T0(θ).We
identified such chains and restored the discarded cross-links
whose appearance rate exceeds a lower threshold θh < θ .

Thus, both rectification algorithms depend on two parameters:
the length of the involved chains (ng for gaps and mh for
holes) and the value of the reduced threshold θg and θh. In our
numerical experiments, we found that the optimal value for the
thresholds is θh = θg = 50, and the parameters range between
5 and 10 (mh) and 10 and 15 (ng). Typically, each rectification
procedure is applied once or twice before the right signature of
T0(θ) is achieved, and this without producing significant changes
of the complex’s structure, such as altering the appearance of
its simplexes or increasing its size Nmax. As illustrated in the
Supplementary Table 2B, the correct signature in the “repaired”
complex is achieved for all cases at θ = 0.07 Hz. In particular,
at θ = 0.07 Hz we obtain a simplicial complex T0 with the
correct signature, having Nc = 260 vertexes and about the same
number of maximal simplexes, Nmax ≈ Nc. These maximal
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FIGURE 7 | Correction algorithms. (A) A spatial projection of the 2D skeleton of T (θ ) shows gaps and holes that compromise, respectively, the piecewise and path

connectivity of T (θ ). If the links across the gaps and holes of T (θ ) are restored, then its correct connectivity structure may be regained. (B) A “hole” produced by five

connected vertexes is closed by restoring some of the previously discarded crosslinks. (C) A projection of the relational graph G into the environment, shown in gray.

The edges added across the gaps are shown in red and the edges added to fill the holes are shown in green. The vertexes that are left disconnected due to low

appearance rates of the edges connecting them to other vertexes are shown by blue dots. (D) A spatial map of the resulting “patched” 2D skeleton of T (θ ). The

parameter values are ng = 15, mh = 10, and the lowered threshold for reintroducing the missing links is θ = 50.

simplexes appear on average at a rate of fσ ≥ 0.07 Hz, at
least during every other run of the rat around the environment,
and have dimensionality D = 6. As a result, the requirements
to T0 are met and the maximal simplexes of T0 may represent
hippocampal place cell assemblies that together encode a map of
the environment, and hence T0 itself can be viewed as the “cell
assembly complex.”

3.2. Method II
A common feature of the appearance-rate-based selection rules
is that the resulting simplicial complex reflects biases of its spatial
occupancy: higher dimensional maximal simplexes concentrate
over the parts of the environment where the rat appears
more frequently. In particular, the relational graph shows a
higher concentration of edges over the eastern segment of the
environment (Figure 7C) where the occupancy rate is highest
(Figure 3A). On the one hand, this is natural since the frequency
of the place cells’ spiking activity certainly does depend on
the frequency of the rat’s visits to their respective place fields,
which therefore affects the hippocampal network’s architecture
(Chklovskii et al., 2004; Caroni et al., 2012). In fact, this argument
is at the core of the classical “hippocampus as a cognitive graph”
model (Burgess and O’Keefe, 1996; Muller et al., 1996), which
proposes that the architecture of the hippocampal network is an
epiphenomenon of the place cell coactivity. On the other hand,
the physiological processes that produce synaptic connections
may be more autonomous. For example, the CA3 region of the
hippocampus is anatomically a recurrent network of place cells
whose spiking activity and synaptic architecture are dominated
by the network’s attractor dynamics (Tsodyks, 2005; Wills et al.,
2005; Colgin et al., 2010).

These considerations lead us to test an alternative method of
constructing the relational graph based on selecting, for every
cell, its n0 closest neighbors as defined by the pairwise coactivity
rate fci,cj . Note that the resulting number of connections may
be different for different cells: a cell c1 may be among the n0
closest neighbors of a cell c2, and hence c1 and c2 become
connected, but the set of n0 closest neighbors of a cell c1 may not

include c2, which bears a certain resemblance to the preferential
attachment models (Barabasi and Albert, 1999). As a result,
the vertex degrees k of the (undirected) relational graph may
differ from one another and from n0. A direct computational
verification shows that k is distributed according to a power law,
P(k) ∼ k−γ , where γ ranges, for different n0, between γ ∼ 2 and
γ ∼ 4 (Figure 8), which implies that G(n0) demonstrates scale-
free properties (Barabasi and Albert, 1999; Albert and Barabasi,
2002) characteristic of the hippocampal network (Bonifazi et al.,
2009; Li et al., 2010). In contrast, the histogram of the vertex
degrees in the threshold-controlled relational graph G(θ) may
be fit with the negative binomial distribution (Figure 8B), which
indicates that G(θ) is similar to a random graph.

This neighbor-selection method for building the relational
graph G(n0) has a number of other immediate advantages over
the threshold-controlled construction of G(θ). For example, no
cells are excluded from T0 due to the low appearance of the edges
connecting to them. As a result, the simplex fields are distributed
more uniformly (Supplementary Figure 6), which helps capture
the correct piecewise connectedness of the environment.

By studying the properties of the clique complexes produced
by the relational graphs G(n0) for n0 = 2, 4, 7, and 12—
parameters chosen to produce similar numbers of edges as in
the previous method—we found that the number of maximal
cliques in T0(G(n0)) is typically lower than in T0(G(θ)). The
appearance rates of maximal cliques in G(n0) are more scattered
and less sensitive to dimensionality than in G(θ) (Figure 9A and
Supplementary Figure 6). The number of maximal simplexes
in T0(n0) remains close to the number of cells (Figures 9B,D)
and their dimensionality is lower than in the threshold-based
selection approach (Figure 9C). The contiguity index in all
complexes ranges between to ξ = 0.67 and ξ = 0.71.
The coverage of the space with the simplex fields improves
with growing n0 (see Supplementary Figure 6)—for n0 > 2
the complex T0(n0) is connected, while the behavior of b0 is
more regular (see Supplementary Table 3). However, the path
connectivity of the complex T0(n0) remains deficient for all
n0 because the number of stable spurious 1D loops remains
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FIGURE 8 | Statistics of the vertex degrees in relational graphs. (A) The histogram of the vertex degrees k in the neighbor-controlled relational graph G(n0 ),

computed for n0 = 2,4,7,12 (Method II) and fitted to a power law distribution P(k) ∼ k−γ . The graph demonstrates that G(n0 ) is a scale-free network. (B) The same

distribution on the log-log scale and an independent linear fit of the powers γ . The confidence intervals of the two fits, ranging between ±0.15 and ±0.3, overlap for

each case. (C) In the pairwise coactivity threshold (Method I), the histogram of the relational graph’s vertex degrees is fit by negative binomial distribution, suggesting

that G(θ ) is similar to a random network.

FIGURE 9 | Selecting maximal simplexes via best neighbor selection (Method II). (A) The appearance rates of the maximal simplexes in the simplicial complex

T (n0 ), computed for four different values of n0 (color coded), decrease as a function of their dimensionality. (B) Cumulative distribution of the number of maximal

simplexes Nmax over the selected simplexes’ dimension. For the tested values of n0, the fixed number of vertexes Nc = 300, indicated by the horizontal black line, is

close to the number of maximal simplexes. For n0 = 7, the values Nmax and Nc come closest. (C) The histograms of the maximal simplexes’ dimensionalities, fit to

the normal distribution, indicate that for the relational graph with a similar number of links, the mean dimensionalities of the maximal simplexes are smaller than in in

the complex built via the threshold-selection method. The width of the distributions is about 40% of D̄. (D) The histogram of the number of coactive maximal

simplexes, fit to a gamma distribution. An expected number of coactive simplexes ranges between r = 2 and r = 6. The procedure of averaging over the place field

maps is the same.

high (Supplementary Table 3). After filling the gaps and closing
the holes, most complexes constructed for n0 ≥ 7 acquire
correct topological signatures (Supplementary Table 3), and the
requirements to T0 are satisfied. Thus, the simplicial complex
obtained by the neighbor selection method for n0 ≥ 7 can also
be viewed as a “cell assembly complex,” meaning it can serve as
a formal model of the place cell assembly network with mean
contiguity ξ = 0.7.

4. DISCUSSION

The hippocampal representations of the environment are based
on the temporal organization of the place cells’ spiking and
on the mechanisms of processing the resulting spike trains
in the downstream networks. While the place cells’ spiking
determinants [both spatial (O’Keefe and Burgess, 1996; Jeffery

et al., 1997; Fenton et al., 2000) and nonspatial (Sharp et al.,
1995; Wood et al., 2000)] are relatively well–studied, the readout
mechanisms remain poorly understood. It is believed that groups
of place cells exhibiting frequent coactivity form assemblies that
jointly trigger spiking activity of their respective readout neurons,
but the specific architecture of the cell assembly network has not
been fully identified.

4.1. Descriptive vs. Phenomenological
Approach
Previously, the topological approach was used to quantify
the information encoded by the hippocampal network.
Each individual group of coactive place cells, contributing
local information about the space, was represented by a
simplex, and hence the entire neuronal ensemble, encoding
space as whole, was represented by a coactivity complex T
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(Curto and Itskov, 2008; Dabaghian et al., 2012; Arai et al., 2014).
Specifically, the low order (pair and triple) coactivity events were
used to construct the 2D skeleton of T , and then its 0D and 1D
topological loops were matched with the topological loops in
the environment. In the current work, the topological approach
is extended to produce the functional architecture of the cell
assembly network—schematically represented by a cell assembly
complex T0—and relating its structure to the net topological
information it encodes. In contrast with T , the maximal
simplexes of T0 are viewed as representations of the physiological
place cell assemblies, rather than any largest combinations of
the coactive place cell groups. In particular, the model allows
constructing the higher order assemblies that may potentially
represent both the low-dimensional spatial environment and
the high-dimensional memory space (Eichenbaum et al., 1999;
Buzsaki, 2010). Importantly, the learning times Tmin estimated
from the dynamics of the 0D and 1D loops in T0 remain close
to the learning times computed for the full coactivity complex
T (see Supplementary Table 4). This implies that the selected,
“core” pool of coactive place cell combinations captures the
topological structure of the environment as fast and as reliably as
the entire set of the place cell coactivities.

4.2. Physiological Connections
In order to elicit an action potential, the impinging spikes must
conjointly hyperpotentiate the readout neuron. A qualitative
insight into this process was suggested by (Jarsky et al., 2005),
who demonstrated that a pair of impinging synapses can “gate”
one another: if a synaptic input s2 comes within a short period
w after the synaptic input s1, then together these two inputs
can polarize a large segment of the dendritic tree, which may
lead to hyperpolarization of the entire postsynaptic neuron. This
mechanism can be viewed as a physiological implementation of
the “coincidence detection” for a pair of inputs and one can
immediately see how it could be used to detect a larger (k > 2)
number of inputs. One can think of the k nearly-simultaneous
individual inputs si as of k(k− 1)/2 nearly-simultaneous pairs of
inputs (si,sj), each one of which polarizes a particular fragment
dij of the dendritic tree. If the physiology of the readout neuron
is such that it hyperpotentiates only in response to nearly
simultaneous inputs (si,sj), then the readout neuron functions as
a coincidence detector. In contrast, if the dendritic tree can retain
the local polarizations over an extended period̟ > w, then such
neuron will integrate low order inputs over that time.

The links in the coactivity graph G can be viewed as
schematic representations of the pairs of potentiating synapses:
the proposed Methods I and II represent two possible ways of
selecting the most “prominent” pairs. In Method I, the “winning
pairs” of mutually gating synapses are selected based on the
frequency of their appearance. Alternatively, given the number
n0 of connections that a given cell can produce (based, e.g.,
on the number of axon terminals), one can aim to select these
connections optimally—this is Method II.

4.3. Developments
We view the proposed algorithms as basic models of a general
“phenomenological” approach that can be further developed

along several broad lines. First, the structure of the relational
graph is currently deduced from the activity vectors defined
over the entire navigation period T = 25 min. A biologically
more plausible selection algorithm should be adaptive: the
structure of the relational graph at a given moment of time
t < T should be based only on the spiking information
produced before t. Hence, in a more advanced model, the
structure of the relational graph should develop in time, and
in general the cell assemblies comprising T0 should be derived
using synaptic and structural plasticity mechanisms. Second,
the selection criteria in Methods I and II above may be
individualized: the appearance threshold used to construct the
relational graph can be assembly-specific, i.e., θ = θ(σ ), so
that the properties of the resulting network would be described
in terms of the probability distribution of the threshold values
across the cell assembly population. Similarly, the number of
neighbors can be made cell-specific, n0 = n0(ci), which
should permit better control over the topological properties
both of the network and of the cell assembly complex.
Third, threshold control can be implemented using different
coactivity metrics, for instance via the pairwise correlation
coefficient

ρ(c1, c2) = (m1 ·m2)/|m1||m2|, (2)

which would connect cells with correlated spiking (irrespective
of their firing rates), in contrast with the metric (2),
which does the opposite. In general, two metrics ρ and
ρ′, produce relational graphs with different topologies.
Nevertheless, they may produce similar or identical large-
scale effects, such as generating topologically identical
cell assembly complexes T0, or exhibit similar learning
times, Tmin. Identifying classes of metrics that produce
topologically similar results will be examined in future
research.
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