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Nowadays, the experimental study of emotional learning is commonly based on classical

conditioning paradigms and models, which have been thoroughly investigated in the

last century. Unluckily, models based on classical conditioning are unable to explain or

predict important psychophysiological phenomena, such as the failure of the extinction of

emotional responses in certain circumstances (for instance, those observed in evaluative

conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript,

starting from the experimental results available from the literature, a computational

model of implicit emotional learning based both on prediction errors computation

and on statistical inference is developed. The model quantitatively predicts (a) the

occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction

of the traumatic emotional responses, (c) the mathematical relation between classical

conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the

derived computational model can lead to the development of new animal models

for resistant-to-extinction emotional reactions and novel methodologies of emotions

modulation.

Keywords: amygdala, classical conditioning, emotional learning, evaluative conditioning, misattribution,

prediction error, PTSD, UCS revaluation

1. INTRODUCTION

In this manuscript, starting from a review and the analysis of the main experimental results in the
field of implicit emotions, a novel interpretation of associative learning and UCS revaluation (and
of their unavoidable interactions) is derived first. UCS revaluation represents the updating of the
expected outcome (or biological value) associated with a given source of stimulation. In particular,
if an UCS elicitation determines a greater (smaller) central nervous system (CNS) response with
respect to the expected outcome, the value associated with the considered UCS will be increased
(decreased) determining an inflation (deflation) process (Rescorla, 1974; Davey, 1989; Hosoba
et al., 2001; Gottfried and Dolan, 2004; Schultz et al., 2013). Classical Conditioning occurs when
an initial neutral stimulus (in other words a stimuli unable to activate the innate emotional system,
so that it does not elicit emotional reactions, for instance a neutral sound) becomes paired to
another stimuli, UCS, which elicits a biological relevant response, termed unconditioned response,
UCR. After few CS-UCS pairings, the initial neutral CS becomes able to elicit a biologically
relevant response, denoted conditioned response (CR) “similar” and generally speaking smaller
than UCR (Fanselow and Poulos, 2005). In the literature CC and UCS revaluation are considered
two independent learning mechanisms (Rescorla, 1974; Hosoba et al., 2001; Gottfried and Dolan,
2004). In this manuscript, considering that almost all the experiments reported in the technical
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literature about implicit emotional learning involve discrete
trials stimulation (e.g., electric shock delivery, food delivery)
and measures (neuronal activity recordings, fMRI measures, or
behavioral), the derived theory and model are initially defined
in a discrete time scale. The proposed model is able to justify
experimental results not predictable by other existing models,
and it can be adopted for the study of important paradigms,
such as the Iowa Gambling Task (Bechara et al., 1994; see
Section 3.3). Furthermore, starting from the obtained discrete
time model its continuous time counterpart is derived next.
The derivation of such a continuous time model is based on
mathematical considerations and engineering standard methods
under the constraints imposed by the functional connectivity
between the different brain regions involved in automatic
emotional processing. A dynamical continuous time model
which accounts for both (a) statistical/associative learning and
pattern recognition and (b) for a time-varying stimulation
intensity (i.e., implicit UCS revaluation) and the consistent
related phenomena (e.g., the so called emotional contrast effect)
has not been developed yet from our knowledge. This could
be due to different reasons: first of all UCS revaluation has
not obtained much attention over years and the researches
have been focused mainly in CC; second, CC is intrinsically
time-discrete. Nevertheless, the above cited continuous model is
useful because shows the dynamics which lead to the updating
of the emotional value over time, due for instance to a time-
varying stimulation which exerts alternations of both aversive
and appetitive values (for instance, a stimulation can elicit
a slow aversive increase of tension and then a fast tension
release, inducing a given organism to perceive it as an appetitive
source of stimulation since it produces emotional rewarding
effects). Indeed, classical conditioning model cannot describe the
frequency or time emotional response under the influence of a
time-varying stimulation, such an acoustic signal which varies
between appetitive and aversive response induction (for instance
varying both the sound frequency and intensity), as occurs in
music. More specifically, a continuous time dynamical model
can show how the emotional system tracks a given source of
stimulation, either if such a source elicits the organism through
an information flux (in other words the emotions are induced by
aversive and appetitive information such as smiles or angry facial
expressions, or a movie, but not by exerting a physical or energy
based interactions) or through an energy based flux (i.e., through
a stimulation due to energy exchange between the stimulus and
the organism’s receptors, such as a painful stimulation).

It is worth noting that emotional learning models which do
not account for the implicit intensity stimulation evaluation
(i.e., the UCS evaluation and revaluation over time or over
trials) cannot predict or justify important psychophysiological
phenomena which originates from specific dynamics of the
emotional arousal. Such phenomena are the so called resistant-
to-extinction (or inextinguishable) emotional responses, such
as those observed in evaluative conditioning or in pathological
reactions observed in panic attacks (Meuret et al., 2006) and
post traumatic stress disorder (PTSD) (Beck and Sloan, 2012;
Parsons and Ressler, 2013; Perusini et al., 2016).More specifically,
emotional learningmodels based on associative learning (i.e., CC;

Pavlov, 1927) account for the conditioned stimulus (CS) response
variation due to the modulation of the statistical contingencies
between an actively eliciting stimulus (called unconditioned
stimulus, UCS) and the CS itself (which was neutral before the
CS-UCS pairing), but they cannot say nothing about the intensity
dynamics associated with the given UCS (which represents
the causal source of stimulation). In other words, CC-based
models describe the CS-UCS connection strength neglecting
the relation between the UCS representation and the expected
response associated with it (i.e., unconditioned response, UCR),
which, in turn, may depend also (and indirectly) on the CS-
UCS connection strength (see Figure 1). For these reasons, these
models, cannot say nothing about (1) the neuronal populations
involved in CS response (CR); (2) the mathematical expression
of the intensity of the CR at the end of the acquisition process
(in other words the CR intensity when CS predicts with absolute
certainty the occurrence of UCS); it worth mentioning that until
now the qualitative explanation is that the “CR is similar but
smaller than the UCR” (Fanselow and Poulos, 2005); (3) the
mathematical expression of UCR. The theory developed in this
manuscript shed lights on these points, and, doing this, it will
be able to justify how resistant-to-extinction emotional responses
originate. Furthermore, the model permits the development
of stimulation functions able to induce PTSD-like emotional
reactions in animal models, or for emotional modulation (for
instance decreasing an emotional response).

The manuscript is organized as follows. In the Paragraph
“Materials and Methods” some fundamental definitions and
concepts are provided and motivated first; thereafter, a review
of the technical literature about empirical results and models on
implicit emotional learning is presented, together with qualitative
and quantitative considerations, which permit the development
of the structure of the models (more specifically the description
of the main brain regions involved and their functional role
and connections) and, successively, the quantitative relations and
constraints between the involved variables (more specifically the
linearity hypothesis, the relation between a predicted/expected
outcome and the reactive response, the integration property and
the emotional contrast effects); successively, themain assumptions
and hypothesis of the model are provided and motivated; in the
subsequent Sections the model is developed in three different
cases: (a) UCS revaluation in the discrete time scale; (b) joint CC
and UCS revaluation in the discrete time scale; (c) continuous
time scale. In the “Results” Section the main post-predicted
results of the models and quantitative justification of specific
psychophisiological phenomena are presented together with the
comparison with existing models; furthermore, a Section on the
validation, interpretation and applicability of the derived models
and theory closes the Paragraph. Finally, the “Discussion” Section
closes the manuscript.

2. MATERIALS AND METHODS

2.1. Definitions and Concepts
2.1.1. Motivation
This Section provides fundamental concepts and definitions
for the development of the model (some of the following
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FIGURE 1 | Block diagram of the implicit emotional system. A given input to the emotional system can provide (1) an energy flux determining a cascade of

reaction which finally elicit a CNS response (an increase/decrease of the mean firing rates of neuronal populations within the central nervous system); (2) an

information flux determining a stimulus identification within the amygdala and within the orbitofrontal cortex (OFC); furthermore, specific higher cognitive level

information can be processed by the OFC only. OFC encodes the biological predicted or expected outcome for a given stimulus, it manages the computation of

prediction errors updating the expected emotional response (and the reactive response) within the amygdala. The amygdala elicits emotional neuronal populations

with an intensity proportional to the expected response.

definitions and analysis are taken from Puviani et al., 2016).
First a mathematical definition of CNS response is given, such
a definition is useful for the subsequent definition of emotional
(and reactive) response. These definitions are needed since, in
CC theory and models, emotional responses (or reactions) are
not well defined from a quantitative perspective; indeed in CC
some behavioral or autonomic correlated responses are measured
during experiments, such as the degree of salivation or the
indirect measure of the arousal (i.e., the overall intensity of
an emotional response) through the skin conductance response
(SCR) evaluation. It is worth noting that such indirect measures
always reflect a CNS response. Furthermore, the definition
of source of stimulation is provided, since in CC theory the
distinction between CS and UCS is based on the fact that an
UCS exerts an innate reaction and the CS does not; nevertheless,
this differentiation is not always satisfactory, since a previously
neutral stimulus could became an UCS in certain circumstances.
Moreover, the differentiation of two different types of stimulation
are specified, these are the active and reactive stimulations;
conversely in CC theory and derived models this distinction is

not considered, so that it is not possible to express the overall
CNS response as the contribution of the two quantities which,
generally speaking, can vary independently during emotional
learning (indeed, the brain integrates the two contributions, so
that they becomes indistinguishable from a neurophysiological
perspective, but the analytical distinction is useful from a
model perspective). Finally, the definition of reactive mimicking
property is provided and it is based on empirical evidences from
pharmacological conditioning experiments. Such a property
shed lights on the emotional (and, generally speaking, the
reactive) learning mechanism, evidencing that whenever an
UCS stimulates a CNS response, the brain stores the reactive
response (i.e., the intensity and the elicited CNS sub-population)
which will be associated with the given UCS for future
predictions.

2.1.2. Definitions

2.1.2.1. CNS response
Ageneric response inducedwithin the CNS can be represented by
the superposition of the activity of different neural populations;
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more specifically, assuming that the CNS consists of N different
populations, the response, denoted with the vector y, can be
expressed as:

y =

N
∑

i= 1

yivi, (1)

where yi represents the i-th neuronal population activity and
{vi; i = 1, 2, ...,N} represents a set of versors, being associated
with different neuronal populations, which form a complete basis
B for the CNS space. More specifically, yi is a real quantity
representing the product between the mean number of elicited
neurons and their mean firing rates for the i-th neuronal
population (with i = 1, 2, ...,N); consequently, yi takes on a
positive (negative) value if the response produces an increase of
(a decrease or inhibition of) the activity for the i-th population,
and is equal to zero whenever the response does not involve
any adjustment for the baseline activity of the population. It is
worth noting that the different neuronal populations could be
interdependent (i.e., B does not represent an orthonormal basis).

2.1.2.2. Source of stimulation
A “source of stimulation” is defined as any stimulus able to
causally and directly induce a CNS response (e.g., a painful
stimulation). Some sources of stimulation (more specifically
their neural representations) are natively coded within the
mammalian brain, shaped by evolution (Ohman, 1993; Ohman
and Soares, 1993; Esteves et al., 1994), while others are acquired
through experience (Flykt et al., 2007); nevertheless a conditioned
stimulus does not represent a source of stimulation, since it
cannot causally and directly determine a CNS response, instead
it may signal an imminent stimulation of a given UCS, and,
for this reason, it can indirectly determine a CNS response. It
can be inferred from experimental results based on subliminal
stimulation (Ohman and Soares, 1993) that encoding a stimulus
as a source of stimulation (i.e., as the responsible of the
elicitation) or as contextual or conditioned stimulus, makes the
difference in the determination of the specific brain region in
which it will be stored; more specifically only the sources of
stimulation are stored in the basolateral amygdala (BLA) in
a rapid-access region, elicitable through the thalamo-amygdala
pathway, while CSs do not. The terms “source of stimulation” and
“UCS” are adopted indiscriminately in the following.

2.1.2.3. Active stimulation and active response
An active stimulation is defined as any stimulation causally
and directly exerted by an UCS through an energy flux (e.g.,
mechanical, thermal, chemical, pharmacological...) exchanged
between the UCS itself and a given organism. Whenever an UCS
exerts an active stimulation the resulting elicited CNS response
is causally and directly related to the intensity of the energy
flux (and its temporal derivatives) transferred from the source
of stimulation to the organism’s receptors. For instance a painful
thermal stimulus exerts an active painful elicitation transferring
heat to specific receptors of the given organism; furthermore if
the transferred heat increases the perceived painful response will
increase too.

2.1.2.4. Reactive stimulation and reactive response
A reactive stimulation is defined as any stimulation induced
within the CNS exclusively through an information flux. Thus,
a reactive stimulation exerts its action through information
processing and not by a direct energy flux. For instance, a CS
previously paired with a given UCS induces a CNS response (e.g.,
fear) through its mere perception (i.e., information processing)
and not because energy flux transfer toward the organism. It
is important pointing out that, obviously, the mere perception
of a stimulus (e.g., a CS) is sustained by a certain energy
flux, such as acoustic (mechanical) or light intensity variation
(electromagnetic), nonetheless, in this case, the response induced
within the CNS is not causally and directly determined by the
energy flux, or, in other words, the response is not directly
related to the intensity of the energy flux, instead here the
energy represents a mean to transfer an information flux.
Indeed, a CS, may determine a CNS response because the
information flux revealing its presence triggers a previously
learned response. Generally speaking, a reactive response consists
of a “self-induced” reaction triggered by an information flux
(e.g., by a visual, auditory, olfactory, gustatory perception or by
imagination), conversely, an active response is sustained by an
external energy flux (e.g., an active drug or an electric shock).
It is possible to exert both active and reactive stimulations
concurrently; for instance, an hidden drug administration exerts
only an active stimulation, since a pharmacological (chemical)
flux is provided while no information is given, conversely,
an open drug administration may induce both an active
pharmacological response and a reactive stimulation due to
cognitive (and even unconscious or imaginary) information
processing (Amanzio and Benedetti, 1999; Benedetti et al., 2003;
Benedetti, 2008).

On the basis of the above mentioned definitions it follows that
an UCS can exert both an active and a reactive stimulation, while
a CS can induce only a reactive stimulation.

2.1.2.5. Reactive (emotional) system
Generally speaking, a reactive stimulation cannot involve all the
CNS neural components, since, for instance, a somatosensory
stimulation can occur only through an energy flux (e.g.,
mechanical) and not by a simple information processing; for
this reason only a “sub-space” of the CNS neuronal populations
can be reactively elicited. The CNS sub-space which can be
elicited through a reactive (information flux based) stimulation
is termed reactive system (as will be clarified in the following
the emotional system represents a sub-space of the reactive
system). Hence, provided that N denotes the number of
the distinct neuronal populations within the CNS (Equation
1), and that K denotes the number of the reactive system
neural populations, it follows that K ∈ N. Which are the
neuronal components within the CNS belonging to the reactive
system? The answer comes from classical conditioning and
pharmacological conditioning experiments in which a CS exerts a
reactive stimulation after being paired with an active UCS. From
the technical literature emerges that the reactive system may
involve: (1) emotional responses (which include, for instance,
the dopaminergic mesolimbic and mesocortical system, Scott
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et al., 2007; Colloca, 2014; the fear and anxiety related circuits,
McNally et al., 2011; Li and McNally, 2014; the endocannabinoid
and opioid system in placebo analgesia, De Pascalis et al., 2002;
Petrovic et al., 2002; Zubieta et al., 2005; Wager et al., 2007;
Eippert et al., 2009; Watson et al., 2009; Nolan et al., 2012, the
serotoninergic system, the target neuronal systems of depression,
anxiety and addiction; see Benedetti, 2008); (2) the dopaminergic
motor system (De la Fuente-Fernandez et al., 2001; De la Fuente-
Fernandez and Stoessl, 2002); (3) the humoral immune response
system (in particular the components of the CNS such as the
hypothalamic-pituitary-adrenal axis, HPA, or the sympathetic
nervous system, SNS; Goebel et al., 2002; Cacioppo et al., 2007;
Benedetti, 2008; Vits et al., 2011); (4) the endocrine system; (see
Benedetti, 2008; Enck et al., 2008 for a review).

2.1.2.6. Reactive (and emotional) mimicking
From a growing body of literature (Amanzio and Benedetti, 1999;
Petrovic et al., 2002; Haour, 2005; Eippert et al., 2009; Guo et al.,
2010; Lui et al., 2010; Nolan et al., 2012) it is reported that
pharmacological conditioning determines a reactive response
which mimic the active pharmacological response. The above
mentioned property is termed here reactive mimicking. For
instance, experimental results reported in Ito et al. (2000) show
that an increase in dopamine release in the ventral striatum,
measured through microdialysis, are observed not only when
rats self administer cocaine (UCS), but also when they are
solely presented with a tone (CS) that has been previously
paired with cocaine administration. Furthermore, provided that
the reactive system represents only a subset of the CNS,
it is evident that only such a subset of the CNS neuronal
populations can be mimicked. For instance, a CS previously
paired with a painful UCS stimulation will be able to elicit
only a specific portion of the components that were actively
stimulated by the UCS; such components represent the emotional
response (e.g., the activation of anterior cingulate cortex and
the anterior insula; Singer, 2004), and, they cannot involve the
somatosensory neural populations, even if these were involved in
the original UCR.

2.2. Derivation of the Emotional Dynamical
System Structure
In this Section the role of the key brain regions involved
in emotional processing and response are reviewed from the
literature. The purpose of this Section is to infer the functional
structure of the dynamical emotional system.

2.2.1. Emotional Responses, Amygdala and

Orbitofrontal Cortex
In mammalian brains the amygdala represents the core center
in the formation and storage of emotional events and in the
elicitation of emotional responses. In particular, in a growing
body of literature (Schoenbaum et al., 1999; Glascher and
Adolphs, 2003; Paton et al., 2006; Choi and Jeansok, 2010;
Amano et al., 2011; Sangha et al., 2013) it is shown that
amygdala is necessary for fear responses, and that no reactive
fear responses are instantiated in the absence of an intact
amygdala (Choi and Jeansok, 2010). Furthermore, the amygdala

mediates both appetitive (i.e., rewarding) and aversive stimuli
(Muramoto et al., 1993; Schoenbaum et al., 1999; Paton et al.,
2006; Shabel and Janak, 2009; Amano et al., 2011; Sangha et al.,
2013; Gore et al., 2015); in the former case the basolateral
amygdala (BLA) neurons project onto the nucleus accumbens
(NAcc), whereas in the latter one onto the centromedial amygdala
(CeM) (Namburi et al., 2015). Hence the amygdala represents
the key region for the elicitation of any reactive emotional
response and it elicits (both directly or indirectly) emotional
and motivational areas of the brain (LeDoux, 2000; Sah et al.,
2003; Gore et al., 2015; Janak and Tye, 2015; Tovote et al.,
2015). Nevertheless, it is worth noting that if the amygdala is
damaged, an active elicited response (e.g., an unconditioned
painful stimulus) can be still elicited. Moreover, experiments
performed adopting optogenetic manipulations have evidenced
that the representation of any UCS is stored within the BLA
(Redondo et al., 2014; Gore et al., 2015). However, further
fMRI studies (Gottfried et al., 2003; Gottfried and Dolan,
2004; O’Doherty, 2004; Kringelbach, 2005; Dolan, 2007; Pessoa,
2010) have shown that UCS representations (and its associated
“biological values” or, in other words, the outcome which is
expected from the given UCS) are encoded not only within
the amygdala, but also in the orbitofrontal cortex (OFC). The
fact that a stimulus representation and its associated expected
outcome are stored in different brain regions (i.e., duplicated)
could seem a waste of resources; nevertheless different reasons
could justify this redundancy. Indeed, on the one hand it
is important that the representation of relevant stimuli (such
as fear relevant stimuli) are accessible through rapid access
pathways, such as thalamo-amygdala pathway (LeDoux, 1996,
2000; Ohman, 2005), promoting a quick reaction whenever the
stimulus is perceived. On the other hand, it is also important
that a stimuli representation can be integrated with relevant
cognitive information (when available) for the inference or
prediction of the probable outcome. For instance, animals may
learn that a given stimulus (e.g., a predator) is threatening
observing others facing with it (Olsson et al., 2007; Olsson
and Phelps, 2007), without the need of experiencing directly a
stimulus elicitation. Hence, the OFC integrates different pieces of
information (especially higher level cognitive ones) for inferring
a probable outcome, and to update the response associated
with the given UCS in “faster” subcortical regions (i.e., in the
amygdala). Furthermore, prefrontal regions, like the dorsolateral
prefrontal cortex (DLPFC), may interact with OFC to enhance
or inhibit the response elicited by the amygdala (Ohman, 2005;
Dolan, 2007). For instance, initial amygdala response to a fear-
relevant but non-feared stimulus (e.g., pictures of spiders for
a snake phobic) disappears with conscious processing by the
activation of DLPFC and OFC (Ohman, 2005). Furthermore,
also experiments in the filed of decision making have evidenced
that OFC supervises the amygdala (Wallis, 2007; Rolls and
Grabenhorst, 2008; Kennerley and Walton, 2011). Finally, it
is worth pointing out that OFC is not necessary for classical
conditioning, however, it is certainly needed for modifying
the response if the predicted outcome is revaluated (i.e., UCS
inflation and devaluation; Gallagher et al., 1999; Stalnaker et al.,
2015).
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2.2.2. Error-Driven Learning
From a growing body of literature emerges that learning occurs
through the computation of specific error-signals (or prediction
errors) (Schultz and Dickinson, 2000; Garrison et al., 2013).
Generally speaking, the prediction error is defined as the
difference between the response (or the outcome) expected
from a given stimulation and the response actually perceived
by the elicited organism. This definition relies on experimental
observations acquired in functional imaging studies (Berns et al.,
2001; O’Doherty et al., 2003; Garrison et al., 2013), or directly
measured in dopaminergic circuits (e.g., in the ventral tegmental
area, VTA) or in other fear-related circuits (Schultz, 2000, 2006;
Schultz and Dickinson, 2000; Waelti et al., 2001; Bray and
O’Doherty, 2007; Delgado et al., 2008; McNally et al., 2011;
Steinberg et al., 2013; Li and McNally, 2014).

Different mathematical models describing classical
conditioning learning (e.g., Rescorla-Wagner model, Rescorla
and Wagener, 1972; Miller et al., 1995, or temporal difference
(TD) models, Sutton, 1988; Sutton and Barto, 1990; Schultz
et al., 1997; O’Doherty et al., 2003), or describing learning
in general, such as the probabilistic (Bayesian) “perception”
and “action” learning models (i.e., the predictive coding (PC)
(Friston, 2003, 2008) and active inference model (Friston et al.,
2009, 2010), assume that coding behavioral responses involves
the computation of a prediction error. More specifically, the
brain makes predictions in relation to a given stimulus and, on
the basis of the experienced outcome, the prediction is updated
through the prediction error. If the experienced outcome is
greater (lower) than the prediction, the computed error signal is
positive (negative) and corrects the new prediction; furthermore,
if the experienced response coincides with the expected outcome,
the error signal is zero and no prediction updatings take
place.

2.2.3. On the Computation of the Prediction Errors
A growing body of literature (Schultz, 1998, 2000; Waelti et al.,
2001; Schultz, 2006; Delgado et al., 2008; Bourdy and Barrot,
2012) evidenced that in emotional learning, populations of
dopaminergic neurons encode prediction errors evaluating the
difference between what is expected (i.e., the expected reward)
and what is really occurring; furthermore, the prediction error
is exploited to correct and modulate the individual’s emotional
and behavioral response. The prediction error computed in
these dopaminergic regions can be positive or negative and can
drive appetitive or aversive emotional reactions (Delgado et al.,
2008).

It is not completely clear if prediction errors driving emotional
responses are evaluated in different brain regions, depending
on the nature of the involved emotional neuronal populations,
or if dopamine neurons encode prediction errors related to all
the involved populations; however, in the computation of the
emotional error signal, a fundamental role is played by the OFC
(O’Doherty, 2007). In fact, various experimental results have
evidenced that the OFC generates information about expected
outcomes which are deemed critical in the computation of
prediction errors (e.g., see Takahashi et al., 2009 and references
therein) and these results are consistent with the relation between

the reward-related activity in OFC and VTA dopamine neurons
(Takahashi et al., 2009). Experimental results have also evidenced
that, when OFC and midbrain data are juxtaposed, anticipatory
activity observed in the OFC is inversely related to dopaminergic
error signaling downstream (Stalnaker et al., 2015). This suggests
that the error signals in other brain areas might depend partly on
OFC input for properly calculating the errors (Schoenbaum et al.,
2009; Stalnaker et al., 2015).

2.2.4. The Role of the Hippocampus in Emotional

Learning and Biological and Functional Differences

between UCS Revaluation and Classical Conditioning
As reviewed above, the amygdala encodes the representation of
UCSs and the related emotional responses; furthermore, it is well
known that contextual information and statistical contingencies
associated with a given UCS are encoded by the hippocampus
(Bechara et al., 1995; Richardson et al., 2004). Important
questions arise: what is the functional connectivity between a
CS stored in the hippocampus and an emotional response?
Does the hippocampus store emotional responses associated
with the CSs? Which is the functional connection between the
hippocampus and the amygdala? Responding to these questions
permits to elucidate the role of the hippocampus in emotional
learning and to differentiate the two learning mechanisms:
CC and UCS revaluation. Such responses come from recent
optogenetic experimental results (Redondo et al., 2014; Gore
et al., 2015) which have evidenced that the hippocampal engram
memory (which codes a CS) is neutral and could freely associate
with either positive or negative emotions, through the UCS
representation coded within the BLA. Furthermore, optogenetic
reactivation of the hippocampal dentate gyrus (DG) engram cells
coding a CS, during the presentation of a newUCS having valence
opposite to the original UCS (which was previously paired with
the CS itself), strengthens the connectivity of these cells with the
new subset of the BLA neurons, while weakening the connections
established during the original learning process. In other words,
the simultaneous activation of a CS neural representation and
of a new UCS strengthens a CS-UCS synaptic connection and,
at the same time, weakens the connection between the CS and
the previously associated UCS, which is not simultaneously
active. These results evidence three important features: (1) a
CS stored in the hippocampus has to be connected to an UCS
representation within the BLA in order to trigger an emotional
response; (2) the CS-UCS connection can be strengthened or
weakened through synaptic Hebbian plasticity (i.e., through the
mechanism “cells that fire together wire together,” without the
need of error signal computations or UCS revaluation); (3) the
fact that the CS engram memory is emotionally neutral it means
that the emotional reaction triggered whenever it is perceived
is exclusively due to the CS-UCS synaptic strength, denoted
ωCS−UCS in the following. In turn, the UCS representation
is associated with an emotional value (denoted iR in the
following). Hence, the term iR represents the reactive response
triggered whenever a CS connected with the given UCS is
perceived.

Other experimental evidences support the fact that CC is not
driven by prediction errors (see Section 3.2.4).
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2.2.5. Functional Connectivity of the Implicit

Emotional System
On the basis of the reviewed results in the previous Sections
(more specifically see Sections 2.2.1–2.2.4) the functional
connectivity of the brain regions involved in the implicit
emotional learning can be inferred (see Figure 1). In particular,
it is shown that a given stimulation can elicitate both an
information and an energy flux, more specifically, the energy flux
determines a direct response within the CNS system (for instance
a painful stimulation determines an increasing firing rates of the
neurons belonging to the insula, the anterior cingulate cortex,
the sensorimotor cortex, and others), while the information flux
can be processed by the amygdala (e.g., by a mere stimulus
perception), by the hippocampus (for statistical and contextual
recognition) and by the OFC (which can process higher level and
structured information). The amygdala elicits a reactive response
onto the emotional system (which involve only a sub-population
of the entire CNS neuronal populations), and such a response
can be modulated and corrected through the error signals whose
computation is managed by the OFC.

Moreover, the reviewed results in Section 2.2.4 permits to
infer the representation of CC and UCS revaluation as sketched
in Figure 2. In particular, it is shown that UCS is stored
within the amygdala, which in turn projects (through direct
and indirect systems as reviewed in Section 2.2.1) onto the
emotional system within the CNS; furthermore, the amygdala
response is modulated by prediction errors with a feedback loop,
which determines the UCS revaluation. On the other hand the
CS (which, depending on the type, can be stored within the

hippocampus or even in a region of the amygdala different
from the region which contains the UCS representations)
is not directly associated to an emotional response, but it
is connected with an UCS representation, whose connection
strength is denotedωCS−UCS. Moreover, it can be shown that UCS
revaluation does not change the CS-UCS synaptic connection
strength, conversely, as it is clarified in (Section 2.5.2; see also
“Supplementary Material”) an increase of CS-UCS connection
strength leads inevitably to an UCS inflation until iR reaches an
asymptotic value.

2.2.6. Attribution of a Source of Emotional

Stimulation and Predictive Coding
In the previous Sections it has been shown that a given
UCS representation within the BLA is being associated with a
specific reactive response which can also be modulated through
prediction errors (see Figure 2). In order to build such a
structure, the brain has to infer which is the stimulus that
generates the CNS response. For instance, a device eliciting a
painful response will be encoded as an UCS since it can be
easily detected and attributed as the causal source of the painful
stimulation; in this case the source of stimulation has been
attributed correctly. However, whenever an emotional response
due to a source of stimulation is attributed to a “wrong”
source, an event of source misattribution occurs (Cotton, 1981;
Bryant, 2003; Jones et al., 2009 and references therein). It is
worth pointing out that misattribution may result either from
conscious, accessible and measurable controlled processes, or
from spontaneous, inaccessible, automatic processes (Uleman,

FIGURE 2 | CS-UCS-emotional response diagram. Schematic representation of the synaptic connections between a CS, the associated UCS and the reactive

response (iR) associated with the representation of the UCS itself. The reactive response is determined and modulated by UCS revaluation learning, instead the

connection strength between CS and UCS (ωCS−UCS) is determined by classical conditioning learning. The reactive response acts within a central nervous system

sub-space called emotional space, which involve the emotional neuronal populations. Note that this schematic representation is in agreement with the experimental

results shown in Gore et al. (2015) and Redondo et al. (2014).
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1987; Anderson, 1989). In the last case this phenomenon is
called implicit misattribution (Uleman, 1987; Anderson, 1989;
Hutter and Sweldens, 2013). Generally speaking, the brain is
an inference machine that actively predicts and explains its
sensations; more specifically, the brain tries to explain the
cause of its sensations through a probabilistic model (Friston,
2010). This concept is at the basis of the Bayesian brain
hypothesis and of the so called predictive coding theory (Friston,
2008), which shows how automatic inference about the causes
of sensory inputs are performed in a hierarchical structure
within the brain. What is important in the development of our
model is that UCS attributionis based on complex hierarchical
and recursive (feedforward and backward) signals propagation
between different layers, which generate a probabilisticmodel and
representation about the cause(s) of the stimulation. This means
that in the structure of the model we derived (see Figure 2),
the UCS-iR association is subject to eventual misattributions,
and that two or more UCS representations could be associated
to a (shared) given response if the brain fails to correctly infer
the actual eliciting UCS; furthermore, in a limit case, a neutral
and irrelevant stimulus could be attributed as the source of
stimulation (i.e., a misattribution occurs). The attribution and
misattribution phenomena can be quantitatively considered in
the general structure of our model. In fact, it can be assumed
that the reactive response the brain associates to a given UCS is
proportional to the degree of cause attribution belief the brain
predicts for that UCS. For instance, in the presence of two
possible eliciting stimuli, the brain can infer all the possible
probability attributions between the ranges (0–100%) and (100–
0%), and, such a cause probability assignment is determined
by (a) Bayesian prior belief distributions and (b) the actual
stimulation conditions and perceptions. The attribution and
misattribution phenomena will play an important role for the
quantitative explanation of evaluative conditioning (see Section
3.2.3).

2.3. Quantitative Relations and Constraints
between Variables
In this Section the main quantitative/mathematical assumptions
and the relations between the variables involved in implicit
emotional learning are inferred by a review of the literature and
through analytical considerations.

2.3.1. Linearity Hypothesis
Recent computational and in vivo analysis have evidenced
that cortical circuit have recurrent excitatory and inhibitory
connections (van Vreeswijk and Sompolinsky, 1996, 1998;
Doiron and Litwin-Kumar, 2014; Pehlevan and Sompolinsky,
2014; Deneve and Machens, 2016). Such a network architecture
comprises excitatory and inhibitory neuronal populations, and
the connectivity could be random and sparse. Computational
studies about large networks reveal that the dynamics tends to
a natural stationary state called balanced state. In this state, a
balance between the excitatory and inhibitory inputs emerges
dynamically for a wide range of parameters, and the internal
synaptic inputs act as a strong negative feedback, which linearizes
the population responses to the external drive despite the strong

non-linearity of the individual cells. This feedback also greatly
stabilizes the system’s state and enables it to track a time-
dependent input on time scales much shorter than the time
constant of a single cell (van Vreeswijk and Sompolinsky, 1998).
Hence a balanced network configuration not only stabilizes,
linearizes (and makes deterministic) the input-output transfer
function, but also makes the network capable of fast tracking of
temporal changes in the input.

It is worth noting that in a balanced network configuration a
linear behavior emerges from the chaotic behavior of individual
neurons, so that chaotic balanced networks can precisely track
any input signals, and the tracked signals can be read out
by averaging spikes over the whole network population (van
Vreeswijk and Sompolinsky, 1996). Therefore, at a system
level (i.e., considering large brain region networks) if a CNS
response elicitation is considered as an input, the further network
processing can be considered linear. Nonetheless the relation
between an external energy flux and the corresponding CNS
neuronal response is generally non-linear (e.g., an acoustic
stimulation). This means that linear modeling techniques and
methods can be adopted provided that the considered system
input is represented by a given CNS neuronal population activity
(see Equation 1), and, the (non-linear) mapping between an
external stimulation and the corresponding CNS response has to
be further derived when needed, understood as a separate issue.

2.3.2. Neurophysiological Integration Property of

Active and Reactive Contributions
In this subsection we review empirical evidence about the
property of the brain of integration of active and reactive
contributions. In practice we argue that the overall response
induced within the CNS is always determined by an active
(energy based) and a reactive (pure information) contribution,
and that the brain cannot discriminate between these two
quantities during the response (or outcome) evaluation. This fact
could also represent the basis of the placebo induced response
(Puviani and Rama 2016).

Experimental verification of the influence of nonconscious
conditioned stimuli on placebo/nocebo effects (Jensen et al.,
2012, 2015) show that a reactive stimulus is able to interfere
with a given active stimulation (e.g., an active drug or a
painful stimulation), by increasing or decreasing the effect of
the active response. This suggests that common active and
reactive response components can be additive or competing
and, hence, both contribute to the determination of the
overall elicited response within the CNS. This observation is
supported by further experimental results (Roy et al., 2009;
Wagner et al., 2009; Wiech and Tracey, 2009) which show that
emotional reactive stimulations (e.g., the subliminal perception
of emotional pictures or other reactive emotional stimulations)
modulate pain perception. A further interesting result which
supports this line of reasoning comes from experiments reported
in Plassmann et al. (2008), which show, by functional MRI
studies, how prices of wine bottles (which represent here
a piece of information related to the outcome) can affect
the experienced pleasantness of the wine intaking (UCS).
Indeed, the experienced pleasantness (which represents here
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the UCR) is due to the integration of the active component,
x, and the reactive (self-induced) response iR, which is due
to information processing. From the above mentioned results
emerges evidence that emotional responses are additive, and
can energize or decrease an active stimulation if they share
common neuronal populations. Moreover, this property is not
limited to emotional responses, but it also holds for other
neuronal populations belonging to the reactive system (see
Section 2.1). Indeed, pharmacological conditioning experiments
(Amanzio and Benedetti, 1999; Benedetti et al., 2011) show
that the conditioning (reactive) contribution increases the base
active pharmacological effect of a given drug, even in animals
(Guo et al., 2010). The additive property of emotional responses
which became attributed to a given common stimulus is
termed integration property. Considering one single neuronal
population, the integration property can be expressed as:

y = x+ iR, (2)

where y represents the experienced CNS response, x represents
the active response contribution and iR the reactive response.

2.3.3. Relation between Predicted and Reactive

Response: The Reactive Stability Theorem
As described in the previous sections, whenever a source of
stimulation (UCS) elicitates a CNS response (UCR) in a given
organism a prediction error is computed as the difference
between expected (or predicted) and experienced (i.e., UCR)
responses; furthermore such an error signal updates the predicted
response (i.e., UCS revaluation). Denoting ypredicted and y
the predicted and the experienced response respectively, the
prediction error computation can be expressed as e = y −

ypredicted. Furthermore, whenever a source of stimulation is
perceived by an organism a reactive emotional response has
to be elicited (in particular, as shown in the previous sections
this is performed by the amygdala). Considering one single
component (i.e., a specific neuronal population) of the given
reactive emotional response, what can be said about its intensity?
Does the reactive response coincide with the expected (or
predicted) response? The following theorem proves that the
reactive response associated with a given UCS has to be a fraction
(i.e., less than the unity) of the expected response, in order to
assure the stability of the emotional system. The emotional system
is said to be stable with respect to a given stimulus if and only if the
response elicited by the stimulus does not increase unlimitedly over
time.

Theorem: Necessary condition for the stability of the emotional
system is that the emotional response associated to a given UCS
is a fraction of the expected (predicted) response.

The demonstration of the above theorem is provided in
“Supplementary Data.”

On the basis of the Reactive Stability Theorem and of the
reactive mimicking property, the reactive response of the generic
neuronal population can be written as:

iR = α · ypredicted, (3)

where the term α represents the intensity fraction (or gain) of
the generic mimicked component belonging to the emotional
system (such that |α| < 1). Generally speaking, if K represents
the number of neural populations involved in the emotional
response, a vector of K different values for the reactive gain
α exists, in which every component is associated to a single
neuronal population. The generic term α is also termed emotional
learning rate in the following.

2.3.4. Emotional Contrast Effects
In the technical literature it is well documented (Flaherty, 1982;
Papini and Dudley, 1997) that surprising reward omissions,
that is, the absence or reduction of an expected reward, are
accompanied by aversive emotional reactions. On the other
hand, surprising increases in the expected reward result in
an appetitive emotional reaction. In particular, positive and
negative contrast effects, arising from unexpected shifts in the
obtained reward (whose value is greater or smaller than that
previously experienced), depend on the comparison of the
sensory property of the present stimulus with information stored
in memory (Genn et al., 2004) and lead to an emotional
response overshoot or undershoot, which is independent from
the absolute value of the real reward. For instance, in Genn
et al. (2004) it is shown that rats, in the presence of a
shift from 32% to a 4% of the administered sucrose solution,
displayed a successive negative contrast (i.e., a depression
effect Flaherty, 1982) by initiating significantly fewer bouts
of licking than control rats maintained on 4% sucrose.
Furthermore, no significant increase in the dopamine efflux
in the NAcc was observed during the consumption of 4%
sucrose by rats that experienced the shift from 32%; on the
contrary, the consumption of 4% sucrose by control rats was
accompanied by a significant increase in the DA efflux in
the NAcc.

The notion that contrast effects can be interpreted in terms of
emotional responses is indirectly suggested by the effects of drugs
on contrast (Flaherty, 1982). Indeed, experimental data reveal
that drugs having anxiolytic effects on humans (e.g., amobarbital,
ethanol, and benzodiazepines) tend to reduce negative contrasts.
Furthermore, experimental results reviewed in Flaherty (1982)
show an increase of the release of adrenocorticosteroid hormones
in the presence of negative contrasts; this proves that a negative
contrast is able to activate a component of the sympathetic
response to stress, which, in turn, determine an emotional
response.

Experimental evidence also shows that contrast exhibits an
inverse dependence on the inter trial interval, denoted T, (i.e.,
the time interval between two successive stimulation trials) and
a direct dependence with the magnitude difference between
the preshift and the postshift values. The inter trial interval
dependence suggests that modeling this effect should involve
continuous time scale evaluations.

On the basis of the above mentioned results it is clear as
emotional contrast effects have to be quantitatively taken into
account in the model of the emotional response dynamics, since
a difference between expected and actual stimulation determines
inevitably an adding quantity in the final CNS response.
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2.4. Model Assumptions and Hypothesis
In this Section the main hypothesis and assumptions adopted
for the model development are summarized, on the basis of the
results reviewed on the previous Sections.

H1 - Definitions: the definitions illustrated in Section 2.1 are
adopted.

H2 - Linearity hypothesis: it is assumed that, at a system level,
the linearity hypothesis holds for error signals and responses.

H3 - Single emotional component: we focus on the dynamics of
a single component to ease the reading. This choice, however, does
not entail any loss of generality, since our model can be applied
to any component of the emotional system.

H4 - Integration property: as illustrated in Section 2.3.2
reactive and active responses add up as in Equation (2).

H5 - Functional connectivity: the structure of the dynamical
emotional system (both in the discrete and in the continuous time
scales) is expressed in Figure 1.

H6 - Learning mechanisms: it is assumed that both type of
learning (CC and UCS revaluation) can co-occur simultaneously,
and they are subjected to the constraints derived in Section 2.2
(see Figure 2).

H7 - Prediction error computation: prediction errors are
computed as the difference between the expected/predicted and
the experienced responses; furthermore, we will consider two
different hypothesis for the expected response: (a) it coincides
with the experienced response in the last trial, (b) it is computed
as a filtered version (i.e., a weighted moving average) of the last
trials outcomes.

H8 - Stability of the emotional system property holds (see
Section 2.3.3 and Equation 3).

H9 - Source Attribution: it is assumed only one eliciting UCS
and that it is correctly attributed by the emotional system. When
a different scenario has to be considered it will be specified.

H10 - Emotional contrast effects: negative and positive contrast
effects are evaluated as a linear function of the discrepancy
between the expected and the incoming outcome.

H11 -Discrete trials (valid in the discrete time scale) -Multiple
trials in the interaction between a source and a subject are
considered; the trial duration△T is assumed to be relatively small
and, in particular, negligible with respect to the inter-trial interval
(ITI) T. For this reason, each trial can be ideally associated with a
specific point on the time axis and the corresponding emotional
response can be deemed constant.

H12 - Residual response from previous trials (valid in the
discrete scale) - The time constant τ associated with the decay
of the response elicited during each trial is deemed negligible
respect to the inter-trial interval T; consequently, when a new
trial takes place, the emotional response due to the previous trials
has already vanished.

H13 - Stimulus (UCS) perception - It is assumed that
the perceived UCS is the same in each trial, so as the
associated contextual information and boundary conditions. This
assumption states that, if a stimulus elicits a subject during
the first trial in a specific context (e.g., place, timing, and
specific boundary conditions), it has to be considered that the
stimulus perception in the following trials involves exactly the
same contextual and boundary conditions. In absence of such

an assumption the reactive response elicited by the stimulus
perception might be modulated by the different contextual
information and boundary conditions. For instance, if an UCS
is represented by a given drug, which has been encoded as
UCS because previous interactions, then “UCS perception” refers
to the UCS intake (in order to satisfy the same conditions
occurred during the previous UCS-subject interactions), so that
the reactive response associated with such a UCS can be triggered
(independently from that the active pharmacological treatment
has been altered).

H14 - Recurrent patterns of stimulation - A source of
stimulation can elicit an organism with some regularities over
time (or over discrete trials). For instance an electric shock device
could stimulate a subject performing a periodic intensity pattern
over time, or a given drug can exert a specific pattern of active
effect over time (e.g., pharmacodynamic curve-related effects).

2.5. Model Development
2.5.1. Discrete Time UCS Revaluation Model (Without

Conditioning)
Motivation: the model accounts for a given UCS eliciting
an organism with a variable active stimulation (x) and/or a
variable reactive stimulation (iR).

Hypothesis: H1-5, H7a, H8-9, H11-13.

The discrete model is obtained through a thought experiment in
which a given subject is stimulated by an UCS over successive
trials. More specifically, the target UCS is perceived by the subject
at every trial, in order to induce a reactive stimulation, after that
an active UCS stimulation follows (e.g., through an electric shock
delivery).

Provided that multiple stimulation trials are considered, it
can be assumed that in every trial the expected (or predicted)
response associated with the given UCS coincides with the last
experienced outcome (which, in turn, coincides with the response
experienced in the previous trial, H7a), or, alternatively, that the
predicted response converges over successive trials to the actual
experienced outcome (H7b). Without any loss of the generality,
and with a first order approximation, it can be assumed that
the predicted outcome is equal to the last experienced outcome.
The expected response is updated through the prediction error
computation over successive trials, in turn, the reactive response
iR will be updated according to Equation (3) . In the first trial
the reactive response is equal to zero, since the emotional system
did not have any past learning experiences or interactions with
the given UCS (so that the epxected response is zero); hence
the elicited response is exclusively determined by the active
stimulation:

y1 = x1. (4)

Since the expected outcome was equal to zero for that UCS, the
prediction error after the first active stimulation trial is equal
to x1 and, such an error updates the expected response for the
new trial, and, consequently the reactive response, according to
Equation (3), that is:

yexpected, 2 = x1 (5)
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iR2 = α · x1. (6)

In the second trial, as soon as the UCS is perceived the learned
reactive response will be triggered, which, together with the active
stimulation determine the CNS response (see Equation 2):

y2 = x2 + αx1; (7)

moreover, a new error signal is computed as

e2 = y2 − y1 = x2 + αx1 − x1. (8)

Without loss of the generality, it can be assumed that the active
elicitation is kept constant at every trial (i.e., xn = x ∀n, where n
represent the trial index), so that the error at the second trial can
be expressed as

e2 = α · x (9)

and the reactive response updated at the end of the second trial is
given by

iR3 = αx+ α2x. (10)

It easy to demonstrate that the response elicited in the n-th trial
can be expressed as:

yn = xn + α ·
∑n−1

k=1 ek =

xn + α ·
∑n−1

k=1(yk − yk−1),
(11)

which, can be reformulated, as:

yn = xn + α · yn−1. (12)

The last equation shows that the overall CNS response is
determined by the contributions of the active elicitation (xn)
and of the reactive (emotional) contribution, determined by
previous learning, and expressed as a fraction of the expected
outcome, which, it has to remember, it is assumed to coincides
with the response elicitation in the previous trial, with a first
order approximation.

If a constant active elicitation x is considered over successive
trials, it is easy to show that the response approaches the
asymptotic value

y∞ =
x

1− α
(13)

as n increases.
When the asymptotic value has been reached, the prediction

error will be zero for every successive stimulation trials, and
no predicted response updating can occur. The error signal
will be zero also if the condition yn = yn−1 occurs in the
generic n-th trial. As will be shown in the Section “Results,” some
psychophysiological phenomena (e.g., evaluative conditioning)
and neuropsychiatric pathologies (e.g., PTSD) occur if the
above mentioned condition holds (together with the following
conditions: (a) the reactive response is different from zero and
(b) the active response is zero. Both conditions can be expressed
in terms of the following: the expected or predicted response

coincides with the reactive/self induced response). Furthermore,
it is easy to prove that if a series of successive trials in which the
active stimulation (x) is kept equal to zero, the CNS response in
the n-th trial can be expressed as:

yn = α · yn−1 = y0α
n, (14)

where y0 represents the expected response before the beginning
of the UCS devaluation process. Hence, during devaluation, the
response tends asymptotically to zero.

Contrast Effects: hypothesis H10 is added in the model.

Contrast effects can be included in the discrete model of implicit
emotional learning by adding a new function, called contrast
function and denoted CeA, which, generally speaking, could be
a function of the actual error-signal (denoted eA), defined as

eA,n ,
(

xn + α · yn−1

)

− yn−1 (15)

for the n-th trial; note that this definition is motivated by the fact
that the actual error signal refers to the actual trial (instead of
the previous one), since contrast effects occur in parallel with the
actual outcome. Hence, the emotional response in the n-th trial
can be expressed as (see also Equation 12)

yn = xn + α · yn−1 + CeA · eA,n (16)

if eA,n 6= 0 and

yn = yn−1 (17)

if en = 0 and eA,n = 0.
Assuming a simple linear contrast function CeA ≃ K and

assuming 0 < K < 1 (for emotional stability reasons), it is easy
to demonstrate that Equation 12 becomes

yn = (1+ K) · xn + (α + Kα − K) · yn−1. (18)

On the basis of the above reported results, if an unexpected UCS
active elicitation occurs (i.e., an active UCS stimulation which
is not signaled by any CS nor by a prior UCS perception; for
instance, this scenario can be represented by a laboratory setting
where a permanently-connected electric shock device elicits a
subject without any prior signaling), it determines the response

yUCS = x+ K · x, (19)

and is attributed to the UCS. Moreover, a prediction error is
computed and the reactive response associated with the UCS
is updated; more specifically, if the expected response before
the unexpected elicitation was equal to x + αx, the prediction
error is computed as e = x · (K − α). Furthermore, if another
unexpected UCS elicitation occurs, the resulting prediction error
is equal to zero since the expected outcome is now equal
to the actually experienced outcome, which is given by x +

K · x (i.e., is determined by the active elicitation x and the
contrast contribution due to the unexpected elicitation Kx). This
mathematical result shows that a series of trials of unexpected
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UCS elicitations lead to a computation of a prediction error
only in the first unexpected elicitation; indeed, in the successive
unexpected trials only a constant reactive contribution (i.e., Kx)
due to the contrast effect is elicited. Indeed, if at every unexpected
UCS stimulation an error signal was computed, then the UCS
revaluation would lead to an unbounded increase of the UCS
expected response, which actually is not the case. The above
mentioned results and observations lead to a novel interpretation
of experimental results (Schultz et al., 1997; Hollerman and
Schultz, 1998; Schultz, 2002) in relation to the recording of the
activity of dopamine neurons in the VTA during unexpected
rewarding stimulations (See Section 3.2.4). Hence, unexpected
stimulations represent a particular case of emotional contrast
effect, in which the expected response was zero; furthermore,
since no error signal is computed, such an increase in dopamine
response due to unexpected stimulation simply reflect a reactive
response, which, in turn, may subserve as an incentive to
orienting and focus attention on the source of stimulation and
on eventual suspicious statistical or contextual contingencies (in
other words, in this case the dopamine response is not computed
to update the UCS value, but for focus attention in order to
observe if some contingent cues with the unexpected UCS release
occurred). It is worth noting that the same situation occurs
also when an expected reward is omitted (i.e., negative contrast
effect), in this case the induced negative reactive response does
not update UCS values, instead it focuses attention to discover
eventual contingent cues (such cues, if do exist, can become
conditioned inhibitors; Harris et al., 2014). As will be shown in
Section 3.2.4 dopamine neurons in the VTA and substantia nigra
can subserve to other brain regions (e.g., the OFC) to compute
both error signals and reactive responses (associated to UCSs, or
due to contrast effects in order to focus attention and facilitate
further learning).

Hypothesis, H7b: the expected response is computed as an
exponential weighted average of the last trials outcomes.
This hypothesis is motivated by the consideration that the
expected/predicted responses can be shaped considering
different previous outcomes and not only the last one. This
hypothesis is confirmed by experimental results (Bayer and
Glimcher, 2005) which show that dopamine neurons encode
the difference between the current reward and an exponentially
weighted average of previous rewards.

Under the H7b hypothesis, the predicted response, denoted <

yn−1 > (since it represents the filtering function of the last
responses until that occurred in the n-1 trial), can be expressed as:

< yn−1 >=

L
∑

k= 1

hk · yn−k, (20)

where L represents the number of the responses involved in
the filtering process, and hk represents the generic k-th filter
coefficient (or weight). Note that Equation (20) expresses a
general moving filtering function and not only an exponential
one. It can be shown that a moving exponentially averaged filter
(in discrete time) represents a low pass filter (and also that its

continuous-time counterpart is an R-C first order type filter;
Schafer and Oppenheim, 2009). Substituting Equation (20) in
Equation (12) yields:

yn = xn + α ·

L
∑

k= 1

hk · yn−k. (21)

Furthermore, considering that the error signal is now
computed as:

ek = yk− < yk− 1 >, (22)

Equation (21) can also be written as (see also the first line of
Equation 11):

yn = xn + α ·

n−1
∑

k= 1

(

yk −

L
∑

v= 1

hv · yn− v

)

. (23)

Adding Hypothesis, H14: the active stimulation presents a
recurrent pattern over successive trials (e.g., a gaussian shaped
curve for the intensity of the stimulation occurs periodically).

If the brain recognizes recurrent patterns of stimulation over time
(i.e., a typical stimulation intensity pattern), such an information
will be exploited for a more precise inference of the probable
outcome. This line of reasoning is supported by experimental
results which show that neurons encode precise timings between
stimuli (Schultz et al., 1997); for instance, dopamine neurons
learn, after few observations, that after a prescribed time from
the onset of a cue a given quantity of reward will be delivered.

Learning statistical regularities and patterns represent a type
of CC learning, since the variable “time” and “temporal relations”
can be considered as contextual cues (Bouton, 1993). For this
reason we speculate that the pattern recognition function may be
performed by the hippocampus, together with OFC interactions
for the inference of more complex patterns. In practice, what is
learned in this case is that at a given “time reference” (CS1) a
specific UCS intensity stimulation occurs, then at a successive
time reference (CS2) a different UCS intensity stimulation
occurs and so on, until an eventual entire recurrent pattern
of stimulation will be learned. From a modeling perspective
it is important to note that if the brain "is sure" about the
fact that a specific pattern of stimulation is occurring (denoted
yP(1..N) where the interval (1..N) represents the entire range
of trials the pattern comprises), then the predicted response
at the generic n-th trial is represented by the corresponding
intensity within the pattern (i.e., yPn). Conversely, if the brain
does not recognize any pattern, no adding inference can be
performed and the predicted response is computed as in
Equation (20). Nevertheless, intermediate situations between the
above mentioned extremes can occur; more precisely during
pattern learning, or whenever the recognized probability of
having a given pattern is not equal to one, the expected
response has to be computed as a combination of the actual
UCS revaluation contribution (Equation 20) and of the response
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expected by the pattern. It is easy to prove that the predicted
(expected) response can be expressed as:

< yn− 1 >= ω
(n)
NP ·

L
∑

k= 1

hk · yn−k + ω
(n)
P · yPn, (24)

where ω
(n)
P (ω

(n)
NP) represent the weight (or belief confidence)

related to the occurrence (no occurrence) of the given pattern
at the n-th trial; furthermore, it has to be satisfied the following
equality:

ω
(n)
NP = 1− ω

(n)
P . (25)

Equation (24) shows that the predicted response comprises
two contributions: (a) the UCS revaluation component, which
represents the bottom-up contribution, since it is determined
by the actual perception of the response (or its gradient
over time) and it is exploited from higher level neuronal
networks to form more complex hierarchical patterns; (b)
the contribution due to previous inferential learning, which
represents the top-down contribution, since it is encoded by
higher level hierarchical neural structures and exploited to
compute a reactive response which will be perceived by
lower level structures for the computation of the prediction
error.

In order to include the contrast effect in the model an
additional term proportional to the actual error signal has to be
considered. It is easy to show that the actual error signal can be
computed as:

eA,n = xn +

(

ω
(n)
NP

L
∑

k= 1

hk · yn−k + ω
(n)
P yPn

)

· (α − 1) . (26)

Hence, the discrete emotional learning model of a periodic
stimulation of period N0 (i.e., such that yn = yn−N0 ) can be
written as:

yn = xn + αω
(n)
NP

L
∑

k= 1

hk · yn− k + αω
(n)
p yn−N0 + K · eA,n (27)

and its implementation is reported in Figure 3.

2.5.2. Discrete Time Classical Conditioning Model

with Implicit UCS Revaluation
Motivation: derivation of a discrete model for CC under the
stochastic Hebbian plasticity hypothesis and considering the
implicit UCS revaluation during acquisition process.

Hypothesis: H1-6, H7a, H8-13.

In this Section a discrete model of classical conditioning which
accounts for the implicit UCS revaluation is presented, and its
derivation is developed through a thought experiment, where
a sequence of trials, involving CS-UCS-subject interactions, is
analyzed. Our derivation relies on the assumption that the CS-
UCS synaptic connections are governed by the mechanisms
of stochastic Hebbian plasticity (Hebb, 1949; Amit and Fusi,

1994; Fusi, 2002; Soltani and Wang, 2006, 2010; Fusi and
Abbott, 2007). This hypothesis is supported by both some
experimental results shown in Redondo et al. (2014) and Gore
et al. (2015), and other models relying on the fact that a CS-
UCS pairing entails the Hebbian potentiation of the CS inputs
onto the UCS representations in the BLA (Sah et al., 2003;
Pickens and Holland, 2004; Pape and Pare, 2010). Hebbian
learning is based on the idea that synapses between neurons
being simultaneously active become stronger. Consequently,
“neurons that fire together wire together” through an increase
in synaptic efficacy mediated by long term potentiation (LTP);
on the other hand, a decrease in synaptic efficacy is mediated
by long term depression (LTD). The mathematical derivation of
the proposed model is available in “Supplementary Material”
Section.

The mathematical analysis results in the following model for
classical conditioning in the discrete time scale:

ω
(n)
CS−UCS = ω

(n− 1)
CS−UCS + α̂+ ·

(

1− ω
(n− 1)
CS−UCS

)

(28)

ω
(n)
CS−UCS = ω

(n− 1)
CS−UCS − α̂− · ω

(n− 1)
CS−UCS (29)

i
(n)
R = α ·

(

X + i
(n− 1)
R · ω

(n)
CS−UCS

)

(30)

y
(n)
CS = ω

(n)
CS−UCS · i

(n− 1)
R . (31)

Note that Equations (28) and (31) hold for n ≥ 2 and that the
initial conditions

ω(1) = 0 (32)

i
(1)
R = α · X (33)

y
(1)
CS = 0 (34)

and

y
(1)
UCS = X (35)

should be adopted when employing them. The term ω
(n)
CS−UCS

is termed synaptic strength and represents the fraction of
synapses from the neurons representing the CS stimulus onto
the encoding neurons for the UCS in the n-th trial; the terms
α̂+ and α̂− in Equations (28 and 29) represent the potentiation
and the depression rates respectively, and they determine the
probability for plastic synapses to switch from the depressed to
the potentiated state and vice-versa. If UCS revaluation during
conditioning is neglected the proposed model coincides with
the well known Rescorla-Wagner (R-W) model (Miller et al.,
1995). Our extended model provides a more general and accurate
description of the emotional response during conditioning than
the original R-Wmodel for different reasons which are described
in Section 3.2.4.
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2.5.3. Conditioning to a Reactive Source Stimulus
Three possible events can occur when a CS is conditioned
to a purely reactive UCS (i.e., an UCS for which no active
component elicitation is expected, e.g., an emotional picture):
(1) a simple associative connection CS-UCS is generated; (2) the
CS is misattributed to be the source of the elicited response,
so becoming a new (and independent) reactive source like
the original UCS, so that a new reactive response, equal (but
independent) to the original iR, is generated and associated to
the CS. Furthermore, this misattribution process could occur
even during the presentation of the CS alone after conditioning,
since the reactive elicitation (which is equal to ωCS−UCS · iR)
could be misattributed forward the CS, in this case the reactive
response being associated with CS corresponds to the quantity
ωCS−UCS · iR. (3) A combination of the previous two events could
occur. Moreover, if one of the two last mentioned events occurs,
the conditioned CS may become an inextinguishable element
of emotional reaction, since the expected response is purely
reactive and coincides with the elicited reactive response (i.e., the
prediction error is always zero).

2.6. Emotional System Dynamics in
Continuous Time Scale
In the previous Sections a discrete-time model for the
computation of the emotional response in different scenarios
has been developed. In real world conditions, however, a
stimulation might elicit continuously a subject. From a modeling

perspective a continuous elicitation can be seen as a series of
an infinite number of discrete trial stimulations, each of which
has an infinitesimal time duration and the temporal spacing
between them tends to zero. In these conditions the emotional
response is continuously updated driven by the continuous time
counterpart of the prediction error. In the following, the problem
of developing a system computational model for describing
the continuous time evolution of the emotional response is
investigated.More specifically, our approach is based on standard
engineering methods. Without any loss of the generality we focus
here on the development of the model in absence of the pattern
recognition contribution, since we focus here on the dynamics
of the emotional control system; furthermore, such a feature can
be modeled by a neural network for pattern recognition which
operates in parallel with the OFC.

In order to obtain a continuous counterpart of a discrete
model the sampling time has to be known. Generally speaking
the sampling time is defined as the time period at which
the continuous time model is sampled to obtain a discrete
version of it. In our analysis we started developing directly
a discrete model, since the experimental results available in
the literature are based on discrete trials measures. For this
reason we have now to infer the continuous model whose
sampling would produce the discrete model obtained in the
previous sections. Considering that the discrete model holds
for any arbitrary large inter-trial interval (denoted T) and
that we are interested in finding the emotional dynamics
in the limit of T which tends to zero, it is possible to

FIGURE 3 | Discrete-time model implementation of the emotional system dynamics. The input to the system (x[n]) is represented by a series of discrete

stimulations over successive trials; the emotional response in the n-th trial is given by iR [n] and the overall CNS response is given by y[n]. The blocks “Z−1” represents

one unit delay, the triangular blocks represent multiplicative factors and all the nodes are summation nodes. The model takes into account of the implicit UCS

revaluation, of the contrast effect and of the “pattern recognition” in the case of a periodical stimulation pattern of period N0.
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consider the smallest T such that the discrete model holds,
and then assuming it as the sampling time. The sensory
time discrimination threshold (Luna et al., 2005) represents
the smallest temporal interval for which the CNS neurons
can discriminate between two distinct consecutive stimulations,
hence, this parameter is taken as the sampling time (T). It
is worth pointing out that the value of T depends on the
involved perceptive modality (e.g., somatosensory stimulation,
visual stimulation or acoustic stimulation), and that, if an
active stimulation varies faster than T the neurons encode
an average value within a time window of T. For instance,
providing that in the visual stimulation T is about 100 ms, the
stimuli variation within 100 ms are encoded as a mean value
over 100 ms.

Assuming the discrete model can be obtained sampling the
continuous time counterpart of it with a sampling time T,
the continuous model can be obtained through the following
procedure:

(a) the transfer function of the discrete recursive difference
system in the Z-domain (Schafer and Oppenheim, 2009) is
computed; (b) the transfer function of the continuous dynamic
system is obtained in the S-Laplace domain substituting the
Z variable of the discrete transfer function with the following
equation:

Z =
1+ s · T/2

1− s · T/2
(36)

where the variable s represents the Laplace variable (this
substitution represents the inverse operation of the so called
bilinear transform; Schafer and Oppenheim, 2009); (c) if needed,
the differential equation in the time domain (or the continuous
time state space representation) is obtained with the inverse
Laplace Transform of the equation in the Laplace domain
obtained in the previous stage b.

Applying the aforementioned procedure to the discrete
model (Equation 27) the continuous dynamic system can be
developed and its transfer function in the Laplace domain can be
expressed as:

H(s) =
Y(s)

X(s)

=
s2 + Kτ2 + s (K + τ2) + 1

s2τ1 (τ2 + K − Kα) + s (τ2 + K − Kα + τ1 − ατ1) + 1− α

(37)

where the term τ1 represents the time constant of the equivalent
low pass filter relative to the x(t) neuronal population target
(and it is closely related to the time discrimination threshold
T); the term τ2 represents the equivalent time constant of the
low pass filtering effect performed by the emotional evaluation
system (i.e., the equivalent of the exponential weight moving
average in the discrete time model); Y(s) and X(s) represent
the overall response and the input (i.e., the active stimulation)
in the Laplace domain respectively. Taking into consideration
the constraints and the functional connections derived in the
previous sections (see Figure 1), the implementation of the

derived transfer function model can be obtained as depicted in
Figure 4.

It is easy to prove that the system differential equation
obtained from the continuous model represented in Figure 4 is:

ÿ(t) · τ1 (τ2 + K − Kα) + ẏ(t) (τ2 + K − Kα + τ1 − ατ1)

+ y(t) (1− α) = ẍ(t) · Kτ2 + ẋ(t) (K + τ2) + x(t) (38)

where the functions y(t), ẏ(t), ÿ(t),x(t), ẋ(t) and ẍ(t) represent
the elicited response, its first and second derivatives, the active
stimulation and its first and second derivatives over time,
respectively.

3. RESULTS

In this Section some results from the theory and the developed
models, understood as postpredictions and quantitative
explanations of experimental observations reviewed from
the technical literature, are presented. Successively a model
comparison with existing models is provided. Furthermore,
a section describing model validation, interpretation and
applicability to some research topics is presented.

3.1. Summary of the Derived Models
All the models are based on the functional structure described
in Figures 1, 2. The main assumptions are summarized in
Section 2.4.

A simplified discrete model for UCS revaluation and contrast
effects is described by Equation (18) and it is named M1 in the
following.

The discrete model for UCS revaluation, contrast effects and
pattern recognition (named M2) is expressed by Equation (27).

The discrete model for CC and implicit UCS revaluation
(named M3) is expressed by Equations (28–35).

The continuous time system dynamical model (named M4)
can be expressed by the transfer function in Equation (37) and
represented in Figure 4, and by Equation (38).

3.2. Post-predictions and Quantitative
Explanations
3.2.1. Resistant-to-Extinction Responses
Generally speaking, on the basis of the theory and models
derived in the previous sections, an emotional response can
become resistant to extinction (or inextinguishable) if (1) the
prediction error is zero while (2) the reactive response is different
from zero while (3) the active response is zero; or, equivalently,
if the reactive response coincides with the expected response.
Indeed, since, in general, the emotional system tracks an active
component, it is obvious that whenever such a component
decrease or vanishes then the associated reactive response will
be decreased too. However, in the continuous time scale, there
are two cases which can lead to a situation in which the active
stimulation drops to zero and the reactive response does not
(so that it becomes inextinguishable): (a) if a saturation level of
the expected response is reached; (b) in the presence of specific
dynamics of the active stimulation, exploiting the inertial nature
of the emotional tracking system. We will describe in detail the
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FIGURE 4 | Continuous-time model implementation of the emotional system. The model is presented in the Laplace domain where “S” represents the Laplace

operator. The functional connections between the involved actors and the processing task accomplished by each block are shown. The model takes into account of

the implicit UCS revaluation and of the contrast effect. X(s) represents the input (energy flux), Y(s) the CNS response and E(s) represents the prediction error; αis the

emotional learning rate for the neuronal target population, K is the contrast effect parameter. OFC, orbitofrontal cortex.

first case, and we propose future computational and experimental
researches to investigate the second.

On the other hand, in the discrete time scale it is
possible inducing resistant to extinction responses through the
misattribution phenomena (see Section 2.2.6). In fact, if a purely
reactive response is attributed (and hence expected) to a given
stimulus, then it will induce the same reactive response which is
expected (i.e., the prediction error is always zero). A quantitative
analysis of such a case will be provided next.

3.2.2. Inextinguishability through Emotional

Response Saturation and Hippocampus Impairment
During an extreme traumatic event different phenomena may
occur, and, our model shows how these conditions can determine
a resistant-to-extinction emotional reaction.

Generally speaking, a traumatic response is mainly
determined by an automatic inferential emotional learning,
instead that by an active energy-based stimulation per se. More
specifically, the processing of traumatic information, such as
an imminent death danger, can be implicitly processed by
the OFC which, in turn, activates the amygdala through the
computation of prediction errors. Indeed, experimental results
from the literature (Steinberg et al., 2013; Sadacca et al., 2016)
show that inferred outcomes (e.g., rewards), never directly
experienced before, determine prediction errors (for instance
computed in the VTA) which are just like predictions based
upon direct experience/stimulation. In practice this means that

the OFC can control the computation of error signals, which
stimulate the amygdala, on the basis of the difference of the
actual expected outcome and the inferred outcome (through
information processing) associated with a given UCS or
situation, even before experiencing a direct active (energy-based)
stimulation. From a modeling perspective this situation can
be described assuming that the input to the emotional system
is the error node (see Figure 4), and that the prediction error
is proportional to the difference between the inferred and
the expected outcome. Indeed, experimental results based on
optogenetic manipulations (Chang et al., 2016) have shown that
inducing artificial prediction errors within the VTA permits to
induce behaviors and responses like those obtained by inference
and statistical learning. Moreover, it has been observed that
prediction errors are transmitted in spikes-form (i.e., very short
and relatively small decrease in neuron firing rates); we argue this
modality represents a suitable method to send direct (inferred)
error signals since the transfer function between the error node
(E(s)) and the output (Y(s)) is unstable, so that a continuous
error signal could rapidly lead to an unlimitedly increasing of
the output (it is easy to prove that the Y(s)/E(s) transfer function
represents an unstable system; see Figure 4).

Nevertheless, if the inferred outcome is relatively greater than
the expected response encoded within the OFC (associated with
the target situation or stimulation), then the inferred prediction
error could become so intense to determine a sort of saturation
of the amygdala response. Indeed, any mathematical function
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f (x) representing a specific biological response cannot take on
arbitrarily large values, because of the limited dynamics of the
response itself. In practice, as the value taken on by the argument
x grows, the corresponding value f (x) of the function does
not steadily increase in proportion to it and, when x crosses
a certain threshold, a certain saturation level is reached; in
other words, f (x) exhibits a nonlinear behavior for sufficiently
large values of x. In particular, these considerations hold for
the amygdala, which takes prediction errors as input and it
updates the predicted outcome on the basis of such errors; we
denoted such a behavior FA(e) = Yexpected (within the amygdala).
Hence, the linearity hypothesis holds if in any trial (or at
any specific time instant) the prediction error takes on a
value smaller than a saturation threshold TS, which defines the
linearization range for the amygdala expected response function
(FA(e); see Figure 5). If, however, the prediction error exceeds
TS (i.e., if the error becomes excessively large), a phenomenon
of emotional saturation should be expected. When emotional
saturation occurs, the source of stimulation (or any associated
cue) generating it could produce inextinguishable effects, even
in the absence of any active stimulation or if the exposition to
a trauma-related stimulus occurs in a safe context. In fact, if the
prediction error computed because a safe context is smaller than
the reached degree of saturation, then its inhibitory effect does
not determine any response reduction(see Figure 5). Moreover,
it is important to note that contextual information are primarily
coded and stored in the hippocampus (while the representation
of an aversive stimulus is coded within the BLA), so that, if
during the traumatic event the hippocampus does not properly

code contextual information, then no effective contextual
discrimination can be obtained during further exposures of the
stimulus. As far as this last point is concerned, it is worth
mentioning that hippocampus functioning and its ability to
encode contextual information are impaired by uncontrollable
stress together with an hyperactivation of the amygdala, as
shown in a model developed in Kim and Diamond (2002).
Furthermore, if hippocampus activities are impaired during high
stress exposure, it is likely that the amygdala associates every
contextual cue directly (even if insignificant) with the eliciting
reactive response (i.e., misattribution), so that, successively, they
will be able to trigger the reactive response (Bechara et al.,
1995). These considerations lead us to the conclusion that the
traumatic emotional response becomes resistant-to-extinction
since the expected response coincides with the reactive triggered
response. We argue that this phenomenon could happen in
panic disorders and PTSD (Beck and Sloan, 2012; Parsons and
Ressler, 2013; Perusini et al., 2016). As a matter of fact, in
some forms of PTSD and panic disorders the mere repetitive
exposure to cues related to a traumatic event does not lead to
an extinction of emotional responses or results in a very slow
extinction (Paunovic, 1999; Van Rooij et al., 2015; Perusini et al.,
2016).

Finally, it is important pointing out that the standard
classical conditioning model is unable able to explain these
psychopathologies, since it does not account for UCS revaluation
nor for the conditions which lead to the prediction error to be
equal to zero while an emotional response greater than zero
occurs.

FIGURE 5 | Resistant-to-extinction emotional reaction through response saturation. Schematic representation of the biological behavior of the amygdala

function FA (e) in its linear zone (A) and in its saturation zone (B). In case (A) the prediction error (equal to −x) is able to reduce the elicited emotional response. On the

contrary, in case (B) a negative prediction errors unable to produce a similar effect, so that the emotional response remains at its saturation level. In particular, the case

(B) occurs if the negative prediction error (due, for instance, to the fact that the active response x is no more elicited during the stimulation or because the stimulation

is occurring in a safe context) is smaller than the degree of saturation reached by the amygdala in the previous stimulation(s).
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Figure 6 show results of simulations performed assuming
a traumatic and a non-traumatic stimulation. In the former
the amygdala response saturation and hippocampus impairment
occurred, since the prediction errors due to the difference
between the inferred and the expected responses are relatively
intense (e.g., death danger). In order to simulate a non-traumatic
scenario we have assumed that the expected outcome within
the OFC was greater than in the traumatic case, so that the
resulting inferred error signals are smaller. Otherwise, it can
be assumed that the prediction errors are smaller because the
stimulation is less stressful. Nevertheless, assuming a given
stressful stimulation, the model suggests that if the expected
response within the OFC (i.e., the conscious expectation) is high,
the reached response intensity under the stimulation is lower
than in the case of a lower expected outcome, and the further
extinction is facilitated.

3.2.3. Inextinguishability Due to Misattribution of a

Reactive Source of Emotional Stimulation
In order to show how a reactive misattribution leads to a
resistant-to-extinction response let us consider the model M1
without H9, and focus in a thought experiment in which multiple
trials with interaction between a source of stimulation and
a subject occur. Furthermore, let us assume that the elicited
response is misattributed to another source of stimulation. In

the following we assume, without any loss of generality, that the
misattributed source of stimulation is initially neutral (i.e., it does
not elicit an active or a reactive emotional response). However, if
the misattributed source of stimulation is not neutral but elicits a
response, the response elicited during the misattribution process
will result from the superposition of the actual source response
with the previous non-attributed emotional state (Zillmann,
1971). For this reason, in this case the previous non-attributed
emotional state “energizes” the actual source.

The emotional misattribution process encompasses the
following three mutually exclusive cases:

(a) Misattribution occurs in the presence of an active
stimulation.

(b) Misattribution occurs in the presence of a residual (i.e.,
passive) response decay only (in other words, no active or
reactive responses are elicited), in this case themisattribution
trial follows the elicitation trial and occurs during the
excitation decay. This case is known in literature as transfer
paradigm (described in the Hullian drive theory Hull, 1943)
or also as excitation transfer (Zillmann, 1971; Zillmann et al.,
1972; Bunce et al., 1993), and refers to the influence of a prior
episode of arousal on subsequent emotional responses.

(c) Misattribution occurs when a purely reactive source of
stimulation is eliciting the subject, so that the associated
response is purely reactive.

FIGURE 6 | Simulations of emotional responses determined by prediction errors based on inference learning. (A1) A stressful (non-traumatic) reactive

response acquisition: the OFC determines a train of inferred prediction errors which are sent to the amygdala, based on information flux processing. More specifically,

the subject consciously expected a negative outcome (i.e., Y expected within the OFC is greater than zero) and the inferred negative outcome is not extreme or

traumatic, so that no saturation level of the emotional response, nor hippocampus impairment occur. (A2) Physiological devaluation of the previously learned

response: the subject is exposed to a stressful-related cue but in a safe context; the inhibition (i.e., deflation) of the emotional reaction determines the devaluation of

the response in the safe context. (B1) Traumatic response acquisition: inferred prediction errors generate a response which grows at relatively high level, causing both

amygdala response saturation and hippocampus impairment. In this case the subject does not expect such an intense negative outcome (i.e., Y expected within the

OFC is negligible with respect to the inferred outcome) and/or the inferred outcome is extremely intense. (B2) The traumatic response cannot be devaluated since the

inhibitory inferred prediction error due to the detection of a safe context is not sufficient to determine a response reduction. This can be determined by two main

phenomena: (1) the hippocampus impairment during the traumatic event blocked the encoding of the contextual information, moreover, for this reason, some

contextual stimuli have been misattributed as causal sources of stimulation and coded within the amygdala; (2) the weak inhibition due to the safe context is smaller

than the degree of saturation reached by the amygdala during the trauma exposure. (Prediction error patterns represent the time course of the difference between the

expected (within the OFC) and the experienced (within the CNS) responses). Parameter values: model M4, α = 0.4; K = 0.5; τ = 2s; saturation level for

Yexpected (amygdala) = 150 (which determines a reactive response saturation equals to 60); the level of OFC expectation before the stimulation is equal to 8 in (A1)

and to 1 in (B1); the inferred outcome is equal to 10 in both (A1, B1).
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In this last cited case, of our interest here, the response in the
first trial (when the misattribution is occurring), denoted iU , is
due to a purely reactive response elicited by an unrevealed or
confused source (e.g., a subliminal emotional picture stimulation
Esteves et al., 1994; Mayer and Merckelbach, 1999; Glascher and
Adolphs, 2003). Hence, the response attributed to the new source
(because of the misattribution) is equal to iU , which, in this case,
coincides with the response that the amygdala is already eliciting
within the CNS. More specifically, since iU represents the CNS
response eliciting by the amygdala, the intensity of the amygdala
response (and of the expected response) can be expressed as iU/α

(see Figures 1, 2 and Equation 3). Furthermore, the prediction
error in the first trial, which is equal to iU , is sent to the amygdala,
and, hence, the overall expected response encoded within the
BLA will be due to the sum of the prediction error and the
response already elicited by the amygdala, that is iU/α + iU .
Hence, during the second trial, the exposure to the new source
determines the reactive response α (iU/α + iU) which is greater
than the expected value previously stored within OFC (that was
iU), this leads to the computation of a new prediction error equal
to α · iU .

Following this line of reasoning it is easy to prove that the
reactive response can be expressed

yn = iU + iU

n−1
∑

k=1

αk (39)

after n exposure trials, so that the reactive response
asymptotically converges to

y∞ =
iU

1− α
. (40)

Nevertheless, as it is shown is Section 2.2.6 an UCS can be
attributed only partially through a statistical inference; this
means that in real situations only a portion of the entire response
is attributed to the new misattributed UCS, and that successive
misattribution trials can improve the attributed response. After
some trials in which an emotional picture (UCS1) is paired with a
previously neutral picture (CS) the misattribution process, when
occurs (since it is stochastic), leads to an overall reactive (and
expected) response associated to CS which is comprises between
0 and iU/(1− α) (see Equation 40).

A concrete example of such an effect is the EC through implicit
misattribution (Jones et al., 2009; Hutter and Sweldens, 2013).

Evaluative Conditioning (EC) represents the formation (or
change) of the valence of a stimulus, called CS, originating from
a prior pairing of the CS itself with another stimulus, called UCS
(Baeyens et al., 1993; De Houwer et al., 2001; Jones et al., 2009;
Hofmann et al., 2010; Gast et al., 2012; Hutter and Sweldens,
2013); unlike Pavlovian conditioning, a CS response acquired
through EC seems to be resistant to extinction (Baeyens et al.,
2005).

In Jones et al. (2009) it is shown that, according to
the implicit misattribution model, responses to UCSs can be
misattributed without awareness to the CS, and that the implicit
misattribution depends on source confusability. More specifically,

the subject may confuse which multiple occurring stimuli in her
environment is evoking the evaluative response.

Furthermore, manipulations of the variables related to the
potential for the misattribution of an evaluation, (i.e., the source
confusability) show that greater EC occurs with an higher degree
of confusability (Jones et al., 2009).

This result is also supported by Baeyens et al. (1993), who
found that EC was not sensitive to the degree of statistical
contingency between the CS and the UCS (as happens in
classical conditioning), but EC should increased with the absolute
number of pairings because each provides an opportunity for
misattribution, and such misattributions could act cumulatively
(Jones et al., 2009).

In conclusion, our model based on prediction errors explains,
from a quantitative perspective, the EC phenomena and post-
predicts the above cited results.

3.2.4. Predictions and Results of the Discrete Model

3.2.4.1. Classical conditioning
M3 model predicts all the relevant results predicted by R-W
model for CC (see Miller et al., 1995), since, starting from
stochastic hebbian plasticity hypothesis for CS-UCS synaptic
connection, the model results in an extended version of the
R-W model where, in addiction, accounts for the implicit
UCS revaluation. In other words, neglecting UCS revaluation
M3 coincides with the R-W model. Moreover, M3 is able to
quantitatively justify some experimental results not predictable
with R-Wmodel, such as the dependence of asymptotic responding
on CS intensity and US intensity (Young et al., 1976; see also
Miller et al., 1995 and articles therein). Indeed, Equations (30
and 31) show that the CR intensity influences the intensity of
the unconditioned response, since, even if the changes of iR
over successive trials could be really small, the asymptotic value
of iR is αX/(1 − α), which is greater than the initial value
αX. This leads to the conclusion that, since the value of the
parameter α is influenced by the selected CS (if the impact
of other factors, such as internal physiological states and the
selected UCS, is deemed constant), different CSs may result in
distinct asymptotic values of iR (and consequently of yCS; see
Equation 31).

Moreover, M3 provides a more general and accurate
description of the emotional response during conditioning than
the original R-W model for different reasons. First of all, it
includes the contributions of both the active response (X) due
to the elicitation of the UCS and the reactive (self-induced)
response associated with the UCS representation within the BLA
(iR). Moreover, the recursive equations describing it are causal
unlike those representing the R-W model. Note that causality
ensures that the currently computed response depends only on
the past and present values of the stimulus and the response
itself, but not on their future values; unluckily, this does not
occur for the Rescorla-Wagner model since the evaluation of the
current response requires the knowledge of the final asymptotic
response, which is actually unknown to the brain. Finally, in our
model the CS-UCS synaptic strength and the consequent UCS
inflation are jointly considered: the model shows that classical
conditioning learning influences the reactive response associated
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with the paired UCS; this is due to the misattribution of the CR
contribution forward the UCS response.

Furthermore, we argue that the model (M1-3) motivates also
the spontaneous recovery (Miller et al., 1995) and the conditioned
inhibition and all the related phenomena (such as the failure of
the extinction of conditioned inhibition through non-reinforced
presentations of the inhibitor; DeVito and Fowler, 1987; Harris
et al., 2014), which cannot be described in terms of classical
conditioning nor TD models (the mathematical demonstrations
are not reported in this manuscript).

3.2.4.2. Dopamine neurons activity predictions and relation

between existing models
The derived discrete model (M1-3) explain the experimental
measures on the activity of dopamine neurons within the VTA
(see Schultz, 2002 and articles therein). Indeed, (1) before
CC learning a rewarding UCS perception elicits a reactive
response; (2) during CC acquisition dopamine neurons respond
progressively to the onset of the CS and nomore to the UCS; (3) if
an UCS stimulation occurs unexpectedly the dopamine neurons
activity is physically increased; (4) dopamine neurons encoded
the difference between the current reward and an exponentially
weighted average of previous rewards (Bayer and Glimcher,
2005). Our model is able to justify such dopamine neurons
behaviors, more specifically, whenever the CS-UCS connection
strength increase the reactive response (iR) associated with the
given UCS can be activated by the CS perception through the
synaptic connection ωCS−UCS (see Figure 2; nevertheless, before
any cue association, only the UCS perception is able to activate
the reactive response (all the intermediate situations in which 0 <

ωCS−UCS < 1 are also predicted). Moreover, if successive reward
stimulations occur the error signal at each trial is effectively
computed as an exponentially weighted average of previous
outcomes; furthermore whenever an unexpected reward occurs
an adding reactive response due to contrast effect is triggered.
Such a contrast reactive response determines an error signal
which update the UCS expected value only the first time it occurs
(see Section 2.5.1), and this assures that an unbounded increasing
of the UCS associated value does not occur. The last reasoning
supports the idea that the reactive contrast effect is different than
prediction error and it represents a type of reactive response.
Indeed, other than reward prediction errors, different types of
dopamine neural coding exists (Bromberg-Martin et al., 2010).
More specifically, dopamine neurons can in some cases compute
prediction errors, and in other cases code or compute reactive
responses associated with given stimuli (CSs or UCSs) in order
to promote attention and specific (approaching or avoiding)
behaviors. The same function is performed by contrast effects
which have to focus attention toward the stimulator promoting
further learning (for instance, discovering a specific cue which
may in the future predict such an unexpected stimulation).
One of the difference between our theory and TD models for
reinforcement learning (Schultz et al., 1997; Schultz, 1998) is that
the latter assume that dopamine neurons encode only prediction
errors (and does not take into consideration nor define the term
“reactive response”), and that learning can occur only in the
presence of a prediction error. Nonetheless, there are evidences

which disagree with TD models: for instance, the occurrence of
associative learning between two neutral stimuli (the so called,
sensory pre-conditioning; Young et al., 1998; Sadacca et al.,
2016) or the evidence obtained by fMRI studies in which the
conditioned acquisition, or, in other words, an increase of the CS-
UCS contingency occurs even in presence of a negative prediction
error due to the concurrent deflation (decrease) of the UCR. In
practice, if during acquisition (CS-UCS pairings) the intensity
of the UCS stimulation is reduced, the CS-UCS connection is
still increased but a negative prediction error is computed and
updates the expected outcome associated to the UCS (Gottfried
and Dolan, 2004). Also the opposite situation may occur: during
conditioning extinction a positive prediction error due to UCS
inflation can be obtained. Such discrepancies originate from the
fact that TD (and R-W) models do not account for the two
main different types of learning (CC and, more generally, the
statistical and inferential learning and UCS revaluation driven by
prediction errors, see Figure 1). In particular, the inferential and
statistical learning creates a so called model of the world (Doll
et al., 2012), and it is not driven by errors but it occurs through
statistical (e.g., Bayesian) inference. Such an inference about the
statistical contingencies and causalities can be performed by the
hippocampus (and even directly by the amygdala) for low level
information processing, or by OFC whenever complex pattern
or higher level information have to be analyzed (see Figure 1).
Furthermore, as we have previously shown (see Equation 24),
the statistical inference contribution and the prediction error
based contribution (also called model-free contribution; Doll
et al., 2012) are taken into consideration by the brain for the
computation of the expected response depending on the degree
of certainty (belief) of each of the two components.

In conclusion, our model post-predicts the most relevant
phenomena related to learning and dopamine neurons, moreover
it predicts further important related phenomena with respect to
existing learning models.

3.3. Validation, Interpretation, and
Applicability of the Model
3.3.1. Validation of the Discrete Model
The discrete model parameters (i.e., α,K, and the filtering
coefficient, together with the estimation of the induced x) can
be estimated, for every emotional component, inducing specific
stimulation trials while neuronal activity is monitored (e.g.,
by fMRI or direct neurons activity recording). For instance
increasing intensity electric shock delivery can be performed
estimating the parameters valid for fear and anxiety related
emotional responses, and from unexpected stimulations the
contrast parameterK can be estimated; furthermore, rewarding
stimulations can be induced in order to estimate the parameters
valid for the dopamine neuron populations (e.g., in VTA).

3.3.2. Discrete Model Applications
The discrete model can be adopted in different psychological
paradigms and experiments other than the study of dopamine
neurons behavior. For instance, it is well known from the
literature (Bechara et al., 1994) that patients with damaged OFC
(and PFC) perform poorly at the Iowa Gambling Task (IGT).
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It is thought that such patients cannot learn from previous
emotional error signals, and, in line with this reasoning the
structure derived in Figure 1 shows that if OFC is damaged the
emotional prediction error computation is compromised. Our
model can be applied to the study of IGT, more precisely, a given
deck of cards represents an UCS whose average stimulation has
to be estimated, and the single cards represent specific emotional
stimulations (in this case purely reactive, since no active/energy
based stimulations occur). Firstly the model parameters have
to be inferred by successive stimulations and neuronal activity
measurements (e.g., by fMRI). Such parameters are: α, K,
hk(which represents a unique exponential coefficient considering
an exponential weight average filtering), xi(i = 1, ...R) where
R represents the number of the possible card outcomes and
xi represents the emotional response associated to the i-th
stimulation card (e.g., a gain of 50$). Such parameters have to be
estimated monitoring the neuronal activity while, from a unique
deck, successive cards (with random order) are discovered by
the subject (for instance, the subject perceive the sequence +50$,
+100$, -50$...). Once known the parameters related to a given
subject (or to a group of subjects), the model can predict the
performance of that subject at IGT, provided that the sequence
pattern (i.e., cards sequences) are given. More specifically, some
patients can perform poorly because an altered K parameter,
others because an altered α parameter, or because an unbalanced
reactive response associated with positive (rewarding) with
respect to the negative cards (xi), and so on. For instance similar
studies have been proposed for patients with Parkinson’s disease
(Zaghloul et al., 2009).

3.3.3. Validation of the Continuous Time Model
M4 can be validated in different scenarios. For instance
the time constant τ2 related to the filtering process and
the parameterα (for a target population) can be estimated
applying a (constant) direct neuronal stimulation to the target
population and measuring the overall response over time
(this could be accomplished adopting optogenetic manipulation
technology (Redondo et al., 2014), performing the so called
step response measure). In this scenario the asymptotic value
is related to α and to the direct stimulation by the relation
seen in Equation (13), while the rise time is related to τ2.
Furthermore, the model can be tested applying a time varying
stimulation over time while recording the overall response.
Finally, even a time varying function representing the error signal
dynamics can be directly applied to the neuronal population
involved in error signal computations (e.g., the VTA) while the
overall response dynamics is recorded in the target population
(e.g., in the NAcc), similarly as performed in Chang et al.
(2016).

3.3.4. Applications and Modulation

(Increasing/Decreasing) of Emotional Responses
The derived model can be adopted for the study of the emotional
dynamics during a continuous stimulation. A practical example
is music, in which complex hierarchical patterns of acoustic
sound successions (which involve inferential learning/pattern
recognition) together with continuous modulation of contrast

effects are exploited to evoke specific emotional responses.
It is well known that music is able to evoke emotions, for
instance, violating expectations or shifting in time the rewards
in a balanced mechanism based on frustration (i.e., tension,
as a state of dissonance, instability and uncertainty Huston
et al., 2015) and satisfaction (resolution toward consonant
and stable sounds experienced as pleasurable; Koelsch, 2014).
Violation or retardation in resolution produces a tension increase
which may result in a successive stronger satisfaction during
resolution (Huston et al., 2015). However, it has to remember
that the specific mapping function between the features of a
given physical source, which drives the energy flux, and the
corresponding active emotional response induced by it (i.e., x(t)
or xn, which represents the mean firing rates of a given neuronal
population elicited by the energy flux) has to be determined.
If this function is known, the physical features of the source
can be controlled in a way to generate specific dynamics in the
active response; this, in turn, results in the generation of designed
emotional reactive responses.

3.3.4.1. Artificial emotional modulation and production of

resistant-to-extinction responses
Our theoretical findings suggest that the “inertial nature” of the
emotional dynamic tracking system can be exploited to originate
a resistant-to-extinction emotional reaction; this, in turn, may
be exploited to increase (decrease) an emotional response until
a saturation level (zero). In the following is explained how this
can be obtained.

Starting from Equation (38) it is possible performing
numerical optimization procedures to find x(t) patterns which
determine a CNS response (denoted y(t)) such that an y(t)
different from zero occurs while a “very close to zero” prediction
error (e(t)) occurs together with the condition that x(t) is close
to zero, within a sufficient long time interval. The functional to
be optimized has to involve all the above mentioned conditions.
Despite the fact the so obtained reactive response could be
relatively small, the stimulus which is associated to such a
pattern of stimulation will acquire a resistant-to-extinction
response; furthermore, since an emotional reaction (even if
small) is triggered, even in absence of an active stimulation (since
it is resistant-to-extinction) the presentation of a new input
stimulation function (i.e., x(t)), with the same dynamics of the
previous one, will permit to obtain an increasing of the response,
exploiting a summation effect (see the integration property and
Equation 2). Hence, with a limited (and periodical) dynamics of
the input x(t) is possible to obtain an “unlimitedly” increasing
emotional reaction exploiting the inertial nature of the emotional
system. In order to test the hypothesis, after having obtained
the desired x(t) function from numerical optimizations, such
a function can be applied to CNS emotional population (e.g.,
the anterior cingulate regions, or rewarding brain regions such
as NAcc) through optogenetic manipulations (Redondo et al.,
2014), or through direct electric neuronal stimulation, while
recordings the increase of the overall population emotional
response over time. We argue that at every application of the
optimized x(t) there is a probability greater than zero that the
“inextinguishability effect” takes place, adding a contribution
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to the previously accumulated resistant-to-extinction
response.

3.3.5. Inducing Traumatic (Saturated) Responses:

Testing the Model
On the basis of the analysis andmodels developed in the previous
sections, we argue it is possible to induce traumatic emotional
responses in a laboratory through optogenetic manipulations.
More specifically, the misattribution effect and the implicit UCS
revaluation can be exploited in an iterative framework until a
saturation level will be reached. It is proposed the following
procedure: (1) the animal has to infer that a given electric shock
device (UCS1) is the causal source of pain; in particular, at every
stimulation trial UCS1 has to be perceived by the animal, emitting
also a brief specific acoustic tone (CS1, which will serve only
as “probe” to test the response inextinguishability at the end of
the inductive process) just before the occurring of the electric
shock stimulation. It is important to note that every time that
UCS1 is presented to the animal, it will elicit the electric shock.
(2) Some stimulation trials have to occur in order to reach the
asymptotic response y = x/(1 − α), provided that x represents
the active component. (3) A second pain stimulator device
(UCS2), different from UCS1 (for instance a device producing
pain by heat shock can be adopted) has to be presented to the
animal exactly as UCS1. (4) Neuronal representations (memory
engrams) of UCS1 and UCS2 have to be detected and labeled
within the BLA. At this point it is important to note that two
distinct reactive responses, iR1,iR2 (such that iR1 = αx1/(1 −

α); iR2 = αx2/(1 − α)), have been associated with the BLA
memory engrams of UCS1 and UCS2 respectively, so that it is
possible to activate such reactive responses by optical stimulation
of the associated engram cells (Ramirez et al., 2015). (5) In
successive UCS1 stimulation trials, the BLA memory engram
associated with UCS2 has to be optically stimulated in order to
induce an UCS1 revaluation determined by the sum of the active
(electric shock elivery, denoted x), the UCS1 reactive response iR1
and the reactive response associated with UCS2, iR2 . The above
mentioned revaluation occurs since the overall response (active
and reactive) will be fully attributed to UCS1 (in other words,
a misattribution does occur). (6) Some stimulation trials have
to be performed in order to reach the new asymptotic response
attributed to UCS1, which will be equal to:

y1−∞
UCS1 = x1 + iR1 +

iR2
1− α

= x1 + iR1 +
αiR2
1− α

+ iR2 (41)

where, y1−∞
UCS1 represents the asymptotic UCR1 at the end of the

first iterative procedure; (7) The UCS2 stimulates the animal,
while optical stimulation of the UCS1memory engram occurs, so
that the UCR2 in the first trial of the second iterative procedure
can be expressed as:

y2−1
UCS2 = x2 + iR2 + iR1 . (42)

It is worth noting that, at this stage, the reactive response iR1has
been increased during the first iterative procedure, and its value

was increased from αx1/(1− α) to (see Equation 41):

i1−∞
R1

=
αx1

1− α
+

αiR2
1− α

=
αx1

1− α
+

α2x

(1− α)2
. (43)

If, without any loss of generality, it is assumed that x1 = x2 = x
and that α = 0.5 in order to simplify the computations, the UCR2
asymptotic value at the end of the second iterative procedure can
be expressed as:

y2−∞
UCS2 = x+ iR2 +

i1−∞
R1

1− α
= x+ x+ 4x = 6x (44)

(8) procedures 6 and 7 are repeated iteratively, increasing iR1
and iR2at every stimulation trial; we named this procedure
iterative climbing, since the derived protocol resembles a climbing
performed by leaning iteratively between UCS1 and UCS2. It is
easy to verify by induction that the process leads to a response
which diverge to infinity (i.e., y∞−∞

UCS1 → ∞). In practice, it is
expected that when a saturation threshold is reached, the error
signal will be zero and no more response increases can occur.
In such a situation the emotional response will be resistant-to-
extinction and the simple presentation of the UCS1 with the
probe CS1 (without active stimulation) to the animal will produce
the traumatic reaction. Indeed, UCS1 (and CS1) represent the
traumatic triggering cues; it is also expected that the only CS1
presentation is able to trigger such a traumatic response like in
PTSD patients.

4. DISCUSSION

In this manuscript a system computational model of emotional
learning has been developed. Themodel shows the differentiation
(and the relations) between statistical inference learning (e.g.,
CC) and implicit UCS revaluation, and provides various new
insights on well known psychophysiological phenomena and
psychiatric diseases, and new ideas for further research. One of its
most interesting implications is represented by the identification
of well defined mathematical and neurophysiological conditions
ensuring the inextinguishability of specific emotional reactions.
In particular, it allows us to establish the following four different
mechanisms through which a stimulus can produce a resistant-
to-extinction emotional reaction: (1) misattribution of a reactive
response; (2) classical conditioning of a stimulus to a purely
reactive UCS; (3) saturation of emotional response together
with hippocampus impairment (also reproducible through
optogenetic manipulations exploiting the iterative climbing
procedure); (4) the exploitation of the inertial dynamics of
emotional system on a continuous time scale. Further relevant
contributions are represented by the proof that the Rescorla-
Wagner model for classical conditioning can be obtained as a
special case of the proposed model; the derivation of a new
model for conditioning, which accounts for the implicit UCS
revaluation and that is able to quantitatively describe important
experimental results, which are unpredictable by existing classical
conditioning models (including the TD model).

Our result paves the way for various new research activities.
First of all, various potential applications of our theory can
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be envisaged in the hot research area concerning the study
(and the manipulation) of animal behaviors, emotional reactions
and decision making, since our model permits to infer specific
parameters involved in emotional induced responses under
decision, which are known to influence (or even drive) human
decisions (see Bechara et al., 1994).

A further relevant research topic concerns the applications
of our model of emotional learning on a continuous time scale.
Generally speaking, this model could be exploited to analyze the
emotional reaction generated by any stimulation which varies
continuously over time (e.g., a time-varying acoustic source of
stimulation, such as music, or even a purely reactive emotional
induction, such as a succession of emotional pictures, or amovie).

Finally, it is important to mention that our theoretical
framework can be exploited for the development of animal

psychophysiological experimental models; these, in turn,
can potentially provide new insights into emotion-related
phenomena and pathologies.
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